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Abstract: This paper investigates the transformation mechanism between different channel patterns.
A developed 2D depth-averaged numerical model is improved to take into account a bank vegetation
stress term in the momentum conservation equation of flow. Then, the extended 2D model is applied
to duplicate the evolution of channel pattern with variations in flow discharge, sediment supply
and bank vegetation. Complex interaction among the flow discharge, sediment supply and bank
vegetation leads to a transition from the braided pattern to the meandering one. Analysis of the
simulation process indicates that (1) a decrease in the flow discharge and sediment supply can lead
to the transition and (2) the riparian vegetation helps stabilize the cut bank and bar surface, but is
not a key in the transition. The results are in agreement with the criterion proposed in the previous
research, confirming the 2D numerical model’s potential in predicting the transition between different
channel patterns and improving understanding of the fluvial process.
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1. Introduction

Channel pattern refers to the limited reaches of the river that can be defined as straight, meandering
or braided. While long, straight rivers seldom occur in nature; meandering and braided rivers are
common [1]. The transformation of channel patterns take place in response to variations in different
variables, which can be grouped into four categories: (i) Dynamic flow, (ii) shape and characteristics
of the channel, (iii) sediment load and (iv) bed and bank material [2]. A sound understanding of the
relationship between the control variables and channel pattern is fundamental to the development
of improved management strategies in braided rivers [3]. The laboratory flume experiments have
shed much light on the dynamic behavior of a wide braided river to a single-thread channel [4–10].
Various criteria have been proposed on the response of channel morphology to control variables [11–14].
Quantitative inconsistencies in both the coefficients and exponents of discriminant functions have
resulted from the use of different measures of slope and discharge, as well as differences in the
definitions of the transition between channel patterns [15–17].

With the rapid developments of numerical and mathematics methods in fluid mechanics,
multiple-mathematics models have become important tools for investigating dynamic interactions in
evolving braid units. The development of physically based theories, which attempt to relate pattern
and process in a predictive manner, offer improved insight into the primary variables controlling
channel pattern. Models based on linearized physics-based equations [18–21] and 2D nonlinear
physics-based morphological models [22–25] have been established to simulate the braided channel
evolution. Cellular models [26–29], 2D and 3D flow-sediment numerical models [30–35] have been
developed to model braided rivers. Although various computational studies on the formation of
braided rivers are available, few preliminary numerical studies of the transformation process from the
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braided to meandering pattern are offered [36], to discuss the interactions of multiple factors, such as
flow conditions, sediment characteristics and bank stability.

The primary objective of this study is to investigate the dynamic process of the transformation
between different channel patterns with different control variables. The original 2D numerical model
takes the vegetation term into the flow momentum equation, and is verified in the middle section
of the Yangtze River. Subsequently, a conceptual braided channel is established in the numerical
experiment, control factors as flow discharge, sediment supply and bank vegetation are considered in
the simulation of the transition from the braided to the meandering channel. The proposed criteria
were applied to discuss the transition process between the braided and meandering channel, the results
agree well with the previous research. It demonstrates that the 2D numerical model can be applied to
improve understanding of patterning processes under different scenarios.

2. Numerical Model

2.1. Model Description

The 2D numerical model incorporates the hydrodynamic, sediment transport and river
morphological adjustment sub-model. It is solved in the orthogonal curvilinear grid system by
using the Beam and Warming alternating-direction implicit (ADI) scheme. The sediment transport
submodel includes the influence of non-uniform sediment with bed surface armoring and a correction
for the direction of bed-load transport due to secondary flow and transverse bed slope. The bank
erosion submodel incorporates a simple simulation method for updating bank geometry during either
degradational or aggradational bed evolution. The details of the developed 2D model can be found
in Xiao et al. [37], and verified in the physical meandering channel and the upstream of the Yangtze
River [38].

2.2. Consideration of the Riparian Vegetation Influence

The significance of riparian vegetation as a control of river form and process is increasingly being
recognized in fluvial research. In this study, the hydrodynamic portion of the 2D numerical model was
upgraded to incorporate the effects of riparian vegetation.

The equilibrium equation for the riparian vegetation zones herein can be introduced by Ikeda and
Izumi [39] in the form:

τ
cosθ

= ρgHS−Dr +
d

dy

∫ H

0

(
−ρu′v′

)
dz, (1)

where τ is the total shear stress near the river bank (Pa); Dr is the vegetation stress term (Pa); v′, u′ are
the fluctuating velocity in the longitudinal and transverse direction (m/s), respectively; S is the slope,
H is the averaged water depth (m) and θ is the inclination of the location, often θ ≈ 0, Equation (1) can
be reduced to:
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cosθ
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(2)

Let pv = Dr, substitute it to the momentum conservation equation of flow in the Cartesian
coordinate system as:
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where pv should satisfy the additional condition in all directions as: pv =
2∑

i=1

(
∂pv

∂xi

)2
; u is the

depth-averaged flow velocity (m/s); ui is the flow velocity in the i-direction (m/s); a is the vegetation
density (m−1), defined as a = d/

(
lxly

)
, d is the radius of the vegetation (m) and lx and ly are the distance

of vegetation in the longitudinal and transverse directions (m).
CD is the drag coefficient of vegetation. Consider the influence range of the vegetation coefficient,

let CD = 1.5 when the vegetation zones near the river bank [39]; if the zones of vegetation are in the
river channel, we assumed the influence of vegetation was proportionate to the distance from the
channel center in the form:

CD = 0 x = l
CD = 1.5− 1.5x/l 0 < x < l

CD = 1.5 x = 0
(6)

where l is the distance from the river bank to the channel center (m); x is the distance from the computed
point to the river bank (m).

In this study, we substituted Equations (4) and (5) to the 2D depth-averaged momentum
conservation equation of flow in the orthogonal curvilinear coordinate system as follows:
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(7)

where h1 and h2 are the lame coefficients in the ξ and η direction, respectively; U and V are the
depth-averaged flow velocity components in the ξ and η direction; the unit discharge vector is
q = (q, p) = (UH, VH); z is the water level relative to the reference plane; β is the correction factor for
non-uniformity of the vertical velocity profile; f is the Coriolis parameter, which was neglected in this
study; g is the gravitational acceleration; C is the Chezy coefficient; νe is the depth mean effective vortex
viscosity, zs and zb are the dependent water levels at the water surface and channel bed, respectively.

2.3. Verification

The extended 2D numerical model was applied to a 102 km long, ‘S’ shaped channel section in the
middle Yangtze River, and the bank along the river from Shashi to Shishou is protected by the riparian
vegetation. An orthogonal curvilinear coordinate system was applied with a total of 600 × 115 grids in
the computational domain and a time interval of t = 8 s (Figure 1). The angles between the ξ and η grid
lines were 88◦ and −92◦, except for some grids close to the banks. The grid spacing was 100–180 m in
the ξ direction and 35–45 m in the η direction. Observed daily water discharge and sediment load
at the inlet were used as boundary conditions and bed contour maps dated September 2002 was the
initial topography [40]. Calculation of suspended load was divided to eight group ranging from 0.005
to 1 mm in diameter (Table 1). The sediment gradation in bed materials (Table 2), transport capacity
for various size groups, and river topography were adjusted every 24 h. The thickness of active layers
were La = 15 m. A real time period of two years was simulated, and the calculated results of flow
velocity, water stage and morphological changes were compared with the measured data.
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velocity for various discharges in November 2003 is shown in Figure 2, calculated depth-averaged 
velocities were consistent with the observed asymmetrical velocity patterns, and the relative error 
near the bank vegetation area was below 6%. Figure 3 shows the comparison of the measured and 
calculated water stages at two hydrometric stations during September 2002–July 2004, which 
indicate good agreements between simulations and measurements.  

 

 

Figure 1. Layout of the field study reach section and its computational mesh. (a) layout of the study
river section; (b) computational mesh.

Table 1. The fraction of suspended load being simulated.

No. 1 2 3 4 5 6 7 8

Size (mm) 0.004 0.008 0.016 0.031 0.062 0.125 0.25 0.5
Proportion 30 12.7 13.4 14.6 13.1 8.2 6.5 1.5

Table 2. The fraction of bed material.

No. Group Percentage of Bed Materials D50 (mm) Year

0.004 0.008 0.016 0.03 0.062 0.125 0.25 0.5 1
% 0 0 0 0.1 1.1 13.2 55.3 30 0.3 0.193 2002

Comparison of observed and calculated cross-sectional profile of depth averaged stream-wise
velocity for various discharges in November 2003 is shown in Figure 2, calculated depth-averaged
velocities were consistent with the observed asymmetrical velocity patterns, and the relative error
near the bank vegetation area was below 6%. Figure 3 shows the comparison of the measured and
calculated water stages at two hydrometric stations during September 2002–July 2004, which indicate
good agreements between simulations and measurements.
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Figure 2. Measured and calculated cross-sectional profiles of depth-averaged velocity. (a) cross 
section S1; (b) cross section S2. 
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Figure 3. Comparison of the water stages at two control stations. (a) Shashi station; (b) Xinchang station. 

Table 3 lists the measured and calculated total amount of deposition or scour. It indicates that 
the largest discrepancy between observed and calculated of results was found in the entrance section 
from Taipingkou-shashi, possibly due to the uncertainties introduced by the initial and boundary 
conditions. Figure 4 is a comparison between the calculated and measured scour and deposition 
depths. It can be seen that except the entrance section, the predicted pattern of scour and deposition 
agreed well with observations if reliable information of bank material, riparian vegetation and bed 
material size could be obtained. A comparison of changes of the bed level at the typical cross 
sections shows that as time progressed, the pattern of the cross sections tended to the measurements 
with acceptable ranges of error (Figure 5). 
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Figure 3. Comparison of the water stages at two control stations. (a) Shashi station; (b) Xinchang station.

Table 3 lists the measured and calculated total amount of deposition or scour. It indicates that the
largest discrepancy between observed and calculated of results was found in the entrance section from
Taipingkou-shashi, possibly due to the uncertainties introduced by the initial and boundary conditions.
Figure 4 is a comparison between the calculated and measured scour and deposition depths. It can be
seen that except the entrance section, the predicted pattern of scour and deposition agreed well with
observations if reliable information of bank material, riparian vegetation and bed material size could
be obtained. A comparison of changes of the bed level at the typical cross sections shows that as time
progressed, the pattern of the cross sections tended to the measurements with acceptable ranges of
error (Figure 5).

Table 3. Measured and calculated volumes of deposition (+) or scour (−).

River Section Total Distance
(km)

Section Length
(km)

Measured
(106 m3)

Calculated
(106 m3)

Taipingkou-Shashi 8.47 8.47 −827.26 −1185.91
Shashi-Haoxue 58.65 50.19 −1705.39 −1730.82

Haoxue-Xinchang 73.62 14.96 −1353.62 −924.21
Xinchang-Shishou 93.38 19.76 −1508.87 −1719.86
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Figure 5. Measured and calculated bed deformation at various typical cross sections. (a) cross section 
S3 and (b) cross section S4. 
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Figure 5. Measured and calculated bed deformation at various typical cross sections. (a) cross section 
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3. Numerical Modeling on the Transformation of Braided and Meandering Channel

3.1. Formation of the Braided Channel

The conceptual channel was 10,000 m long and 300 m wide, and the grid system of 400 × 80 nodes
was generated. The initial bed was flat with a 0.4% slope, the medium grain size of the sediment supply
and the bed material was 0.1 mm. The inlet water discharge and sediment feed rate are provided in
Table 4, and the outlet water level was constant during the simulation, the repose of the sediment ϕ′ =

14, and the lateral erosion coefficient of the bank as C = 0.011. The computational time interval ∆t = 6 s,
and the simulation time period was 720 days.

Table 4. The experimental conditions.

Time Period Time
(d)

Discharge
(m3/s)

The Medium Grain Size
(mm)

Sediment Supply
(kg/m3)

1 360 150 0.1 1
2 360 300 0.1 5

Figure 6 depicts an unstable braided river pattern after 720 days. Two control factors contributed
to the formation of the braided channel: Large and sudden variation in discharge resulted in broadened
channel cross-sections; large sediment supply led to aggradation up and down in the upper section of
the stream and the initially symmetric inflow became almost asymmetrical and formed point bars or
migrating central bars. It illustrated that a fluctuation in the controls would induce changes of the
braided channel pattern to another pattern.
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3.2. The Transformation of the Braided Channel under Control Variables

Based on the simulated braided river, four numerical experiments were performed including the
effect of water discharge, sediment supply and bank vegetation. The experimental conditions can be
seen in Table 5.

Table 5. The experimental conditions.

No. Flow Discharge
(m3/s)

Sediment Supply
(kg/m3) Bank Vegetation Time

(d)

1 150 5 Yes 600
2 300 1 No 600
3 300 5 No 600
4 150 1 Yes 600

Figure 7 depicts the final planform of the braided river for runs No. 1, 2 and 3. In run No. 1,
reduction of the discharge led to a weak sediment transport capacity, sedimentation took place in
the branch channel and a new main channel was formed in the upper section. With time processes,
aggradation resulted in higher bed elevations above the initial bed profile in the upstream, led to an
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increase of the stream power in the downstream and a broad, island braided channel was formed
(Figure 7a). The braided channel in run No. 2 also transferred to a meandering channel in the upstream
with different mechanisms compared with run No. 1: A reduction of sediment load resulted in
less aggradation and bed scour in the upper part, and might be a key factor in the formation of a
straight channel pattern with no island-bars in the downstream (Figure 7b). Figure 7c shows that bank
vegetation enhanced the strength of banks, stabilized the channel, held on the sediment and the plan
view seemed like that of run No. 2. As shown in Figure 7d, the planform of run No. 4 was obtained by
the contribution of the influence of discharge, sediment supply and bank vegetation. It can be seen that
the channel transformed to a single thread channel pattern differing from the other three numerical
experiments, especially in the downstream; the reach downstream was sketched, where the wetted
and active branches were marked off.
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4. Discussion

4.1. The Cross Section Change

Figure 8 shows the comparison of the bed deformations between runs No. 1–3 and the initial
braided river at the 6000 m cross section. As decreasing the discharge and sediment load respectively
in run No.1 and 2, the main channel shifted to the right bank as the sand bars growing at the left
bank; the shape of the cross section transit from “W” to “U”; the width ratio was lower and the depth
of the channel in run No. 3 was deeper than that of run No. 1–2, it illustrated that the vegetation
could increase tensile and shear strength, gave adequate time and conditions for development, such
stabilization allows the existence of relatively steep cut banks, and might hinder the lateral migration
of channels [41].

1 
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Figure 8. Comparison of bed deformation at the 6000 m cross-section.

4.2. The Channel Planform Change

The quantified parameters characterizing run No. 1–4 were obtained in Table 3. “Braided -channel
ratio” B was used to describe the development of multiple channels from a channel belt as follows [42]:

B = Lctot/Lcmax, (8)

where Lctot is the sum of the mid-channel lengths of all the segments of primary channels in a reach
and Lcmax is the mid-channel length of the same channel.

Table 6 shows the braiding and meandering parameters for run No. 1–4. Due to the similar plan
view in run No. 2 and run No. 3, one could see the values of the sinuosity (P) and braided-channel
ratio (B) tended to correlate negatively with the reduction of breaches. Figure 9 presents the sketch of
the braided reach for the initial and run 1, 2 and 4. Theoretically, if a reach has only a single channel,
with no braids, the braided-channel ratio (B) would approach 1 as the sinuosity (P) of the river section
has the minimum value of unity.

Table 6. The parameters of the braided reach.

No. Number of Breaches Braided-Channel Ratio (B) Sinuosity (P)

Run No. 1 6 2.11 1.06
Run No. 2 5 1.9 1.00
Run No. 3 4 1.97 1.01
Run No. 4 2 1.22 1.35
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Figure 9. Sketch of the braided reach for initial and run 1–4. (a) Initial reach; (b) run 1; (c) run 2 and (d)
run 4.

A large portion of branches exhibited morphological activity, with seven branches in initial reach
as shown in Figure 9a, the number of branches was reduced to two in run No. 4 while the channel
pattern became the meandering (Figure 9d). The results reflected that the value of P would decrease
with the channel belts intersect each other, and the channel belts developing along the single-channel,
meandering arm had higher sinuosity. The flow field of run No. 4 was plotted in Figure 10, including
the velocity and bed elevation; it can be seen that reduction of the inlet discharge and sediment supply
led to a meandering flow path. The results demonstrate that the discharge and sediment supply played
a significant role in the transformation mechanism of channel patterns, which agreed qualitatively
with the previous work on this topic [10].
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4.3. Comparison with the Empirical Dimensionless Braiding Criterion

Just over 50 years ago Leopold and Wolman [4] published their classic analysis of alluvial
river patterns. The number of channel classification schemes increased rapidly in the following
decades. The single most cited component of Leopold and Wolman is the empirical expression for the
meandering-braiding threshold slope, S*:

S∗ = 0.0125×Q−0.44, (9)

where Q is the bankfull discharge (m3/s). Channel pattern is determined at least in part by both the rate
and mode of sediment transport, an obvious shortcoming of Equation (9) is the absence of bed material
size. Henderson [43] reanalyzed the Leopold and Wolman data and derived an equivalent expression:

S∗ = 0.52 ·D1.14
50 ×Q0.44, (10)

where D50 is the median bed surface grain size (m). Equation (10) can be expressed using the
dimensionless discharge defined by Parker [44]. The dimensionless discharge, Q*, is given by:

Q∗ =
Q

D2
50

√
(s− 1)gD50

, (11)

where s is the specific gravity of the sediment grains. Millar [45] found that for channels where the
relative bank strength does not change appreciably with the channel size, and then combined regime
theory with a linear stability model to generate a morphodynamic power functions that describe the
threshold slope as a function of Q:

S∗ = 0.00957µ′Q∗−0.25, (12)

where µ′ is the dimensionless relative bank strength given by the ratio of the critical shear stress for
entrainment of the channel banks to the critical shear stress for the channel bed.

Figure 11 shows the temporal changes of the braiding criterion under four different simulation
conditions. It can been seen that the data of run No. 1–3 were located in the upper bound for the
braided channels, and run No. 4 data was in the lower bound for braided stream. It indicates that
the relative bank strength strongly influenced channel geometry, and so for channels where the banks
were more resistant than the bed, because of vegetation, we could expect a single-thread channel to
persist in a region where braiding would otherwise be expected to occur [46].

Water 2019, 11, x FOR PEER REVIEW 11 of 14 

 

The single most cited component of Leopold and Wolman is the empirical expression for the 
meandering-braiding threshold slope, S*: 

* 0.440.0125S Q−= × , (9) 

where Q is the bankfull discharge (m3/s). Channel pattern is determined at least in part by both the 
rate and mode of sediment transport, an obvious shortcoming of Equation (9) is the absence of bed 
material size. Henderson [43] reanalyzed the Leopold and Wolman data and derived an equivalent 
expression: 

1 14 0 44
500 52* . .S . D Q  = ⋅ × ,  (10) 

where D50 is the median bed surface grain size (m). Equation (10) can be expressed using the 
dimensionless discharge defined by Parker [44]. The dimensionless discharge, Q*, is given by: 

50
2
50 )1s( gDD

QQ*

−
=

,

 
(11) 

where s is the specific gravity of the sediment grains. Millar [45] found that for channels where the 
relative bank strength does not change appreciably with the channel size, and then combined 
regime theory with a linear stability model to generate a morphodynamic power functions that 
describe the threshold slope as a function of Q: 

25.0*'00957.0 −= QS* μ ,  (12) 

where μ′ is the dimensionless relative bank strength given by the ratio of the critical shear stress for 
entrainment of the channel banks to the critical shear stress for the channel bed. 

Figure 11 shows the temporal changes of the braiding criterion under four different simulation 
conditions. It can been seen that the data of run No. 1–3 were located in the upper bound for the 
braided channels, and run No. 4 data was in the lower bound for braided stream. It indicates that 
the relative bank strength strongly influenced channel geometry, and so for channels where the 
banks were more resistant than the bed, because of vegetation, we could expect a single-thread 
channel to persist in a region where braiding would otherwise be expected to occur [46].  

 
Figure 11. Dimensionless braid thresholds with the numerical experiment data. 

5. Conclusions  

This paper presented research on the transformation mechanisms from a braided to 
meandering pattern by a numerical approach. A 2D depth-averaged hydrodynamic model for 
hydrodynamic, sediment transport and river morphological adjustment was applied in the 

Figure 11. Dimensionless braid thresholds with the numerical experiment data.



Water 2019, 11, 2030 12 of 14

5. Conclusions

This paper presented research on the transformation mechanisms from a braided to meandering
pattern by a numerical approach. A 2D depth-averaged hydrodynamic model for hydrodynamic,
sediment transport and river morphological adjustment was applied in the numerical experiment.
A conceptual braided channel and its transformation with different control factors were simulated
to study the mechanics of fluvial process. It demonstrated that the tendency of the research on the
mechanisms of fluvial processes might be regarded as a combination of the theoretical study with
numerical models in future. Further studies are needed to research the fundamental equation that
governs the evolution of alluvial river, which has not been fully understood to ensure the availability
of the numerical model.
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Abbreviations

τi j The shear-stress tensor
τ The total shear stress near the river bank
S The slope of the water surface
u, v The time-averaged flow velocity components in the Cartesian coordinate system
a The vegetation density
lx, ly The distance of vegetation in the longitudinal and transverse direction
ξ, η The orthogonal curvilinear coordinates
h1, h2 The Lamé coefficients
J The Jacobian of the transformation J = h1h2
Z The water level relative to the reference plane
H The averaged water depth
U, V The depth-averaged velocity components in the ξ and η directions
β The correction factor for the non-uniformity of the vertical velocity
f The Coriolis parameter
g The gravitational acceleration
C The Chezy coefficient
υe The depth mean effective vortex viscosity
D11, D12, D21, D22 The depth-averaged dispersion stress terms
zs, zb The dependent water levels for the water surface and channel bed
θ The inclination of the location
Dr The vegetation stress term
k von Karman constant
∆t The time increment
B The “braided-channel ratio”
Lctot The sum of the mid-channel lengths of all the segments of primary channels in a reach
Lcmax The mid-channel length of the same channel
S* The meandering-braiding threshold slope
Q The bankfull discharge
Q* The dimensionless discharge
D50 The median grain size
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