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Abstract: Managing stormwater on urban surfaces with blue-green infrastructure (BGI) is being
increasingly adopted as an alternative to conventional pipe-based stormwater management in cities.
BGI combats water problems and provides multiple benefits for cities, including improved livability
and enhanced biodiversity. The paper examines six municipality-led pilot projects from Beijing
and Copenhagen, through a review of documents, site observations and interviews with project
managers. Beijing’s projects attempt to divert from a pipe-based approach but are dominated by less
BGI-based solutions; they could benefit from more integration of multiple benefits with stormwater
management. Copenhagen’s projects combine stormwater management with amenity improvement,
but lack focus on stormwater utilization. Reviewed municipality-led pilot projects are shown to play
an important role in both testing new solutions and upscaling them in the process of developing
more sustainable cities. Key lessons are extracted and a simple guideline synthesized. This guideline
suggests necessary considerations for a holistic solution that combines stormwater management and
urban space improvements. Key lessons for sustainable solutions include defining a clear water
technique priority, targeting both small and big rain events, strengthening ‘vertical design’ and
providing multiple benefits. An integrated stormwater management and landscape design process is
a prerequisite to the meaningful implementation of these solutions. Research and documentation
integrated with pilot projects will help upscale the practice at city scale.

Keywords: blue-green infrastructure; pilot project; niche; stormwater management; multiple benefits;
planning/design; sustainability transition

1. Introduction

Cities nowadays face great challenges in the management of stormwater from frequent heavy
rainfalls exacerbated by climate change, water stress and deterioration of the water environment, all of
which impede efforts to improve living conditions. Having learned that pipe-based drainage systems
alone are inadequate to these challenges, cities are searching for new ways to manage stormwater and to
achieve multiple sustainability goals at the same time [1]. The urban landscape can contribute to these
new solutions by harnessing the power of some overlapping concepts and terms such as sustainable
drainage system (SUDS), low impact development (LID), water sensitive urban design (WSUD),
(blue) green (stormwater) infrastructure (BGI), and sponge city (SC) [2,3]. Techniques related to these
concepts have been explored as niche practices, i.e., novel and still-unstable solutions developed and
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implemented by dedicated but often fringe actors in cities around the world. These practices are
mainly driven by each city’s own water stress [1].

The blue-green infrastructure (BGI) approach seeks to mitigate flooding and improve the quality
of stormwater discharge by applying decentralized blue-green elements that mimic the natural
hydrograph. These elements manage stormwater through processes of infiltration, evapotranspiration,
retention, detention and slow transport, while providing such multiple benefits to cities as conserving
local water resources, improving livability and supporting biodiversity [2]. Despite the relatively
well-known principles, knowledge of cities’ BGI for stormwater management (SWM) practices is
lacking. This study has been motivated by a desire to learn practical lessons and to bridge the gap
between research and practice.

1.1. Theoretical Background

According to the hydrological processes, water techniques for BGI can be categorized into three
types [4,5]. (i) “Onsite control” by small-scale solutions, such as green roofs, raingardens, and
permeable pavement, all of which aim to retain as much stormwater locally as possible; The process is
mainly retention, i.e., “absorbing” stormwater onsite, through infiltration, evapotranspiration or reuse,
generally without discharging runoff further downstream. “Onsite control” contributes positively to
flood mitigation, water quality improvement and local water balance [6]. (ii) “Process control” by
using swales and ditches to transport stormwater slowly downstream. These processes may reduce
floods by increasing the concentration time, but can also improve water quality and local water balance
through infiltration [7]. (iii) “Downstream control” or controlled discharge by the use of larger scale
facilities like dry basins, ponds and wetlands, for temporary detention and slow discharge to recipients
or downstream urban drainage systems. Downstream detention contributes to flood prevention and
water quality improvement through sedimentation, but does not improve the local water balance.

To facilitate the processes of retention, detention or transportation, BGI systems need to be able
to manage a certain volume of stormwater. This volume is directly related to the size of the effective
impervious area (EIA) [8], i.e., the area that generates stormwater runoff to the BGI element, the
BGI’s hydrologic function, the earthwork required for landscape construction, and the BGI’s potential
benefits to cities. Storage volume is often related to a service level, i.e., the rainfall return period a
system is dimensioned to handle. For example, with a service level of three years, the stormwater
drainage system is designed to handle a three-year (3-year) rain event, which is the worst rain event that
statistically occurs once every three years, that is, a 3-year return period. When managing stormwater
volumes on the urban surface, as part of the urban landscape, these systems may provide multiple
benefits to the city, such as socio-cultural benefits (recreation, aesthetics of urban landscape, playfull
urban space, public education), biodiversity and other ecological benefits, and improved economic
performance. Therefore the design of an optimal BGI-based SWM system needs to be integrated with
landscape design. When targeting smaller stormwater storage volumes for ‘daily’ rain events that
occur frequently (up to 0.2-year), water features are likely to be visible more often (and thus have
good potential as landscape assets), the construction investments are relatively low, and the system
contributes to managing a large fraction of the annual rainfall [9]. When targeting larger stormwater
storage volumes for heavier rain events that occur more rarely (e.g., >1-year), water features are seldom
visible or reach the system’s full capacity, the construction investment is relatively high, and the system
mainly functions as flood prevention (ibid.). To make a system sufficiently robust to handle rare rain
events as well as more common events, BGI with double-profile functions are relevant both for on-site
and downstream control. Visible water appears in the lower profile during small rain events, and
during heavy rain events detention capacity is available in the higher profile. The higher profile, which
is designed to accommodate rare periods of temporary flooding can be integrated with such other
urban functions as pedestrian paths, parking lots, streets and playgrounds.

Transition management theory is engaged with ways to facilitate and accelerate sustainable
development. As a sub-component of transition management, niche practices incubate innovations
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and build internal momentum that challenges the cognitive routines in the professional community,
thus opening the possibility for developing more sustainable, large-scale practices over time [10].
For niche innovations to lead to a wide breakthrough, their technical and financial performance,
learning processes for improving system design, and the involvement of the most influential actors in
relevant practices are crucial. Municipality-led pilot projects as niche practices may play important
roles in the sustainability transition [11] of the urban SWM system. They provide opportunities to
explore new approaches, technologies and products. Pilot projects concerning both SWM functions
and multiple benefits to cities are real-life performance tests and provide lessons relevant both for
improving the less successful practices and for the upscaling the successful practices. To optimize
the process of learning from pilot projects, project documentation and performance monitoring are
important. Based on literature relevant to performance evaluation of SWM projects, e.g., [12–14] and
the identified potential benefits of such approaches [15], eight major foci of BGI projects for sustainable
urban SWM projects are summarized in Table 1.

Table 1. Major focuses of blue-green infrastructure projects for sustainable urban stormwater
management. Based on e.g., [12–15].

Major Focuses Principle

Flood/runoff control
Volume retention/detention, runoff reduction, peak flow

reduction, size of effective impervious area 1 (EIA), size of
blue-green infrastructure element

Stormwater utilization Stormwater reuse for non-drinking water supply, infiltration and
groundwater recharge

Aesthetics and amenity Water visibility, playful water, aesthetics, form

Water-landscape design integration Water dynamics in relation to landscape elements,
vertical/dimensional design

Water quality First flush separation and treatment, sedimentation, vegetation
treatment, soil filtration, UV treatment, etc.

Biodiversity/ecological performance Vegetated area, multi-species, native species, multi-layer, habitat
for wildlife

Inter-sector/stakeholder collaboration Collaboration between water engineers and landscape
designers/planners; stakeholder involvement

Innovation & documentation
Research and technical/design innovation embedded in the

project, monitoring before and after implementation, document
effects

1 Effective impervious area (EIA), i.e., the area that generates stormwater runoff to the BGI element.

1.2. Research Gap and Objective

Both Beijing and Copenhagen have started to explore the potential of BGI as a step towards
sustainable urban SWM. In addition to integrating the BGI approach in their flood management and
climate change adaptation plans, both cities have been implementing BGI pilot projects. This study
is an extension of an earlier investigation on Beijing’s and Copenhagen’s climate resilient strategies
and their linkages with sustainability [15], where details about the reasons for studying Beijing and
Copenhagen, the general background of the two cities, and their major water management challenges,
strategies and activities were provided. In summary, Beijing and Copenhagen were used for the study
due to their front-runner status in their countries’ search for resilient solutions to the condition of
climate change, thus satisfying the specific funding frame of this research.

A gap exists between the technical aspects of SWM and the planning and design practices applied
to achieve multiple benefits, as well as between the final technical solution and the processes intended
to generate such a solution. Most studies focus on the hydraulic performance of a specific BGI element,
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e.g., [12–14]. Only a few studies (e.g., [16,17]) actively link SWM and multiple benefits. There are
many guidelines and tools related to the application of BGI elements for SWM. However, a systematic
approach to planning/designing such projects is lacking: What knowledge and considerations should
be available during various stages of the project process, and what steps could lead to a holistic and
sustainable project solution? Further, literature introducing BGI pilot projects in a holistic way is
scant. A substantial collection of data from a diverse range of sources seems necessary to understand,
compare and analyze these initiatives.

This paper aims to address these gaps by systematically presenting and critically reflecting on
selected BGI pilot projects. The objective of this paper is to extract key lessons from earlier pilot
projects from Beijing and Copenhagen, as stepping stones to indicate ways forward for future practices.
The paper highlights how the pilots in Beijing and Copenhagen can inform planners and designers on
the process of developing sustainable urban water systems. Thus, based on these new lessons and
pre-existing knowledge, the paper provides a simple guideline that visualizes necessary considerations
and vital steps towards a holistic solution of BGI for SWM projects. The paper, mainly targeted at urban
planners and landscape architects involved in BGI for SWM projects, helps to bridge the gap between
the technical side of urban water management—dominated by environmental and civil engineering
practices—and the ‘softer’ aspects of landscape architecture and planning, which are relevant to the
livability of cities. This will strengthen planners and designers’ capacity to engage in dialogue with
engineers and other technical professionals, by making engineering knowledge readily available to
them. Simultaneously, this paper provides engineers with arguments on how technical solutions to
SWM can serve a city better, at a reasonable cost, when multiple benefits are incorporated.

2. Materials and Methods

The initial purpose of this study was to generate an overview of Beijing’s and Copenhagen’s
pilot projects: their goals and strategies, applied SWM elements, documented effects, and perceived
challenges. Lessons learned from these analyses extracted with a view to improving the planning,
design and management of BGI-based SWM projects.

2.1. Case Study Design

Six municipality-led pilot projects were studied: three from Beijing and three from Copenhagen
(see Table 2). All projects have been implemented and continue to be in operation. Selected case
projects fit the following criteria:

1. The project is among the early generation pilot projects in the city.
2. The project is driven, or partially driven, by city administrations.
3. The selected projects represent different types of projects, for example, projects in residential

areas, public parks and available urban spaces.

Due to the limited number of implemented pilot projects, the selected pilot projects in the two
cities are not directly comparable in terms of size, type and implementation time. However, the selected
projects give an overview of the cities’ major early approaches to the exploration of alternative SWM.
Further, in line with Flyvberg [18], the limited number of cases enabled in-depth investigation.

2.2. Data Collection and Analyses

Data sources included project plans and documents, site observations and semi-structured
interviews with key project managers. Project documents were retrieved from project owners and
complemented with data publicly available on websites and in libraries. Each project site was visited
at least twice by the authors. Interviews were selected as a method to complement the information
provided in the written documents. One or two in-person interviews with key project managers from
each project were followed by telephone and email communications for clarification.
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Table 2. Facts of the six municipality-led pilot projects in Beijing and Copenhagen.

Name Olympic Park cent. Shuangziyuan Res. Beiwu Gravel Pit Lindevang Park Taasinge Square Sct. Annae Square

Location
North axis of Beijing
city center, between

4th and 5th ring roads

Northwest of Beijing
city center

Northwest of Beijing
city center, in the

Western mountains
region

West of Copenhagen
city center (in
Frederiksberg)

North of Copenhagen city
center

East of Copenhagen
city center, close to

harbor

Year of construction 2008

2001
(permeable pavement

area enlarged 2005,
2009)

2007
(2009 wetland added,
2017 integrated with

park)

2015 2014 2016

Development type

New park/outdoor
open space for the

2008 Olympic Games;
Stormwater

utilization; research
and demonstration

Retrofitting in
residential area;

Stormwater
utilization; research
and demonstration

New multi-functional
development on
abandoned land;

Stormwater
utilization;

research and
demonstration

Redevelopment of an
existing urban park;

Climate change
adaptation (flood

control);
Exploration and
demonstration

Retrofitting/social-cultural
uplifting in a residential

area;
Climate change

adaptation;
Exploration and
demonstration

Redevelopment of a
historical square to
revitalize urban life;

Climate change
adaptation and flood

control;
Exploration and
demonstration

References 1 [19];
i1,2, BWSTI

[20];
i1,2, BWSTI; i3,
Shuanziyuan

Administration.

[21];
i1,2, BWSTI

[22–25];
i4, Frederiksberg

Water Utility

[26,27];
i5, TMF, i6, Orbicon

[28–31];
i7, TMF, i8, HOFOR

1 i = interviewee; BWSTI = Beijing Water Sciences and Technology Institute; TMF = Techniques and Environment Administration, Municipality of Copenhagen; HOFOR = Water Utility
Company of Greater Copenhagen.
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Based on the theoretical background (Section 1.1), the collected data was organized and analyzed
according to the following framework:

1. Project objectives
2. Design factors related to hydraulic function, including size of the project, its location within the

catchment, priority of water techniques, designed service level and vertical design, i.e., design
of various landscape elements and their spatial relations, including elevations of the technical
elements (inlet, outlet, overflow) for the hydraulic functions for SWM

3. Designed BGI elements, forms and functions as related to SWM
4. The performance of the project after implementation, including impact and barriers

Through a reflexive cognitive process, lessons from the six pilot projects, combined with the
existing knowledge (Section 1.1), were synthesized into a guideline towards a holistic solution for BGI
SWM projects.

3. Results

Overviews of the six municipality-led SWM pilot projects in Beijing and Copenhagen are provided
in Table 3. See also the Supplementary Material.

3.1. Characters of the Case Projects in Beijing

The three Beijing cases were begun many years before the Copenhagen cases, and the two in
dense urban areas are dominated by less BGI-based alternative solutions. All three projects prioritize
the retention SWM technique, which contributes to both flood control and improves water balance
and flood control. Engineering elements (such as underground water storage tanks and permeable
pavement) combined with sunken green spaces are applied for on-site flood control (Table 3). Infiltration,
stormwater cleansing, stormwater harvesting and groundwater recharge were applied to improve
water balance. All three projects have over 80% stormwater utilization rate, i.e., 80% of annual runoff

is captured and reused through infiltration and groundwater recharge, or collected in storage tanks
(i1 = interviewee 1). Collected stormwater in tanks is intended for non-potable use, including watering
nearby green space, street cleaning, fire-fighting and car washing (i1,2).

Compared with the Copenhagen projects, Beijing’s three case projects apply more engineering
elements for SWM, and these have mainly technical functions with few added livability or ecological
benefits. Only a few visible water elements were designed as part of the urban landscape, and even
these are less articulated (or “designed”) for recreational, aesthetic or educational purposes (Table 3).
The Olympic Park plan had considered the use of collected stormwater to supply a fountain, but
this was either not implemented or is not visible (personal observation). The Gravel Pit project
included a circular wet pond, showing some consideration of providing visible water but with little
endeavor to enhance its aesthetic value (pers. obse.). Beijing’s pilot projects treat stormwater through
first flush separation, sedimentation and filtration through vegetated substrate soil or permeable
pavement [19,20]. Biodiversity and ecological performance were considered to a limited extent by
including native plants, sunken green space and a vegetated riverbank, and by using stormwater for
watering vegetation (ibid.). Research, technical innovation and monitoring of technical performance
were emphasized (ibid.). Monitoring was conducted during the initial years, and then stopped due to
lack of budget and personnel resources (i2). The documented performance included construction cost,
pollutant reduction, annual stormwater utilization volume/rate, runoff co-efficient reduction, annual
discharge reduction volume/rate and impact on groundwater level [19].
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Table 3. Overview of the six municipal-led stormwater management pilot projects in Beijing and Copenhagen. SWM = stormwater management, perm.pave. = permeable
pavement, BWSTI = Beijing Water Science and Technology Institute, TMF = Technical and Environment Administration, Municipality of Copenhagen, HOFOR = Greater
Copenhagen Utility.

Name Olympic Park Cent. Shuangziyuan Res. Beiwu Gravel Pit Lindevang Park Taasinge Square Sct. Annae Square

Area of the technical
elements (ha) Ca. 40 Ca. 1.3 Ca. 4.0 0.2 0.75 1.64

Effective impervious area
(EIA) 1 (ha) 84.7 2.3 1200 5.4 0.8 18

Location within targeted
catchment Mid-stream Downstream Relatively downstream Upstream Upstream Downstream

Design objectives

Water-logging prevention,
groundwater recharge,
stormwater utilization;

Improve ecology, provide
“beautiful landscape”

Stormwater utilization;

Improve living environment,
UHI mitigation

Water-logging prevention,
groundwater recharge;

Improve ecology, provide
recreation

Flood control;

Improve recreation

Flood control, stormwater
utilization, groundwater

recharge;
Provide meeting place, unite

urban life with nature

Flood control, stormwater
utilization;

Revitalize historical plaza;
traffic safety

Emphasized SWM
technique

Retention (infiltration,
harvesting, evaporation);

Detention; Cleansing

Retention (harvesting,
infiltration); Cleansing

Retention (infiltration,
evaporation)

Retention (infiltration,
evaporation); Detention;

Cleansing

Retention (infiltration,
harvesting, evaporation);

Detention; Cleansing

Retention (harvesting,
evaporation); Detention;

Floodway

Service level 2 (return
period)

50-year rain event Not considered 5-year rain event 100-year rain event 500-year rain event 100-year rain event

SUDS elements and forms

8020 m3 underground
storage tanks with

overflow to separated
sewer;

17 ha perm.pave
connected to tree pits

with stormwater
irrigation system, soil
moisture and water
quality monitoring

4 ha sunken square with
underground detention

and drainage, overflow to
sewer;

23 ha sunken green space,
overflow to surrounding

paving

1.2 ha permeable paving;
Green spaces with elevated

brims around three buildings;
354 m3 sedimentation tank,

overflow to storage tank;
532 m3 storage tank,

overflow to river;
Roofwater collection wells;
transport pipes; roadside

gutters

250 m2 wet stabilization
pond, overflow to vegetated

dry basin;
150,000 m3 vegetated dry

basin for infiltration;
perm.pave;

Groundwater monitoring
wells

Elevated raingarden with
filter soil, connected to
vegetated long basin;

250 m3 vegetated long basin
with filter soil and

recreational elements
connected to soakaway,

overflow to detention basin;
100 m3 soakaway with
potential for irrigation,

connected to sewer system,
overflow to detention basin;

1600 m3 detention basin with
partially paved outdoor

theater, connected to sewer,
overflow to cloudburst road:
Sunken public square with
200 m3 above-ground and

500 m3 underground
detention basins connected to

sewer and long vegetated
basin, overflow to cloudburst

road

15 m3 roofwater storage
tanks with UV treatment,

overflow to vegetated
treatment basin;

30 m2 vegetated treatment
basin with filter soil, drain to

sunken raingardens;
750 m2 sunken raingardens
for infiltration, overflow to
sewer (future cloudburst

road);
170 m2 roadside detention
raingarden with filter soil
connected to sewer, future

overflow to cloudburst road

48 m3 roofwater tanks,
overflow to road stormwater

pipes;
Two stormwater pipes
(including first-flush

diversion) for road and
pedestrian runoff, most

runoff transport to harbor,
overflow to four detention

basins;
Four sunken detention basins

drain to road stormwater
pipes, overflow to road

surface;
V-shape square profile for
flood water; detention and

drainage to harbor;
Two stormwater pipes for

roof, to storage tanks
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Table 3. Cont.

Name Olympic Park Cent. Shuangziyuan Res. Beiwu Gravel Pit Lindevang Park Taasinge Square Sct. Annae Square

Vertical design

Sunken Square: Building
indoor floor > ground-level

surrounding buildings >
surrounding road and square
> stormwater overflow inlet
to stormwater pipe system

for over-dimensioned
stormwater for utilization >
green area and water scape

surface

Roof water downpipe
outlet/perm.pave surface >
green space bottom with

elevated brim/open gutter
along perm.pave > inlet to

transport pipe to
sedimentation tank > inlet to
sedimentation tank > inlet to

storage basin

Transport river water outlet >
inlet to the site > inflow to

wet basin > wet basin
overflow level = bottom of

vegetated dry basin

Within the park: Elevated
raingarden empty outlet >

inlet to vegetated long basin
> overflow of vegetated long

basin > overflow of the
above-ground detention

basin with outdoor theater >
inlet of detention soakaway >

empty outlet of soakaway
and the above-ground

detention basin with outdoor
theater

Playground surface/western
raingarden > inlet to

vegetated treatment basin >
overflow through footpath

from vegetated water
treatment basin > empty

level of the vegetated water
treatment basin > inlet of the

eastern raingarden >
overflow to sewer of the

eastern raingarden

Pedestrian path > outer side
of road surface > upper brim
of the middle detention basin

> inner side of road
surface/inlet to road

stormwater pipes > overflow
of road stormwater pipe

to/empty level from
detention basin

Construction costs
(million USD) 11.8 (excl. landscaping) 0.4 (incl. landscape,

pavement, irrigation system)
1.2 (incl. gravel pit, inlet
pipes and landscaping)

4 for water management (5 in
total) 2.2 6.7 for water management

(17.9 in total)

Involved sector/discipline
and roles

BWSTI provided strategy for
SWM system after landscape

design was finalized by
landscape design consultancy

BWSTI designed SWM
system

BWSTI designed SWM
system; A few years later,

park facilities were designed
by landscape design

consultancy

Developer consortium
comprising Frederiksberg

Water Utility, Frederiksberg
Municipality, Vandplus

partnership (supported by
two private foundations),

designed and implemented
with collaboration of

landscape design, water
engineering and construction

consultancies

TMF as project developer,
designed and implemented

in collaboration between
landscape design, water

engineering and construction
consultancies

Developer consortium
comprising Realdania
(philanthropy), TMF,
HOFOR, designed in

collaboration between water
engineering, landscape

design, urban and traffic
consultancies and other

experts

Impact

Tree pits: Construction
saving ca. 53,000 USD annual

maintenance saving of
ca.9600 USD, treatment >

96% (except for TN 56%), soil
moisture increase by up to

60%
Sunken square: water

harvest of ca 22,550 m3/year,
improves micro-climate,

stormwater quality reaches
the standard for non-potable

water
Whole area: Runoff

co-efficient reduced from
0.418 to 0.221, annual

discharge reduced from
176,260 m3 to ca. 93,115 m3,

avg. annual stormwater
utilization 82,970 m3.

Tanks collected 5063 m3 in
2009

Stormwater drainage relies
only on perm.pave and green

space with elevated brim
Used as Beijing’s

development model for
stormwater utilization in

residential areas; contribute
to local design standard

Avg. annual stormwater
utilization 215,000 m3,

infiltration capacity
38,000 m3 per day, put into

use 3–4 times per year; eased
water-logging upstream and

reduced down- stream
pressure

In 23 June 2011 storm,
infiltrated ca. 80,000 m3

stormwater without
water-logging

Groundwater level risen from
−40 m to −30 m (2007–2010)

Unexpected water ponding
in elevated raingarden

affecting water cleansing
process by filter soil

Residents happy with the
multiple benefits, especially

the outdoor theater
The 100 m3 detention

soakaways has not yet been
used for irrigation

Stormwater runoff discharge
to sewer reduced from 100%

to ca. 51%
The square has not been

flooded since redevelopment
Raingardens infiltrate ca.

1000 m3 rainwater annually
from roof and paved areas

without groundwater
problems

Playground and paved
square appreciated by

residents and businesses

Total planning and
construction cost savings of

23% compared with
conventional pipe solution

No flooding in two
experienced storms incl. a

50-year rain event
Technical design and finance

model used to showcase
flood mitigation and climate

change adaptation in
Denmark
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Table 3. Cont.

Name Olympic Park Cent. Shuangziyuan Res. Beiwu Gravel Pit Lindevang Park Taasinge Square Sct. Annae Square

Barriers

Lack of attention to
multiple-benefit

integration; Lack of
resources for

maintenance and
long-run performance

monitoring; Lack of
products that support

landscape-based
approach to BGI SWM

Lack of attention to
multiple-benefit integration.

Lack of attention to
multiple-benefit integration;

Lack of resources for
maintenance and long-run
performance monitoring

Lack of resources for
monitoring water quality and

infiltration capacity, which
prevented implementation of

SW utilization goal;
Maintenance did not always
follow the designed function
for SW utilization; Challenge

to align landscape-based
approach with existing strict

regulations on infiltration,
discharge and reuse of

stormwater for recreational
purposes

The designed SWM solution
will show its full

performance only when the
connected cloudburst road is

put into use

The location of the existing
drainage system, terrain and

site conditions restrict
volume for detention;

Maintenance did not always
follow the designed function

for SW utilization

1 Effective impervious area (EIA), i.e., the area that generates stormwater runoff to the BGI element. 2 The service level describes the level of protection that the stormwater drainage system
is designed for and is expressed by a return period of rain event, i.e., an estimate of the period between rainfall events of a given magnitude. It is a statistical measurement, typically based
on historic data over an extended period. With a service level of three years, the stormwater drainage system is designed to handle rain up to the level of a 3-year rain event, which is the
worst rain event that occurs, on average, one time every three year, i.e., a return period of three years. Under conditions of global climate change, long-range historical data is known to
provide inaccurate (and typically optimistic) projections of future expectations.
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Beijing’s case projects played an important role during the city’s early stage of SWM practice (i1,2).
They locally adapted and demonstrated the feasibility of non-pipe based solutions for SWM projects
targeting the city’s water challenges and have been used as models for many other projects in Beijing
and other Chinese cities (i1,2). They also produced a rich set of experiences and technical data, which
were used to develop local technical guidelines for SWM projects. Both pilot projects and technical
guidelines have had a great impact on implementation of city-scale SWM projects in the past 15 years
(i1,2; pers. obse.). For example, water storage tanks, permeable pavement and sunken green spaces
have been widely implemented in Beijing (ibid.).

3.2. Characteristics of the Copenhagen Case Projects

Copenhagen’s case projects focus more on flood control than stormwater utilization. Landscape
elements (raingarden, swale, vegetated or paved recreational area as detention basin) are major
components of these relatively new SWM systems (pers. obse.), and these elements are often combined
with engineering elements (water storage tanks, soakaways etc.) for flood control, still with minor
consideration of stormwater utilization (i4,6,7). Due to stringent considerations on water quality for
recreation with human contact, the Lindevang Park project even dropped an early idea to reuse
stormwater from roofs and roads that was collected in an underground basin to supply the fountain in
the square (i4). Collected water is slowly discharged to the sewer. Taasinge Square and Lindevang
Park combined retention with detention, contributing to both water balance improvement and flood
control, although the contribution to flood control was minor due to the limited size of the connected
EIAs and their relative upstream locations within the catchments (Table 3). With mainly detention but
also some consideration for reusing stormwater for watering vegetation (ibid.), Sct. Annae Square
contributes mainly to flood control, with a minor contribution to water balance improvement.

In Copenhagen’s case projects, the landscape elements were integrally designed for both SWM and
to provide multiple benefits. Projects in Taasinge Square and Lindevang Park included water elements
during small rain events, for the purposes of aesthetics, play and environmental education (Table 3).
In Sct. Annae Square, early ideas for visible water elements in playgrounds and pedestrian areas were
dropped, so the site’s historical architectural features could be better preserved (i4). Copenhagen’s
cases ensure that stormwater runoff into the environment is be of acceptable quality, mainly through
allowing runoff from roofs, non-motor-traffic and non-de-icing surfaces to be treated before infiltration
and discharge into surface waters. Treatments often include bio-filtration with filter soil. UV treatment
is sometimes applied, especially for stormwater to be reused for recreational purposes. Stormwater
quality is not systematically monitored. Biodiversity and ecological performance were considered
to a limited extent, by careful introduction of native plants, water- and drought-resistant plants, and
fruit trees and bushes. Research, technical innovation and monitoring of technical performance have
not been carried out (i4,6,8), therefore little technical performance documentation exists, although the
major elements and the whole project have been observed generally to work (i4,5,6,8). Parameters
considered for performance evaluation include area disconnected from sewers, infiltration rate of
vegetated or permeable surfaces, appreciation and use of urban space by local citizens and businesses,
and construction costs in relation to conventional engineering solutions (Table 3).

Copenhagen’s case projects have been used to showcase integrated solutions that combine SWM
with the provision of multiple benefits in urban spaces (pers. obse.). They continue to be used intensively
for international communication and city branding, and contribute greatly to Copenhagen’s high
reputation for applying BGI solutions to cloudburst management, even though the city’s Cloudburst
Management Plan (2012) is mainly based on detention (pers. obse.). The fact that Copenhagen’s case
projects have little research and documentation makes it difficult to disseminate solutions, techniques
and lessons learned to the city managers and practitioners for the purpose of upscaling.
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3.3. Comparison of the Six Pilot Projects

Comparing the outcomes of the projects and the goals stated in the project documents and by
interviewees, it is observed that not all project intentions have been implemented (Table 3). The six
case projects apply very different SWM techniques, concerning on-site control (retention) versus
controlled discharge (detention), EIA size beyond BGI elements, service level and types of selected
retention-detention elements (Table 3). On Sct. Annae Square, an existing drainage pipe constrained the
intended vertical design of a deeper sunken green space, which led to an adjustment of the dimensions
of the sunken green space. Delineation of the EIA of a project seems to be affected by targeted water
problems and by other SWM systems in or near the project area. When EIA outside of the BGI elements
is smaller, a higher SWM service level can be achieved. Setting up a sustainable service level needs
to consider all resulting benefits of an investment. For Taasinge Square, with an upstream location,
designing raingardens for on-site retention of up to a 500-year rainfall may be over-dimensioned,
considering the limited EIA they serve. A larger EIA could potentially be included if a lower service
level is determined to be acceptable.

The landscape expression of Beijing’s cases reveals less integration of SWM design and landscape
design. SWM elements are less visible and have fewer functions during small rain events. This seems
to relate to the prioritized goals of the city and the separated design processes of landscape and SWM
system, each with different actors (Table 3). SWM intervention was led mainly by the water sector and
designed by engineers, while landscape design was led mainly by landscape designers in a separate
process. It seems that the engineers emphasized utility functions over aesthetics and social-cultural
benefits, while the landscape designers’ understandably limited technical competence on hydraulics
may have prevented them from integrating SWM functions into the design of landscape forms and
functions (pers. obse.). In Copenhagen’s cases, landscape designers played a much larger role in
devising plans for the integration of SWM systems into the urban landscape, and engineers provided
relevant technical support (i4–8).

Beijing’s projects target the city’s challenges related to water supply and flood control, and are
well-aligned with the city’s water management strategies and plans [15]. Combining research with the
pilot projects made it possible to include lessons learned in technical guidelines [32] for upscaling the
projects in the city (i1). On the other hand, since these first-generation pilot projects included relatively
few BGI elements, the city may need to take a more proactive effort in order to integrate multiple
benefits with water management, probably by showing the way in a new generation of pilot projects.

Copenhagen’s projects focus mainly on combining flood control with livability, and generally
align with Copenhagen’s climate resilience strategy. They showcase more BGI retention solutions than
that the city’s Cloudburst Management Plan (2012) indicates, and provide values for upscaling towards
a more sustainable direction. Taasinge Square has improved livability and biodiversity through citizen
involvement and by integrating landscape design with SWM. Lindevang Park shows how an upstream
park, with both on-site control with visible water elements for small rains and potential detention
volume for 100-year rain events, can provide multiple benefits. Sct. Annae Square shows an SWM
solution in a downstream, historically important urban setting, by targeting flood control of a large
catchment area. Water utilization for local water balance played little role in the Copenhagen cases.
If a green and sustainable city is the ambition, this issue should be addressed by future pilot projects.
Unlike Beijing, Copenhagen had not devised technical guidelines that designers for the three case
projects could refer to. Ironically this may have enabled the designers to focus on the unique aspects of
their sites, and thus to maximize multiple benefits from their projects.

Both cities have increased their investment in SWM and flood control, and both increasingly
realize the socio-cultural benefits that BGI based solutions can contribute to a city. Therefore, more
projects with integrated stormwater and landscape design are foreseen in the future. Unveiling
potential methods and processes for achieving a good design for SWM projects is thus expected to
benefit future practice.
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4. Discussion

Key considerations for integrated urban SWM projects are discussed below.

4.1. A Simple Guideline for Planning and Design

Important considerations for reaching a suitable planning and design solution, integrating SWM
and multiple potential benefits in urban space, are summarized in Figure 1, which is a key guideline
for planners and designers embarking on a sustainable SWM journey.
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Figure 1. Key considerations for planning and design of blue-green infrastructure for stormwater
management project.

4.2. Key Considerations and Priority of Water Techniques

Site-catchment relation (i.e., location and hydraulic relation), specific site conditions like terrain,
construction and soil, and the design objectives targeting the city’s water challenges and other
(re)development needs can limit water technique selection and thus are important considerations
for finding relevant project solutions. The ability to clearly prioritize water techniques concerning
infiltration and ground water recharge, evapotranspiration, reuse, detention and discharge is a
prerequisite for the overall project solution. The SWM priority that best contributes to improving the
urban water balance is: 1st priority: Retention (cleansing water and infiltration, evapotranspiration,
harvesting and reuse); 2nd priority: Detention (cleansing) before throttled discharge to receiving
surface water bodies; 3rd priority: Discharge to sewers. A sustainable solution needs to target both
frequent small rain events and rare events that generate large runoff volumes. On-site retention for
small rains and detention-discharge for heavy rain events appear to be priorities for upstream and
downstream locations respectively, although considerations for both small and extreme rains are
relevant for all projects that seek to achieve multi-functional success. The right mix and match of
options depends on the conditions of the specific site and catchment.
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4.3. Site Condition and Urban Context

Of the site conditions, stormwater quality, groundwater risk and soil conditions seem to be decisive
for whether retention (infiltration, evapotranspiration, reuse) can be prioritized, in combination with
the availability of unpaved surfaces, terrain conditions, existing site infrastructure (i1–8; pers. obse.).
In addition, local regulations on water quality influence water management priorities. Due to
Copenhagen’s stringent considerations and regulations on stormwater quality for infiltration and
recreational use, different SWM priorities are applied to different stormwater sources, and stormwater
reuse and infiltration is limited mainly to roof water management [33,34]. In Beijing, regulations
associated with stormwater infiltration are less strict, and therefore infiltration is more commonly
applied. However, the impact of stormwater infiltration on groundwater quality requires further
examination. This difference calls for clearer standards, maybe internationally, for stormwater quality
control and environmental impact.

4.4. Vertical Design and Landscape Design for Multiple Benefits

Vertical design plays an important role, especially for the selection and design of SWM elements.
Since water flow is based on gravity, the placement of elements and their relations to each other influence
how water can run through the designed system and the way it can be treated, detained, retained
or reused. The placement of outlets and overflows in BGI elements marks the distinction between
detention and retention elements. Vertical design is also an integrated part of landscape planning
and design, and thus requires thorough consideration of site conditions and expected socio-cultural
functions (aesthetic, recreational etc.). The optimal final planning and design solution seems to emerge
through a process intertwined with selection and design of SWM elements, vertical/dimensional design
and landscape design for multiple benefits. The planning and design process organizes SWM elements
spatially, associates multiple benefits with each element, and adapts the elements into meaningful
forms that strengthen the multiple benefits and multiple urban functions. These multiple urban
functions often relate to a situation with little or no rain. An integrated SWM and landscape design
process seems to be a prerequisite for an integrated solution with multiple benefits, which indicates an
interesting area for future research and calls for co-design and interdisciplinary cooperation in the
planning and design practice.

5. Conclusions

This study has identified gaps among goals, performance and other potential considerations
related to sustainable SWM of six municipality-led pilot projects in Beijing and Copenhagen. Hence, this
study serves as a relevant source of knowledge for city administrations, consultancies and researchers
engaged with SWM and BGI. The two cities’ practices, each with their strengths and weaknesses, can
serve as inspiration in the search for sustainable city solutions. Beijing’s case projects served to test and
locally adapt non-pipe-based solutions to SWM and provided inspiration for future projects in Beijing
and throughout China. SWM techniques were dominated by engineering and drew less on BGI-based
alternatives for both flood control and stormwater harvesting through detention and retention, calling
for a more proactive effort to integrate multiple benefits with stormwater management in urban spaces.
Copenhagen’s case projects took an integrated approach to combine SWM techniques with amenity
improvements, supporting Copenhagen’s brand as a green city. Improving the local water balance
played only a marginal role in the Copenhagen cases, calling for future action if a green and sustainable
city is the ambition.

A simple guideline for the planning and design of sustainable BGI projects was developed and
discussed. This guideline illustrates a range of technical and procedural indications for future BGI
projects for SWM. Defining clear priorities among possible SWM techniques, targeting both small and
big rain events, strengthening vertical design and providing multiple benefits through landscape design
were identified as key steps to achieve a sound project solution. An integrated SWM and landscape



Water 2019, 11, 2024 14 of 16

design process is seen as a prerequisite for a sustainable solution with multiple benefits. Identifying
theoretical and empirical knowledge that can help tackle these key steps, and understanding more
precisely how integration between SWM and landscape design process can be accomplished would be
interesting areas for future research. The number of cases included in the study was limited, partially
because monitoring data and project documentation for pilot projects are generally lacking in both
cities. Future investigation of a larger number of pilot projects may provide more information for
further refining the findings from the current study. This calls for a future practice that combines
research and documentation with pilot projects, thus facilitating empirical learning and guiding the
upscaling of BGI practices in a more sustainable direction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/10/2024/s1,
Table S1: Maps and photos of six municipality-led stormwater management pilot projects in Beijing
and Copenhagen.
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