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Abstract: Competitive optimization techniques have been developed to address the complexity of
integrated water resources management (IWRM) modelling; however, model adaptation due to
changing environments is still a challenge. In this paper we employ multi-variable techniques to
increase confidence in model-driven decision-making scenarios. Here, water reservoir management
was assessed using two evolutionary algorithm (EA) techniques, the epsilon-dominance-driven
self-adaptive evolutionary algorithm (ε-DSEA) and the Borg multi-objective evolutionary algorithm
(MOEA). Many objective scenarios were evaluated to manage flood risk, hydropower generation,
water supply, and release sequences over three decades. Computationally, the ε-DSEA’s results are
generally reliable, robust, effective and efficient when compared directly with the Borg MOEA but
both provide decision support model outputs of value.

Keywords: self-adaptive technique; many-objective; multi-variable; decision makers; reservoir
operation strategy

1. Introduction

Water resource management problems (i.e., surface and groundwater) are complex due to their
non-linear, dynamic, multimodal properties that need robust methods to solve, such as optimization
algorithms [1] based on evolutionary algorithms (EAs) inspired from evolution and the natural
selection of species [2,3]. Many of these have been proposed by researchers with different techniques,
such as: the non-dominated sorting genetic algorithm (NSGA II) [4], multi-objective evolutionary
algorithm based on decomposition (MOEA/D) [5], indicator-based evolutionary algorithm (IBEA) [6]
and differential evolution (DE) [7]. Furthermore, approaches based on swarm intelligence include
particle swarm optimization (PSO) [8] and ant colony optimization (ACO) [9] while the annealing
process in metallurgy inspired simulated annealing (SA) [10]. A review of EAs and other metaheuristic
algorithms and their applications can be found in [11,12]. Examples using these techniques for solving
water resources management problems include Hurford et al., [13], and others [14–17] using ε-NSGA-II,
MOEA/D, Borg MOEA and NSGA-II, respectively to optimize reservoir management strategy based
on multidisciplinary objectives like flood control, hydropower generation, and water supply.

Benchmark functions such as DTLZ and WFG series were often used in comparative studies to
assess algorithms’ performance, as in [18–21], however they consider forward and easy to solve versus
real-world problems [22]. These algorithms often have many parameters that require calibration,
which has a major impact on computational performance and optimal achievement [23,24]. Karafotias
et al., [25] presented a review of the approaches for the calibration and control of parameters. There
are two types of EA parameter-setting problems categorised as (a) parameter tuning and (b) parameter
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control. Parameter tuning relates to the initial values of some parameters that are set before executing
the algorithm. Parameter control involves adjusting values during the run time [26].

Parameter tuning is applied to parameters such as population size, mutation and crossover rate,
and has been discussed in the literature and recommended values proposed [25]. However, some of the
parameters can vary widely and generally need extensive trials to find suitable values for a particular
problem. For example, the distribution index for the simulated binary crossover (SBX) operator may
vary between 0 and 500 [27]. Similarly, Reynoso-Meza et al., [28] concluded from experimental studies
on multi-objective optimization problems that the value of the step size for the differential evolution
(DE) operator is case sensitive. It is difficult to set default values for all problems. Parameter control
is more important than parameter tuning in genetic algorithms (which directly affect the algorithms’
performance) [29], however, these parameters have received less attention in the literature [25]. These
issues reduce the confidence of decision makers to use modelled EA results [1]. For example, Ishibuchi
et al., [21] demonstrates that algorithms’ optimality behaviour may change under different problems’
environments, based on experimental studies on test benchmark functions. Nevertheless, the need of
EA models capable to adapt with such a problematic is evident.

In this article, a novel approach ε-DSEA (epsilon-dominance-driven self-adaptive evolutionary
algorithm) is presented using a range of novel techniques including: (i) Diversity expansion; (ii)
Self-adaptation of the control parameters of recombination operators; (iii) Exploration extension; and
(iv) Virtual dominance archive. The algorithm’s performance was investigated using a constrained
real-world regional water resources management problem. A comparative analysis with Borg
MOEA [30] was utilized as the Borg MOEA has superior reliability when compared with a range of
robust published algorithms [18,31].

The key properties that define the comparison are: (i) Reliability, which refers to the replication and
consistency of the best solutions achieved [32] (ii); Robustness, which relates the algorithms dependable
performance in different problem environments [22]; (iii) Computational efficiency, i.e. the algorithm’s
speed of convergence to the non-dominated solutions [33]; and (iv) Effectiveness, which refers to the
closeness of the solutions achieved to the true Pareto-front and their distribution; and dominance
front extension in objective space [34]. The outcome demonstrates the robustness of the proposed
ε-DESA technique to maintain optimality achievement under different problem environments that
may increase integrated water resources management (IWRM) decision makers’ confidence to adopt
the EAs’ results.

2. Materials and Methods

2.1. Adopted Multi-Objective Optimization Approach

Commonly, real-word optimization problems have multiple objectives. A brief explanation of
some of the key concepts associated with multi-objective optimization is provided here. An constrained
multi-objective optimization problem may be described briefly as follows [35]

Minimize: F(x) = [f1(x), · · · , · · · , · · · fM(x)]T (1)

Subjectto gi(x) ≥ 0,∀i ∈ ngh j(x) = 0,∀ j ∈ nhx ∈ X

X ∈ Rn is the decision space, i.e. X = [xL, xU] where x = [x1, x2, . . . , xn]T is the decision variable
vector of dimension n; and xL and xU are the vectors of the lower and upper bounds on x, respectively.
F(x) consists of M objective functions fi : X→Z ∈ RM, where i = 1, . . . , M, and Z is the objective space’s
feasible region containing all decision variables in X that satisfy all constraints. The gi(x) and h j(x)
represents the ith of ng and jth for nh inequality and equality constraints, respectively. For unconstraint
problems, ng = nh = ∅, and Z = X [30].
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The concept of Pareto-dominance [35–37] is used widely to characterise the solutions of
multi-objective optimization problems, and superior solutions are said to dominate inferior solutions.

Thus:

1. In a minimization problem, a vector u = (u1, . . . , uM)T is said to dominate another vector v = (v1,
. . . , vM)T if ui ≤ vi for i = 1, . . . , M and u , v. This property may be denoted as u ≺v.

2. A feasible solution x∈ X is called a Pareto-optimal solution, if there is no alternative solution y∈ X
such that F(y) ≺ F(x).

3. The Pareto-optimal set, PS, is the union of all Pareto-optimal solutions, and may be defined as
PS = {x ∈ X :@y ∈ X, F(y) ≺ F(x)}.

4. The Pareto-optimal front, PF, is the set comprising the Pareto-optimal solutions in the objective
space. It may be expressed as PF = {F(x)|x ∈ PS}.

2.2. Details of Epsilon-Dominance-Driven Self-Adaptive Evolutionary Algorithm (ε-DSEA)
Optimization Algorithm

The algorithm is based on the main principles of multi-objective evolutionary algorithms (MOEAs)
e.g. recombination, mutation and dominance sorting. However, novel techniques are included to
enhance the algorithm’s ability to handle the complexities of different problem environments. These
techniques are:

1. Diversity expansion to increase decision variables’ search space exploitation
2. Self-adaptive operators’ parameters for parameters in process tuning
3. Exploration extension for algorithm revival and stagnation coping
4. Virtual dominance archive to improve diversity and convergence.

The algorithm employs six recombination operators having different evolving techniques for
biological genetics process (e.g., crossover), which depend on chromosomes from the parent to generate
new chromosomes. These operators are: simulated binary crossover (SBX) [27]; differential evolution
(DE) [7]; parent-centric crossover (PCX) [38]; unimodal normal distribution crossover (UNDX) [39];
simplex crossover (SPX) [40]; and uniform mutation (UM) [41]. The corollary offspring (son) from these
operators, excluding the UM, will mutate by polynomial mutation (PM) operator [42] to produce new
generation set. Geetha and Kumaran [43] reviewed several crossover operators used in evolutionary
algorithms. Here, the hyper-boxes (whose dimensions are equal to ε) sorting technique of objective
search space [44], and non-dominated archive were employed as in [30,45,46].

2.2.1. Diversity Expansion

The search procedure in an optimization algorithm has two main components, exploration and
exploitation. Evidence in the literature indicates the best results are achieved if exploration and
exploitation are deployed preferentially in the early and latter stages of the search, respectively [47,48].
Accordingly, a procedure that safeguards diversity in the population at the start is incorporated in
the proposed algorithm which employs all the available recombination operators at the initial stage.
After the initial random seeding, the algorithm uses each recombination operator to generate new
offspring, selecting parents from the entire population. If more parents are needed (e.g., in case of
odd number of parents), they are selected from the population using a binary tournament selection.
Figure 1 illustrates the procedure by which the parents are selected.
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Figure 1. Illustrates operator’s parents’ selection from the entire population candidates after the initial
random seeding at the beginning of the evaluation process.

2.2.2. Self-Adaptive Mechanism and Formulae

In each generation, the recombination operators are selected on a competitive basis, according
to the proportion of dominance solutions in the archive (NDS) contributed by each operator. Thus,
the selection probabilities for the recombination operators are obtained as follows [30,49].

P
NDS
i =

NDSi + 1∑NRO
j=1

(
NDS j + 1

) i, j = 1, 2, . . .NRO (2)

where PNDS
i is the probability of ith recombination operator, NDSi is the number of solutions in the

archive contributed by the ith recombination operator, NRO is the number of recombination operators;
The constant 1.0 is used to avoid probability values of zero.

However, operator’s dominance achievement is sensitive to the relevant parameter setting.
This problematic, (e.g., parameter control problem) was classified into three categories depending
on the way the parameter variation is accomplished [26]: (a) deterministic, (b) adaptive, and (c)
self-adaptive. Deterministic control is based on rules that are specified a priori [50,51]. In self-adaptive
control, the parameters may be encoded to evolve in the genotype such that, for example, mutation
and recombination are applied to the decision variables also [52,53], which extends the search space
to cover the parameter values and consumes more time during the optimization processes [26].
The adaptive method (b) was considered more effective in solving complex problems, as a feedback
from the optimization process is set to adjust parameter values during optimization progresses [26,54].
The aforementioned technique was adopted by many researchers to improve algorithms’ performance,
as in [30,49,55–57], however none of these (and others) develop a self-adaptive technique that is
sensitive to optimality achievement during evaluation progress [31].

The success of any operator depends on the chosen values of the parameters that directly affect its
performance. Any operator may lead an algorithm to suboptimal solutions because of unsatisfactory
parameter calibration. However, parameter calibration is extremely challenging. This difficulty
provided the motivation for establishing a dynamic relationship between the values of the control
parameters of the recombination operators and their relative effectiveness, to obviate the need for fine
tuning. The efficiency of the optimization algorithm is thus improved by continuously seeking to
improve the collective effectiveness of the recombination operators. In other words, the formulation
developed herein allows the values of the control parameters of each recombination operator to
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improve adaptively based on the success of the recombination operator compared to the rest of the
recombination operators.

Table 1 shows the lower and upper bounds of the operator control parameters. If an operator’s
ability to contribute offspring to the dominance archive is decreased, its selection probability PNDS

i
will decrease according to Equation (2). In turn, the values of the relevant control parameter decrease
and the recombination operator’s ability to contribute new offspring to the archive will improve.

Table 1. Parameters control formulae in epsilon-dominance-driven self-adaptive evolutionary algorithm
(ε-DSEA).

Operator Parameters Domain Adaptation Functions Comments

SBX 1 η [0, 100] P
NDS
i × 100 Distribution index

DE 2 CR
F

[0.1,1.0]
[0.5, 1.0]

Max (0.1, PNDS
i i)

0.5 +
(
P

NDS
i /2

) Crossover probability
Step size

SPX 3 λ [2.5, 3.5] 2.5 +PNDS
i Expansion rate

PCX 4 ση
σζ

[0.1, 0.3]
0.1 +

(
P

NDS
i /5

)
0.1 +

(
P

NDS
i /5

) These parameters (standard
deviations) control the spatial

distribution of the offspring for PCX
and UNDXUNDX 4 σζ

ση

[0.4, 0.6]
[0.1, 0.35] /

√
L

0.4 +
(
P

NDS
i /5

)[
0.1 +

(
P

NDS
i /3

)]
/
√

L
1 Simulated Binary Crossover; 2 Differential Evolution; 3 Simplex Crossover; 4 Parent-Centric Crossover; 5 Unimodal
Normal Distribution Crossover

It is worth noting that, initially, all the recombination operators have an equal selection probability
(PNDS

i ) of 1/NRO. During the evaluation process the PNDS
i value for any recombination operator

changed along with its control parameters, according to its contribution in the dominance archive.
If any recombination operator is relatively unsuccessful, its selection probability (PNDS

i ) and parameters
controls will decrease. If the effectiveness of another recombination operator decreases, the selection
probabilities of some or all the other recombination operators will increase with the values of their
control parameters. In this way a dynamic equilibrium is maintained among the operators’ selection
probabilities, which in turn regulates the operator control parameters. A set of formulae (equations)
developed ensemble parameters’ tuning with the relevant dominance attainment. The parameters’
tuning domains (i.e., tuning range) were set based on default or recommended values suggested in
the literature, and experimental investigation carried out on common test functions, as illustrated in
Table 1.

Figure 2a illustrates the relationships between operators’ dominance attainment and their control
parameters values and shows how operators’ parameters auto-tuned according to the operator
successful to produce non-dominated solutions in the dominance archive.

2.2.3. Exploration Extension Mechanism

This mechanism is based on initializing (resetting) all operators’ selection probabilities PNDS
i

uniformly to1/NRO. It aims to provide an equal opportunity for all the operators, by assessing the
performance best on the most recent results. Otherwise, the previously successful operators with
more solutions in the archive would continue to dominate based on past performance as dictated by
Equation (2).
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The number of resets depends on a random integer Nr such that Nr ∈ N+
∈ [1, 3]. When the

algorithm starts, an Nr value is selected at random and the maximum permissible number of function
evaluations NFEmax is divided by Nr + 1 to determine the reset interval Er. For example, if NFEmax =

300,000 and Nr = 2, the reset occurs at every Er = 100,000 function evaluations. Hence, in this case,
two resets occur during the entire optimization. Formally,

Er =
NFEmax

Nr + 1
; Nr ∈ N+

∈ [1, 3] (3)

where Er is the reset interval.
Figure 2b shows an example of the resetting process and its relation with self-adaptive mechanism

to extend algorithm explorations and escaping from possible local optima.
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2.2.4. Virtual Dominance Archive

In early stages of an evaluation process for constraints problems with enormous decision variables,
the ε-dominance archive techniques (Section 2.2.3) tend to maintain only the non-dominated solutions
in the dominance archive. Experimental tests on such problems show only one non-dominated
solution maintained in the archive while exploring the design space for feasible solutions. Hence,
the operators’ parameters will be on its minimum values during this stage in the evaluation process
using the proposed self-adaptive mechanism. To overcome this issue, a virtual dominance archive
was developed by randomly generating a virtual number of the dominance solutions for the selected
operator to preserve diversity and early convergence exploration for feasible solutions using the entire
parameter’s domain.

2.2.5. Constraint Handling Strategy

The fundamentals of evolutionary algorithms are based on handling only unconstraint
optimization problems [35], many techniques were proposed for constraint problems, like penalty
function, special representations and operators, and repair method [58]. Here, the penalty function
technique is adopted as follows [59]:

F (x) = f(x) +P(x) (4)

where F (x) is the expanded objective function, and P(x) is the constraint violation amount, which can
be expressed as (based on Equation (1)):

P(x) =
I∑

i=1

Ai.max
(
0, gi(x)

)2
+

J∑
j=1

Bj.
∣∣∣hj(x)

∣∣∣ (5)

where Ai and B j ∈ R+, are penalty factors. I and J are the total numbers of inequity and equity
constraints, respectively.

2.3. Comparative Paradigms

There are many types of MOEAs’ paradigms introduced in the literatures, including
many-objectives algorithms [12,60–62], however, previous algorithms’ design principles were often
adopted in developing new algorithms [61] like ε-MOEA [45] and ε-NSGA-II [63] which employed the
ε-dominance sorting proposed by Laumanns et al., 2002, on the original version of MOEA [64] and
NSGA-II [4]; MOEA/D [5] also employed decomposition on the origin MOEA.

MOEAs’ effectiveness is commonly measured using quantitative metrics like the hypervolume
metric [65] which evaluate the non-dominated solutions’ hypervolume, and generational distance
metric [66] which measure the average distance between the dominance solutions and the closer
Pareto-front set. However, these metrics (and others) may provide misguiding results and most of their
design principles depends on the true Pareto-front, which is unknown in real-world problems [22].

Accordingly, the comparative assessment of ε-DSEA are based on a real-world engineering
problem. Here, the state-of-the-art Borg MOEA [30] was adopted for comparative purposes since
it outperforms or met other state-of-the-art algorithms’ achievement, such as: ε-MOEA, ε-NSGA-II,
MOEA/D, GBE3, OMOPSO, IBEA, NSGA-II, AMALGAM [18,30,67–70]. Borg employs many MOEAs’
design principles based on previous works like; recombination, mutation, and dominance sorting (e.g.,
ε-box). The authors present novel techniques to improve the exploration and exploitation process
including; ε-progress indicator of stagnation and improvement, population expansion to preserve
diversity exploration, multiple recombination operators for search variations, and self-adaptive of
operator. A concise detail of these techniques are presented below, more details are presented in
aforementioned literatures.
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Borg MOEA uses an active population of solutions and an external archive that stores dominant
solutions, and the population size is proportional to the archive size. Initially, the archive is empty;
hence an initial population size is required. Subsequently, the population size changes as follows [30]

γ =
NP
NA

; γ ≥ 1 (6)

where NP and NA are the population and archive sizes, respectively, and γ is the ratio of the population
size to the archive size, and equal to 4 [30].

The ε-progress index measures the improvements while searching for new solutions. If the
algorithm finds new dominant solutions in a new unoccupied ε-box (if the new dominant solutions
have different ε-box indices) it means there is improvement, otherwise no improvement flag will mark
a stagnation sign. If the last case continues for a number of evaluations, a revival process named
“restart” will be triggered to escape from possible local optima. The restart involves emptying the
population and re-populating based on the population to archive ratio (Equation (6)). The population
is refilled using all solutions in the archive. Any remaining empty slots in the population are filled
with solutions created by uniform mutation of solutions that are selected randomly from the archive.

The trigger for the revival process depends on any of the following three conditions:

a. If there is no change in the archive size for a certain number of evaluations;
b. If there is no improvement indicated by the ε-progress indicator; and
c. If the current population to archive ratio exceeds 1.25×γ

Borg follows the same crossover and mutation techniques mentioned in Section 2.2, and employs
Equation (2) to self-adaptive operator’s selection. In Borg, the relevant operators’ parameters have
fixed pre-execution values during evaluation process.

2.4. Identification of a Real-World Experimental Test Problem

A case study in Iraq’s Diyala river basin was adopted as a real-world IWRM problem which is
more complex than common benchmark test functions [22]. GWP, [71]. The Global Water Partnership
defines the IWRM as “IWRM is a process which promotes the co-ordinated development and management of
water, land and related resources, in order to maximize the resultant economic and social welfare in an equitable
manner without compromising the sustainability of vital ecosystems”. Authors and institutes adopt different
water management concepts (about 41 variant possible explanations for the term “integrated”) due to
the generalization in IWRM definition. Some examples are: water supply and water demands; surface
water and groundwater; water quantity and water quality; urban and rural water issues; government
and NGOs (non-governmental organizations) [72,73]. The river basin has two multipurpose dams,
Derbendikhan just at the northern international border in Sulaymaniya governorate, and Himren in
the middle part of the basin in the Diyala governorate (Figure 3). Here, Derbendikhan dam’s operation
strategy for the next three decades was selected as a benchmark problem. Based on monthly dataset
from 1981 to 2012 (33 years), a total of 396 decision variables (reservoir releases) need to be managed
during the time-scale. Generating hydropower is the main current operation target, hence power
penstocks (tunnels) are the main reservoir outlet of the proposed management model.
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2.4.1. Objectives Functions Formulae

The reservoir water budget is governing by the water balance equation, as:

SD
t+1 = SD

t + ID
t −RD

t − ED
t + PD

t − SED
t + GRD

t , t = 1, 2, . . .T (7)

where SD
t and SD

t+1 are the reservoir storage at time t and t+1, ID
t and RD

t are reservoir inflows and
releases, respectively. ED

t is the evaporation losses from reservoir surface, PD
t is the direct rainfall

on the reservoir. While, SED
t and GRD

t are seepage losses and groundwater recharges from the
reservoir, respectively.

The reservoir operation strategy (FD) is represented by the following multi-objective (or many for
more than 3 objectives) formula:

min FD = ( fwinterD, fsummerD, fpowerD, fDel−SW , fregD) (8)

where fwinterD is for maximizing winter storage to fulfil summer demands, fsummerD is for minimizing
summer storage to absorb expected flood wave in the next season, fpowerD is for maximizing hydropower
generation, fDel−SW is for minimizing agriculture projects’ water deficit, and fregD is for minimization
releases fluctuation. These targets represent the following aspects: social ( fwinterD and fsummerD);
economic ( fpowerD, fDel−SW); and environmental ( fregD).

The details of these objectives functions are as follows:

min fwinterD =
Tw∑
t=1

SD
max − SD

t

SD
max

2

+ CP , t = 1, 2, .. TW (9)
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min fsummerD =
Ts∑

t=1

SD
t − SD

minp

SD
max


2

+ CP , t = 1, 2, .. TS (10)

min fpowerD =
T∑

t=1

PwD
max − PwD

t

PwD
max

2

+ CP , t = 1, 2, ..T (11)

min fDel−SW =
T∑

t=1

PDt −DelMt
PDmax

2

+ CP , t = 1, 2, ..T (12)

min fregD =
T−1∑
t=1

RD
t −RD

t+1

RD
max


2

+ CP , t = 1, 2, ..T (13)

CP = A×
NC∑
i=1

gi; A ≥ 1 , i = 1, 2, . . NC (14)

Where:
SD

max = maximum allowable reservoir storage
SD

minp= minimum allowable reservoir storage for hydropower generation
TW, TS and T = winter, summer and total operation periods, respectively.
PwD

t = hydropower generation at time t
PwD

max= maximum hydropower generation
PDt = projects’ water demands at time t
PDmax = maximum projects’ water demands
DelMt = delivered water at time t
RD

max = maximum reservoir releases at time t
CP = penalty factor includes all the violations of the model, which could be expressed
NC = number of constraints
gi = penalty function for the (ith) constraint
A = a positive real number
The hydropower generation can be expressed as:

PwD
t = ηD

e .γw.QtuD
t .HnD

t (15)

where (QtuD
t ) is the turbine discharge, (HnD

t ) is the net head between reservoir level and the tail water
after the power plant, (ηD

e ) is the efficiency of power plant, and (γw) is the water density.

2.4.2. Reservoir System Constraints

The reservoir storage is limited between the minimum and maximum allowable storage, 283.48 ≤
SD

t ≤ 2572.0 (million cubic meters), the water level head (HD
t ) should be ≥ 434.0 m.a.s.l, the power

generation must be less than 249000 Kw and greater than 16000 Kw, and the release between
51.84 ≤ RD

t ≤ 878.6 million cubic meters/month. Hence, the penalty functions (gi) can be expressed as:

g1 =
T∑

t=1

Max
[
0,

(
SD

t − 283.48
)]

(16)

g2 =
T∑

t=1

Max
[
0,

(
2572.0− SD

t

)]
(17)

g3 =
T∑

t=1

Max
[
0,

(
HD

t − 434.0
)]

(18)
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g4 =
T∑

t=1

Max
[
0,

(
PwD

t − 16000
)]

(19)

g5 =
T∑

t=1

Max
[
0,

(
249000− PwD

t

)]
(20)

g6 =
T∑

t=1

Max
[
0,

(
RD

t − 51.84
)]

(21)

g7 =
T∑

t=1

Max
[
0,

(
878.6−RD

t

)]
(22)

2.5. Computational Properties

The computational parameters of the problems were 2.0 × 106 function evaluations and ε = 0.1 for
three objectives, and ε = 0.5 for five objectives, with 10 and 20 runs for both algorithms. The minimum
population size was 100 while the maximum was 1000. A Dell OptiPlex 780 computer was used
(Core Duo 2 E8400, 2 × 3.0 GHz, 8.0 GB RAM, Ubuntu 16.04 operating system). Table 2 shows the
parameter values used for both algorithms. A program (code) in C language was developed to build
the current model.

Table 2. Parameter values used in the optimization algorithms.

Parameters Borg ε-DSEAa Parameters Borg ε-DSEA

Initial population size 100 100 SPX parents 10 3
Tournament selection size 2 2 SPX offspring 2 2

SBX crossover rate 1.0 1.0 SPX expansion rate λ 3 [2.5, 3.5]
SBX distribution index η 15.0 [0, 100] UNDX parents 10 10

DE crossover rate CR 0.1 [0.1, 1.0] UNDX offspring 2 2
DE step size F 0.5 [0.5, 1.0] UNDX σζ 0.5 [0.4, 0.6]
PCX parents 10 10 UNDX ση 0.35/

√
L [0.1, 0.35]/

√
L

PCX offspring 2 2 UM mutation rate 1/L 1/L
PCX ση 0.1 [0.1, 0.3] PM mutation rate 1/L 1/L
PCX σζ 0.1 [0.1, 0.3] PM distribution index ηm 20 20

L is the number of decision variables. The permissible range for dynamic parameters is shown in brackets.
The parameters ση and σζ are defined in Table 1. a The initial values of dynamic parameters used in ε-DSEA are as
shown for Borg MOEA.

3. Results

3.1. Performance Achievement

3.1.1. Algorithms’ Reliability

Figure 4 illustrates the Pareto-front for 20 replicated random runs of the case study benchmark
problem for both algorithms using three objectives. Although both algorithms converged to possible
optima, ε-DSEA shows better reliability. Notably, Borg MOEA has faced some challenges in six trials,
as it was stagnant in four and had overdue convergence in two. Some of these contain only one solution,
as highlighted with dotted lines. In addition, some others have discontinuous Pareto-front (with gaps)
in the objective search space. This behaviour reduces an algorithm’s reliability to produce near optimal
solutions over replicated random execution (for example when testing the confidence of the model
output), and is a key factor when solving more complex problem using high-performance computer
resources (e.g., parallel processing with multi-core). Conversely, ε-DSEA shows reliability over
20 runs to converge to the possible optimal solution, with commonly continuous Pareto-front. Hence,
less randomness creeps into runs increasing the confidence that optimal solutions can be achieved.
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A high-dimension problem (5 objectives) was employed for advance algorithms’ assessment
as shown in Figure 5. The optimum solutions’ median for 10 trials of both algorithms is presented.
Notably, both algorithms produce possible optimum solutions, but the ε-DSEA has slightly more
reliable trends over execution repetitions as supported by the self-adaptive parameters’ technique
used in this EA, which was also approved by [74] for 20 runs. Insight investigation shows that a Borg
MOEA stack in local optima twice (run 3 and 7), and adapt with PCX operator for all trials, as in three
objectives scenario; while ε-DSEA adapts at the initial stage with SBX operator, then with PCX and
SPX operators in parallel for the rest of evaluation process (Figure S1 in the supplementary data).
The resetting technique’s effectiveness is obvious over changing the trend of the operators’ adaptation
to escape from a local optima pitfall. Execution trial No. 4 shows competitive achievement of both
algorithm, which may consider for comparative investigation.
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Hence, the proposed mechanism provides advance diversity and balancing between exploration
and exploitation process toward possible Pareto-front set.
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3.1.2. Algorithms’ Robustness and Efficiency

In ε-DSEA, non-dominated feedback loops control the operators’ adaptation and their parameters.
Figure 6a illustrates the self-adaptive operators’ parameter-tuning behaviour of ε-DSEA during the
evaluation process. The most effective operators adopted to generate dominance solutions for the best
trial are SBX, PCX, and SPX. Initially the virtual dominance archive mechanism tuned the operator’s
parameters when only one solution is kept in the dominance archive. Then the SBX operator was
adopted until the first resetting trigger at 5.0 × 105 function evaluation. The PCX operator is then
involved by increasing the variation parameters (ση and σζ) to about 0.15. The SPX operator is also
involved at the same time when its parameter (λ) changed to about 2.7. Both PCX and SPX operators
compete to explore dominance solutions till the third resetting trigger, and after that the SPX operator
starts to generate more dominance solutions in the dominance archive. Increasing PCX and SPX
parameters will generate new offspring farther away from their original parents, which will increase
algorithm exploration in the design search space.
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The algorithms’ convergence (efficiency) also investigated using the decision variables vector
(Xdv) development in the dominance archive during the evaluation process. The Xdv is equal to√

x2
1 + x2

2 + x2
3 + . . .+ x2

n , where x1 to xn are the decision variables. Based on the best solution achieved,
Figure 6b shows Xdv convergence of both algorithms. Both achieved early convergence, but ε-DSEA
converged faster, hence ε-DSEA’s efficiency was endorsed in the proposed test problem.

The progress of the objectives’ convergence of both algorithms over 10 iterations of high-dimension
problem is presented in Figures S2 and S3 in the supplementary data, respectively. Early convergence
was achieved by both algorithms, ε-DSEA converged at 1.25 × 104 function evaluations for all
iterations, and Borg MOEA converged at 25 × 104. The ε-DSEA needs less execution time to achieve
solutions. Where there are limited computational resources (e.g., CPU, Ram, etc.,) this achievement is
significant. Furthermore, Borg MOEA suffered significant and interim stagnation in 7 trials (2, 3, 7,
9, and 4, 6, 10, respectively) in the early stage of evaluations. Only three out of 10 trials maintained
dominance solutions improvement over the entire evaluation. The PCX operator’s adaptation with
fixed parameters and recycling repetitively archive’s dominance solutions may restrict the extent of
the algorithm’s exploration in the design search space. Conversely, only one trial (no. 9) suffered
significate stagnation in ε-DSEA, however the expansion diversity and resetting techniques succeed
in reviving the algorithm’s exploration to find new dominance solutions in the dominance archive.
The robustness of ε-DSEA to escape from local optima are evident. Figure 7 shows trial no. 4 as
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a sample of convergence progress, since both algorithms achieved competitive solutions (based on
Figure 5).
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3.1.3. Algorithms’ Effectiveness

For real-world multi-objective problems, and especially in water resources management problems,
the true Pareto-front (e.g., optimum solution) is unknown [22], and it is difficult to measure an
algorithm’s effectiveness for such problems, as other relevant factors should also be evaluated such
as the coverage of the Pareto-front and its extent in the objective space [34]. Hence, the qualitative
comparison was often based on the best solution achieved over several replicated trials (e.g., equal or
more than 20 runs). The results here show the reliability of both EA models but better computational
performance by ε-DSEA.

3.2. Strategic Achievement

Table 3 demonstrates results’ analysis of both algorithms’ achievement based on best optimum
solution to maximise hydropower generation, as it is one of the main dam’s operation targets. The gross
sum of hydropower, storage, and releases of the reservoir were presented to demonstrate the contrast
between two algorithms’ achievement, based on the relevant optimization techniques. The results of
both are harmonic, with advance merit of ε-DSEA.

Figure 8a,b depict algorithms’ attainment of 10 multi-objective multi-variable trials and show the
consistency of the ε-DSEA is marginally better than Borg notably from the period 1 to 216 months.
The same behaviour also achieved for the next period, which reflect ε-DSEA algorithms’ ability to
generate possible competitive optimal solution with fewer replicated trials.

Consistency with the relevant historical (actual) dataset should also be reviewed during decision
making trials (i.e. solutions’ quality), as in Figure 8c,d. Both algorithms achieved competitive results,
but ε-DSEA’s result has better reaction to flood waves and better agreement with the historical data.
Here, spillway discharge did not factor in the models or the developed management model, since flood
waves events usually last hours or a couple of days in the investigated region. Accordingly, no relevant
sensitive reaction was observed since monthly average management was adopted by the model.
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Table 3. Results’ analysis of water resources management strategy of Derbendikhan dam achieved by
both algorithms based on maximising hydropower generation.

Borg MOEA ε-DSEA
Area 1 Head 2 Power 3 Storage 4 Releases 5 Area Head Power Storage Releases

3 Objective problem

Min. 19.18 437.79 24.50 433.55 129.94 17.32 434.73 24.83 373.82 129.75
Max. 122.79 485.97 249.00 2565.84 866.25 121.80 485.86 246.37 2551.05 877.20
Mean 74.37 474.71 94.76 1732.33 336.06 76.39 475.53 94.77 1775.22 336.17

Median 72.03 477.12 83.00 1743.17 297.19 78.92 478.95 84.37 1867.41 316.10
St.7 27.19 10.11 50.88 523.86 174.84 24.99 10.42 51.88 496.30 183.22

Gross6 37.52 686.00 133.08 37.53 702.99 133.12

5 Objective problem

Min. 16.94 434.09 23.44 361.60 130.72 19.10 437.67 24.09 431.16 130.45
Max. 122.97 485.98 249.00 2568.50 866.08 123.14 486.00 249.00 2570.98 797.97
Mean 66.09 470.67 90.46 1555.39 337.72 71.90 472.95 91.77 1672.36 334.80

Median 61.55 473.63 82.14 1540.19 316.81 71.78 477.05 82.00 1738.53 298.79
St. 29.89 12.83 45.64 597.36 162.74 28.94 12.58 47.18 583.53 169.11

Gross 35.82 615.94 133.74 36.34 662.25 132.58
1 Surface area of reservoir in km2; 2 Head of water in m.a.s.l; 3 Hydropower generation in MW; 4 Reservoir storage in
m3
×106); 5 Reservoir releases in m3/month ×106; 6 Gross sum units of: Power in GW; Storage in m3

×109); Releases
in m3/month ×109. 7 St. for Standard Deviation.
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Figure 8. Comparative graphs between achieved releases of both algorithms based on maximizing
hydropower generation objective. (a) and (b) show detail results for 10 runs, while (c) and (d) illustrate
historical and model releases.

As a source of renewable energy, hydropower generation is one of the key-operational targets of
the tested real-world problem, and often for any multipurpose dam projects, that needs to be carefully
management under different operation scenarios, such as flood risk management. Two objectives
were adopted, fwinterD and fsummerD, the later selected for insight investigation, as it is the most critical
operation scenario that may affect other operational targets. Figure 9a,b illustrate solution distribution
density achieved by both algorithms over the power generation domain. In general, ε-DSEA achieved
high repetition of 30 to 50 Mw solutions, and gentle gradient repetition after that, while Borg MOEA
has steeper gradient repetition starting from 30 Mw and thereafter. ε-DSEA achievement offers insight
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for investment decision making as minimum power generation of 30 Mw could be guaranteed for next
three decades.
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Figure 9. Insight analysis of hydropower generation accomplished by both algorithms under flood
risk management scenario ( fsummerD). (a) and (b) shows solutions repetition density, while (c) and (d)
demonstrate head-discharge-hydropower solution space.

Hydropower generation depends on two variables, turbine’s discharge and water net head, as in
Equation (15) (turbine’s efficiency and water’s specific weight assumed constant). Figure 9c,d illustrate
hydropower generation solution’s space achieved by both algorithms. Competitive distribution over
solution space was accomplished by both algorithms for turbine discharge ≤600 MCM, while better
space’s exploitation for greater values (>600 MCM) achieved by ε-DSEA. Borg tends to maximize
power generation by releasing more water, but solutions are irregularly deployed (clustering) which
possibly due to local optima pitfall.

For example, in the region of <80m net head (HnD) and >600 MCM releases (Figure 9c,d), only five
solutions formed as two groups achieved (green colour), which is not the case in ε-DSEA.

Recreation is another target to optimize for revenue. Figure 10 shows reservoir surface area
achieved by both algorithms for the considered time-scale of fsummerD scenario. The mean and median
surface area were about 52 and 49 km2, 51 and 44 km2 achieved by ε-DSEA and Borg respectively.
The small violation between these values indicates competitive results’ distribution, corollary more
solutions greater than these values achieved by ε-DSEA. Hence, projects’ revenues could be improved
even in such a critical scenario.
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4. Discussion

4.1. Algorithms’ Optimization Techniques

The technique of Borg MOEA tends to adapt based on operator experience after finding possible
feasible solutions. The SBX operator was adopted in the early stage of evaluation process, then
PCX operator adopted to the end. Zheng et al., [48] observed that, for two-objective problems,
Borg MOEA tended to converge prematurely and population diversity decreased relatively rapidly.
This is because Borg MOEA does not maintain a separate transient sub-population of offspring as in
NSGA-II. Offspring that dominate its parents immediately replaces one of the parents; the choice of
the parent that is replaced is random. As new solutions are introduced, the selection pressure on less
competitive solutions increases, due to the binary tournament selection used for a crossover. Fitting
solutions have a higher probability of selection for a crossover, leading to more exploitation and less
exploration and thus less diversity. Secondly, the injection trigger that depends mainly on ε-progress
indicators, did not always succeed in reflecting stagnation during the evaluation process. Thirdly,
PCX operator produces offspring in the vicinity of the parents. If the PCX operator creates solutions
around the best solutions, the PCX-generated solutions quickly dominate the archive, leading to more
exploitation, less exploration and consequently relatively rapid loss of diversity. As stated previously,
the recombination operators are deployed in proportion to the number of offspring they contributed in
the archive.

In Borg MOEA the operator that produces more successful (i.e., non-dominated) offspring is
deployed more frequently. However, as the search progresses and the balance between exploration
and exploitation shifts gradually, it is desirable that the operators be deployed based on the current
status of the search rather than their previous performances or cumulative successes. In other words,
the selection of the operators should recognize the current performance also. Hence, the proposed
performance assessment of the operators relies on the results from the current phase of the search
rather than the cumulative performance to date.

The novel technique of virtual dominance archive used in ε-DSEA removes operator bias and
extends the algorithm’s exploration by tuning the operators’ parameters control within the specified
domain, resulting in a robust convergence progress at initial stage of the evaluation process. In the
same context, resetting these parameters’ values during evaluation process help the algorithm to
escape from local optima pitfall, and improve its exploitation to find new non-dominated solutions.

4.2. Water Resources Management Case Study

Although both algorithms achieved possible optimum solutions, ε-DSEA generates more robust
results. Based on gross sum of five objective problems (Table 3), an extra 520 MW and 46.31 MCM of
hydropower generation and reservoir storage was achieved, respectively. The mean and median water
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head achieved by ε-DSEA were about 1.5 m higher than those of Borg MOEA in all cases. This will
provide advance security against possible dam failures in the future as the water head should be above
455.0 m.a.s.l [75]. Although this problematic was not considered in the current model as an objective
or a constraint, all the relevant mean and median values achieved by both algorithms satisfy this
restriction. This area of study should be considered in future work.

Figure 11a,b illustrates results’ quality of reservoir water level (m.a.s.l) produced by both algorithms
over 10 runs, based on maximizing hydropower generation. Notably, more results of ≥460.0 and
fewer of ≤440.0 were generated by ε-DSEA. The same achievement observed in the critical scenario of
minimizing storage in summer, represented by fsummerD, as in Figure 11c,d. Nevertheless, the latter has
better results’ than Borg MOEA regarding the current potential risk. Moreover, the harmony of results’
distribution over 10 trials is evident, endorsing the reliability of ε-DSEA.
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(a) and (b) are the best solution to maximize hydropower generation; (c) and (d) the same as those to
minimize summer storage.

Within this framework, good exploration-exploitation balance of slave (or secondary) solution
search space of hydropower generation and reservoir surface area were attained (Figure 9). Although
the master decision variables’ search space is relevant to reservoir releases while other dependent
variables are calculated accordingly (e.g., power generation, storage, area, etc.), the compete optimality
achievement mapped to those sub-variables. This is not the case in other optimization algorithms, since
often competitive investigation only covers the master decision variables and/or objectives’ search
space, either in test functions or in real-world case study benchmarks. Insight or deep diagnosis
assessment considering indirect variables should be used in such competitive studies.

The results suggest water resources decision makers are advised to implement different
optimization algorithms, especially when solving multi or many objective problems, to explore
possible new optimal results with advance quality, and to reinforce results’ reliability. The ε-DSEA
achievement was previously assessed using more complex water resources problem, as in [74,76],
however, more assessment is recommended to solve different problem environments.
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5. Conclusions

In this research, strategic planning of water resources under competitive optimization techniques
was investigated. Decision makers often adopt optimization techniques to evaluate a wide range
of competitive water resources management decisions. However, past studies demonstrate that
an algorithm’s optimal output varies according to the problem environment. Furthermore, slave
(dependent) variables’ quality are often not analysed in depth, which could play an important role
in improving a project’s economic success. Here, a comparative assessment of two optimization
techniques was tested against a real-world water resources strategy. The Borg MOEA and the ε-DSEA
performance was contrasted based on the relevant strategic plans using objective functions (i.e.,
the Pareto-front), master and slave variables.

The results by both models showed possible optima, with an advanced reliability and robustness
when using ε-DSEA as it provided consistent results closer to near-optimal solutions. Both algorithms
have auto-adaptive operator techniques, but Borg appoints a mono-operator after a specific number of
evaluations (e.g., PCX), while multi-operators sequence during the evaluation stages (e.g., starting by
SBX operator and ending with PCX and SPX operators in parallel). The Borg MOEA reviver’s techniques
should consider this drawback, as early stages stagnation is evident, especially in many-objectives
problem. The ε-DSEA escapes from local optima by employing by-stage operators’ parameters, which
may be useful when applying to real-world problem solving.

The compete achievement of ε-DSEA was mapped onto the relevant water resources strategic plan.
In all adopted scenarios for the real-world case study results show that extra hydropower, reservoir
storage and surface area can be achieved. The releases have better consistency and sensitivity with
the historical dataset and flood waves. The model outputs can be used to manage power generation
to support, for example, an investment opportunity while still promising recreation investment
opportunities achieved by maintaining larger reservoir surface area over the adopted time-scale.
The results demonstrate the importance of insight and in-depth analysis of relevant objectives and
variables using EA models.

The ε-DSEA and the relevant approach could be evolve for similar and/or even more complex
real-world problems, such as groundwater management, water supply system, water allocation, etc.,
by adding and/or modifying objective functions, decision variables, and constraints.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/10/2021/s1:
Figure S1: Active ε-DSEA operators’ selection probability achievement over 10 runs using five-objectives
engineering problem, Figure S2: Convergence progress of dominance solutions during evaluation process of
engineering problem for 10 trials using Borg MOEA, Figure S3: Convergence progress of dominance solutions
during evaluation process of engineering problem for 10 trials using ε-DSEA.
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