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Abstract: N-nitrosodimethylamine (NDMA) is a disinfection by-product (DBP) that has been classified
as a probable human carcinogen in multiple risk assessments. NDMA presence in drinking water
is widespread and dependent on source water, disinfectant type, precursors, and water treatment
strategies. The objectives of this study were to investigate NDMA formation potential in a modeled
monochloramine water treatment plant (WTP) fed by seasonally and spatially varying source water;
and to optimize DBP precursor removal by combining conventional and additional treatment
techniques. After NDMA analysis, it was found that NDMA formation was significantly dependent
on source water type and monochloramine contact time (CT); e.g., at 24 h CT, Cork Brook produced
12.2 ng/L NDMA and Bailey Brook produced 4.2 ng/L NDMA, compared with 72 h CT, Cork Brook
produced 4.1 ng/L NDMA and Bailey Brook produced 3.4 ng/L NDMA. No correlations were found
between traditional DBP precursors such as total organic carbon and total nitrogen, and the formation
of NDMA. The laboratory bench-top treatment system was highly effective at removing traditional
DBP precursors, highlighting the need for WTPs to alter their current treatment methods to best
accommodate the complex system of DBP control.

Keywords: NDMA; disinfection by-product formation; source water; natural water; precursors;
treatment; water quality

1. Introduction

N-nitrosamines are a group of contaminants of emerging concern that may be present in drinking
water as by-products from water treatment plant (WTP) operations [1–6]. Significant influences on the
formation of N-nitrosamines in drinking water include source water impairment before treatment,
e.g., industrial, wastewater, and septic system effluents [6,7]. Presence of N-nitrosamines in drinking
water is of particular concern because of their carcinogenic, mutagenic, and teratogenic properties [8,9].
N-nitrosodimethylamine (NDMA, C2H6N2O), and several other N-nitrosamines are classified as
probable carcinogens based on domestic and international assessments [10–12]. To date, no United
States federal regulatory limits have been established for NDMA and other N-nitrosamines in drinking
water, although some states have created their own guidelines, e.g., California and Massachusetts,
in 2002 and 2004, respectively [13,14]. Many studies were developed to understand the mechanics
of NDMA formation during water treatment [1,2,4,15–17]. However, little research has evaluated
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NDMA formation from the treatment of seasonally and spatially varying source water during normal
environmental conditions.

Primary NDMA formation pathways involve reactions between NDMA precursors found in
source water, e.g., dimethylamine (DMA) and other dissolved organic nitrogen (DON) species,
with the disinfectant used during treatment [1–4,18,19]. The degree to which NDMA forms under
these conditions is significantly dependent on influent source water, type of disinfectant, pH, and
temperature [2,6,19–21]. More specifically, monochloramine, one of the widely used disinfectants
in the United States, is documented to be one of the most critical reactants that lead to NDMA
formation [1,4,22,23]. Potential NDMA precursors such as DON, dissolved organic carbon (DOC),
and natural organic matter (NOM) are also significantly influenced by land use and seasonal
variations [24–27].

Traditionally, formation of disinfection by-products (DBPs) such as trihalomethanes (THMs) and
haloacetic acids (HAAs) can be controlled by removing NOM precursors before disinfection [28–30].
Conventional WTP processes used for removing precursors include coagulation and flocculation,
sedimentation, and filtration [31]. Other studies have been conducted to address the impact of
using additional filtration techniques for controlling DBP precursors [32,33]. Little information is
known about the impact of water treatment processes on potential NDMA precursor removal, and the
relationship it has with NDMA formation following monochloramine disinfection.

To address this issue, we investigated the formation potential of NDMA in a modelled
chloramination WTP fed by seasonally and spatially varying source water. To enhance the reduction of
potential NDMA precursors, conventional water treatment methods were combined with additional
filtration techniques. This work will also address the impact of regional WTP operations and their
potential to form NDMA under specific treatment scenarios. Results from this study will serve as
the foundation for further NDMA research as it relates to drinking water treatment of regionally
sourced waters.

2. Materials and Methods

2.1. Field Site Locations

The field sites identified in Figure 1 were chosen for this study to demonstrate impact of spatial
variability on source water quality. Both locations are headwater streams for major reservoirs in
Newport and Scituate, Rhode Island. Source water entering Newport WTPs, e.g., Bailey Brook, has
received higher loads of nutrients from a variety of sources due to its location in an urban area [34].
Cork Brook, although forested [35], has experienced seasonally high loadings of precursors, particularly
during intense precipitation events. It is expected that the different land use activities associated with
each field site will produce varying levels of precursors [20,25,27], later affecting the formation of
NDMA upon water treatment.

2.2. Sample Collection

Samples were collected during Summer 2018 (June–August), Autumn 2018 (September–
November), and Spring 2019 (March–May) after precipitation events greater than 12.7 mm [36].
Precipitation during sampling events generated turbid water samples, which captured a flux of
targeted precursors such as DOC and DON. During each sampling event at both field sites, one sample
was collected in a clean 19 L plastic jerry can. After collection, samples were returned to the University
of Rhode Island Hydrology and Environmental Water Quality Research Laboratory for freezer storage
(below 0 ◦C) until sample processing.
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2.3. Sample Processing

Each field sample was processed two times using a laboratory bench-top water treatment system
(Figure 2) to simulate water treatment and distribution at a municipal or metropolitan scale. Flocculation,
coagulation, and sedimentation phases of water treatment were achieved using a Lovibond ET 750
Floc Tester, equipped with 2 L Phipps & Bird square B-Ker2. Beakers were filled to the 2 L mark with
thawed sample, then dosed with 25 mg/L of ferric sulfate (Fe2(SO4)3) (ferrous iron 0.0%–0.3%, ferric
iron 12.5%–13.5%). To achieve optimal flocculation with the Fe2(SO4)3, pH was adjusted to 5.6 using 1
M laboratory grade sulfuric acid. Floc Tester blade height was adjusted to 57.15 mm from the bottom
of the beaker, then mixed at 250 rpm for 10 min. After allowing floc to settle for 30 min, the sample
was mixed at 30 rpm for 30 min, then settled for at least 1 h. Using a Fisher Scientific Variable Flow
peristaltic pump, water above the settled particulate layer was pumped through acrylic tubing (37
mm o.d. × 31 mm i.d., 420 mm length) filled with beds of 0.45–0.55 mm homogenized silica sand
(100 mm length), and 0.95–1.05 mm cleaned anthracite (200 mm length), under-bedded by 6.35 mm
washed gravel (60 mm lengths). A Cole-Parmer Gear Pump Drive peristaltic pump was used to pump
effluent from the dual-media column filter into a borosilicate glass column (25 mm i.d., 300 mm length)
filled with 20–40 mesh granular activated carbon (GAC). Addition of the GAC column filter to the
treatment system was to enhance precursor removal before disinfection. Both filtration columns were
selected to have an empty bed contact time (EBCT) of 10 min [32]. During each run of processing,
two samples were collected in 500 mL amber glass jars with no headspace from raw water influent
and post-filtration effluents, and one sample was collected in a 300 mL amber glass jar from the same
influent and effluents. All processed samples were kept in refrigerator storage (4 ◦C) until disinfection.
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2.4. Monochloramine Disinfection

All 500 mL processed samples were removed from refrigeration and brought to room temperature
(25 ◦C), then pH was measured and adjusted to between 9 and 10 using 1 M laboratory grade sodium
hydroxide (NaOH). Pre-formed monochloramine (NH2Cl) stock solution was prepared from diluted
solutions of sodium hypochlorite (NaOCl) and ammonium chloride (NH4Cl). The Cl2/N ratio was
1:1.2, and pH was adjusted to between 8 and 9 with 1 M laboratory grade NaOH to prevent the decay
of NH2Cl into dichloramine (NHCl2) and trichloramine (NCl3) from excess free chlorine, and low pH
values [29,37]. The stock solution was aged in 1 L amber jars with no headspace for 1 h in darkness at
25 ◦C, to guarantee complete NH2Cl formation. Stock solutions were freshly prepared before sample
disinfection, and monochloramine dose accuracy was tested using a HACH SL 1000 probe. The NH2Cl
stock solution was injected into each processed sample to achieve a simulated water treatment dose of
4 mg/L NH2Cl. Once dosed with NH2Cl, samples were aged to an allotted contact time (CT) of 24 or
72 h in the dark, at 25 ◦C. After disinfection CT was achieved, NH2Cl residuals were measured using a
HACH SL 1000 probe, and then samples were quenched with 100 mg sodium thiosulfate anhydrous.

2.5. NDMA Analysis Preparation

Disinfected samples were filtered using GE Whatman 0.45 µm sterile PTFE filters. About 1 mL of
disinfected sample was filtered directly into clear, sterile 2 mL vials. All sample vials were immediately
packed into an insulated cooler with freezer packs, then express-shipped to Kagoshima University,
Japan for NDMA analysis.

2.6. Analytical Techniques

2.6.1. Precursor Analysis

Precursors selected for this experiment were total organic carbon (TOC) and total nitrogen
(TN). The precursors were analyzed using a Shimadzu TOC-L/TN-M unit equipped with an OCT-L
autosampler. 1 M TOC and TN stock solutions were prepared from potassium hydrogen phthalate
(C8H5KO4) and potassium nitrate (KNO3). Calibration standard was prepared by combining 0.1 M
KNO3, 0.1 M C8H5KO4, and 0.05 M hydrochloric acid (HCl). Serial dilutions of calibration standard
were prepared to meet the needs of the expected TOC and TN concentration range. The analytical
method performed simultaneous analysis of TOC and TN.
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2.6.2. NDMA Analysis

Concentrations of NDMA were analyzed and determined using a high-performance
liquid chromatography-inline anion exchange reaction-photochemical reaction-chemiluminescence
(HPLC-AEM-PR-CL) [38,39]. The description below was adopted from [40] for a concise explanation
of the applied analytical technique:

(1) Separation of NDMA with an octadecylsilyl column as part of high-performance liquid
chromatography (HPLC)

(2) Photolysis of NDMA with UV light irradiation to form peroxynitrite
(3) Chemiluminescence detection of peroxynitrite with luminol solution.

The analytical system consisted of LC-10ADvp HPLC pumps (Shimadzu, Kyoto, Japan), an
SIL-20AC autosampler (Shimadzu); an AEM module (Nichiri Mfg., Chiba, Japan); an AEM-PR control
unit equipped with a peristaltic pump dedicated for the AEM washing solution and two inline
degassers (Nichiri Mfg., Chiba, Japan), a CTO-10ACvp column oven (Shimadzu) containing the AEM, a
PR and an InertSustain C18-AQ column (5 µm, 250 mm length; 4.6 mm i.d., GL sciences, Tokyo, Japan);
a CL-2027plus CL detector (JASCO, Tokyo, Japan); and a Chromato-PRO data processor (Runtime
Instruments, Kanagawa, Japan). The photochemical reactor installed in the column oven was equipped
with a low-pressure mercury lamp (OFS-221XB, Miyata Elevam Inc., Yokohama, Japan) and reaction
coil made of PTFE tube (1/16” o.d. × 0.5 mm i.d., active length = 100 cm) in an aluminum tube [39].

2.7. Statistical Methods

All statistical analysis was completed using OriginPro software. Box plots and scatter plots were
generated to demonstrate precursor removal and NDMA formation. Main and interaction effects on
the concentrations of NDMA, TOC, and TN were assessed using three-way ANOVA. The three-way
analysis of variance model can be written as:

Yijkt = µ + αi + βj + γk + (αβ)ij+ (αγ)ik + (βγ)jk + (αβγ)ijk + εijkt (1)

where the magnitude of any observation Yijkt can be affected by several possible influences. µ is the
overall mean, αi is the influence of the ith category of the column variable, βj is the influence of the jth

category of the column variable, and γk is the influence of the kth category of the column variable.
Interaction effects from the combination of column variables are denoted by terms (αβ)ij, (αγ)ik, and
(βγ)jk. The term (αβγ)ijk is called a three-way interaction term, and εijkt is the residual error term.

Significance level α = 0.05 was set for all calculations to define the probability of concluding
that a difference between groups exists when there is no actual difference. Limitations of ANOVA
excluded a fourth main effect from the analysis. Adjusting for this confine, separate ANOVA tables
were generated to represent NDMA formed from treatment of the two source waters.

3. Results and Discussion

3.1. NDMA Formation

This study was designed to model the formation of NDMA from treatment of local source waters
using chloramine water treatment techniques. The aim behind the study design was to demonstrate that
if local WTPs used chloramine as a primary disinfectant, then the product water sent into distribution
would contain low levels of NDMA. Seasonal and spatial variations were considered as possible effects,
and precursor removal before disinfection was also considered. Based on previous NDMA formation
potential studies, it was expected that after longer monochloramine CT higher concentrations of NDMA
would form [19,22,23,41].

Bailey Brook and Cork Brook field samples were collected during three seasons (Summer, Autumn,
Spring) and the field samples were treated using a laboratory bench-top treatment system. To capture
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the effects of seasonal and spatial variation on the formation of NDMA during water treatment,
NDMA data was generated into boxplots per each sampling event, regardless of where the NDMA
data originated in the bench-top treatment system, e.g., raw water influent (R), post-dual-media
filtration effluent (F), and post-dual-media filtration + GAC filtration effluent. Using this approach,
we found that only Cork Brook produced higher concentrations of NDMA during the first 24 h of
CT when compared to the 72 h CT (Figure 3). Exhaustion of NDMA precursors by other DBPs is a
possibility given that residual chloramine decreased consistently over 72 h; however, it is speculated
that if exhaustion were to occur, there would not be an increase of NDMA in the Cork Brook 24 h CT
samples [42].
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Figure 3. NDMA concentrations in product water after (a) 24 h monochloramine CT, and (b)
72 h monochloramine CT, corresponding to sample site and season. Plots based off of all NDMA
concentrations regardless of where the sample was collected from the treatment system. CB = Cork
Brook, BB = Bailey Brook.

There was a substantial difference in average NDMA formed between Cork Brook (12.2 ng/L)
and Bailey Brook (4.2 ng/L) in the 24 h CT samples (Figure 3a); however, the difference between the
two averages noticeably decreased in the 72 h CT samples (Figure 3b). This effect could be explained
by NDMA precursors being site-specific and influenced by several factors [43–46]. To determine
the processes leading to NDMA reduction over longer CT, further studies are required. It is also
noteworthy that the 72 h CT samples still produced higher average levels of NDMA in Cork Brook
(4.1 ng/L) than Bailey Brook (3.4 ng/L), suggesting that the precursors associated with NDMA formation
are more frequently associated with forested areas rather than areas of urban influence [47–51].

In previous NDMA formation studies, known precursors were used as reactants with varying doses
of monochloramine, resulting in increasing NDMA concentrations with respect to time [19,22,23,41].
The results described in this study are contradictory to traditional NDMA formation potential theory
but are best justified by the experimental design. The experimental approach focused on using natural
environmental water with potentially very low concentrations of NDMA precursors. Although the
results are specific to Rhode Island based source water, they are not representative of all other North
East United States source water, therefore, further studies are required to understand NDMA formation
potential at other regional locations.

3.2. Seasonal Precursor Presence

To capture seasonal influence on concentrations of TOC and TN, boxplots were generated for both
TOC and TN per each sampling event as indicated in 3.1. NDMA Formation. Findings from this analysis
objective show that seasonal influence on TOC and TN concentrations was substantial (Figure 4).
However, TOC and TN concentrations had no apparent effect on the formation of NDMA (Figure 5).
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This finding supports claims that no significant relationships exist between NDMA and dissolved
organic carbon (DOC), natural organic matter (NOM), or TN, and provides further evidence that
NDMA has a very complex formation pathway [41,43–45]. The NDMA precursor fingerprinting study
by [46] explained that certain aliphatic, as well as peptide and lipid-like compounds are responsible
for the majority of NDMA formation in natural waters, and the origin of those constituents is likely
from wastewater effluents. The likelihood that both Cork Brook and Bailey Brook source water is
being impacted by wastewater effluent is low, therefore creating a need for future investigation into
precursor identification at the selected field sites.
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3.3. Evaluation of Bench-Top Treatment Efficacy

3.3.1. Precursor Removal

In order to assess bench-top treatment system efficacy, precursor concentrations were quantified
in samples collected from three main points in the system, e.g., R, F, and GAC. At alpha level of 0.05,
Figure 6 shows significant differences in precursors concentrations as source water passes through
the treatment system. Also noted in Figure 6, there is a negative correlation between the precursors
concentration and the place in the treatment system where the sample was collected, demonstrating
that the bench-top system was effective at removing traditional DBP precursors [52,53]. The addition
of a GAC column filter following dual-media filtration proved to be highly effective at reducing TOC
and TN concentrations by 85% and 86%, respectively.
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Figure 6. (a) TOC, and (b) TN precursor concentrations of processed samples, corresponding to the
sample’s position in the treatment system. Samples were collected at three major phases during
treatment: R = untreated raw water; F = dual-media filtration effluent; GAC = dual media filtration
+ GAC filtration effluent. Plots based off of all TOC and TN concentrations regardless of seasonal
sampling event. CB = Cork Brook, BB = Bailey Brook.

3.3.2. NDMA Formation Potentials

Although there were significant differences in precursor concentrations throughout the treatment
system (Figure 6), there was no apparent relationship with the formation of NDMA at each of the main
sampling points of the system: R, F, GAC (Figure 7). Therefore, it cannot be stated that the removal of
TOC and TN during water treatment will ultimately reduce the likelihood of forming NDMA during
chloramination. For an improved assessment of targeting NDMA forming precursors, future studies
are required to determine the chemical composition of the sample water during each of the main phases
of the treatment procedure. Comparisons were made with other studies to identify which particular
groups of precursors were influencing the reactions that generated NDMA (Table 1). The most
significant finding was that NDMA formation has a strong positive correlation with aliphatic, as well as
peptide and lipid-like compounds [46]. Since the presence of the aforementioned group of precursors
is frequently associated with wastewater impacts [46], other routes of exposure were considered.
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Figure 7. NDMA concentrations in product water after (a) 24 h monochloramine CT, and (b) 72 h
monochloramine CT. Samples were collected at three major phases during treatment: R = untreated
raw water; F = dual-media filtration effluent; GAC = dual media filtration + GAC filtration effluent.
Plots based off of all NDMA concentrations regardless of seasonal sampling event. CB = Cork Brook,
BB = Bailey Brook.

Table 1. Study comparison on NDMA precursors and their impact on NDMA formation during
water treatment.

Study Source Water Result Author

NDMA precursors in
natural water

Natural waters from
reservoirs, lakes, and
groundwaters (U.S.)

NDMA formation has weak
correlation to DOC content (R2 =

0.41), however strength of
correlation is source dependent.
NDMA precursors are a suite of

compounds associated with
humic substances and other high

molecular weight polymers

[41]

NDMA formation in
water and wastewater

Untreated natural
water (U.S.)

No significant relationship
between NDMA formation and

natural organic carbon or nitrogen
[43]

NDMA survey of
drinking water

distribution systems

Lakes, rivers, creeks, and
groundwater (Canada)

No apparent trends between
NDMA concentrations and DOC,

NH3-N, NO3
−, total Kjedldahl

nitrogen (TKN), and organic N

[44]

NDMA formation in
natural water

Rivers and lakes
(U.S. & Canada)

No significant relationships
between NDMA formation and

total organic carbon (TOC)
[45]

NDMA formation in
natural water, and

precursor fingerprinting

Natural
reservoirs (Spain)

After fingerprinting dissolved
organic matter (DOM), a positive
correlation was found between

NDMA formation and aliphatic as
well as peptide and lipid-like

compounds (r2 = 0.88)

[46]

The findings from [54,55] state that DOM from forested regions has constituents of hydrophobic
and hydrophilic fractions, where the hydrophilic fractions could be composed of carbohydrates, small
carboxylic acids, free proteins and peptides. Since NDMA formation was highest in source water
collected from the forested watershed during all seasons, it suggests that the findings from [46,54,55]
have potentially identified the most influential group of NDMA precursors in this experiment.
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Furthermore, since this particular group of precursors is hydrophilic, there is possible justification as
to why the bench-top treatment system was ineffective at NDMA precursor removal, even with the
addition of a GAC column.

3.3.3. Acceptable NDMA Concentrations

NDMA formed as a by-product from the bench-top water treatment system varied significantly
with changing CT (Figure 3). There were also significant differences in NDMA produced from each
source water site during both CTs (Tables 2 and 3). Interestingly, source water from Cork Brook
produced elevated levels of NDMA (9.1–17.6 ng/L) at 24 h CT during each of the seasonal sampling
events (Figure 3a). However, at 72 h CT, both Cork Brook and Bailey Brook produced NDMA levels
that fell within the same range (1.2–5.8 ng/L) (Figure 3b). At this time, it is unclear as to why Cork
Brook produced increased NDMA concentrations at 24 h CT, then decreased concentrations at 72 h.
No published literature accounts for NDMA formation and degradation during chloramination.

Table 2. ANOVA table comparing the main- and interaction effects of treatment (R, F, GAC), CT, and
season on the formation of NDMA in Bailey Brook source water.

Effect Mean Square * P Value

Treatment 1.195 0.085
CT 6.769 0.000

Season 1.700 0.035
Treatment * CT 1.003 0.120

Treatment * Season 0.855 0.133
CT * Season 2.260 0.015

Treatment * CT * Season 0.684 0.211

* Estimate of population variance based on the variability among a given set of measures.

Table 3. ANOVA table comparing the main and interaction effects of treatment (R, F, GAC), CT, and
season, on the formation of NDMA in Cork Brook source water.

Effect Mean Square * P Value

Treatment 1.218 0.601
CT 590.571 0.000

Season 8.471 0.047
Treatment * CT 2.549 0.356

Treatment * Season 1.638 0.600
CT * Season 3.471 0.252

Treatment * CT * Season 0.271 0.975

* Estimate of population variance based on the variability among a given set of measures.

Drinking water leaving a WTP is typically pumped to a storage facility where it resides for
days before reaching the consumer [56]. For the case of NDMA formation potential in Rhode Island
based source water (Figure 1), these findings are essential. In this experiment, both source waters
exposed to 72 h monochloramine CT resulted in NDMA concentrations below 10 ng/L, complying with
international guidelines, and regulatory limits established by California and Massachusetts [12–14].
Furthermore, the use of a dual-media filter and a GAC filter had no effect on reducing NDMA formation
potential during water treatment, however NDMA concentrations were still below 10 ng/L after 72
h CT for both Bailey Brook and Cork Brook source water. With the information provided by this
study, and future NDMA formation potential tests of the selected source waters, Rhode Island based
WTPs may consider switching to chloramine disinfection to comply with established DBP regulations
effectively, and N-DBP regulations, to come in the near future.



Water 2019, 11, 2019 11 of 14

4. Conclusions and Future Work

We developed and used a laboratory bench-top water treatment system to determine how NDMA
formation is influenced by the treatment of seasonally and spatially varying source water. Addressing
the influences of precursor interaction with monochloramine disinfectant, we found that the proposed
precursors, TOC and TN, had no direct relationship with the formation of NDMA. However, it was
noted that the NDMA-forming precursors are source water dependent and are found particularly in
forested watersheds. Also, the precursors that led to the formation of NDMA were not impacted by the
bench-top treatment system, suggesting they are likely hydrophilic compounds. CT appeared to be a
significant variable when discussing the formation of NDMA, as 72 h CT led to lower levels of NDMA
when compared to 24 h CT. In fact, the levels of NDMA formed after 72 h of CT were below regulatory
guidelines (10 ng/L) established by California and Massachusetts. This finding suggests that if Rhode
Island WTPs were to switch to monochloramine as a primary disinfectant during water treatment,
there would be low risk of exposing consumers to harmful levels of NDMA and other DBPs. Although
this particular result is contradictory to traditional NDMA formation potential theory, further studies
addressing NDMA reduction with respect to CT would be highly beneficial.

Although the bench-top treatment system was ineffective at removing NDMA precursors, it
was highly effective at removing traditional DBP precursors such as TOC and TN. The addition of a
GAC column filter proved to reduce levels of TOC and TN by 85% and 86%, respectively. Additions
or improvements must be made to the bench-top treatment system to reduce levels of influential
NDMA precursors. In future studies, implementing other water treatment practices such as membrane
filtration, ozone, and UV disinfection should be considered. A supplemental fingerprinting study
would also prove beneficial for determining the extent of NDMA precursors in Rhode Island and other
regional source waters.
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