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Abstract: Efficient design and management of water distribution networks is critical for conservation
of water resources and minimization of both energy requirements and maintenance costs. Several
computational routines have been proposed for the optimization of operational parameters that
govern such networks. In particular, multi-objective evolutionary algorithms have proven to be useful
both properly describing a network and optimizing its performance. Despite these computational
advances, practical implementation of multi-objective optimization algorithms for water networks
is an abstruse subject for researchers and engineers, particularly since efficient coupling between
multi-objective algorithms and the hydraulic network model is required. Further, even if the coupling
is successfully implemented, selecting the proper set of multi-objective algorithms for a given network,
and addressing the quality of the obtained results (i.e., the approximate Pareto frontier) introduces
additional complexities that further hinder the practical application of these algorithms. Here, we
present an open-source project that couples the EPANET hydraulic network model with the jMetal
framework for multi-objective optimization, allowing flexible implementation and comparison of
different metaheuristic optimization algorithms through statistical quality assessment. Advantages
of this project are discussed by comparing the performance of different multi-objective algorithms
(i.e., NSGA-II, SPEA2, SMPSO) on case study water pump networks available in the literature.

Keywords: optimization; multi-objective evolutionary algorithms; water distribution networks;
hydraulic network modeling; EPANET; jMetal; NSGA-II

1. Introduction

Efficient management of water resources and optimization of energy requirements are key aspects
of sustainable development and urban resilience, particularly for watersheds that must cope with
industrial and agricultural demands, along with drought and water pollution. One approach to
alleviate such scenarios considers the improvement in design and management of water distribution
networks (WDNs).
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Optimization of a WDN requires comprehensive knowledge about the system and includes
several important factors, such as pipe sizing, distribution demands, pressure uniformity, water quality,
improvements in network efficiency by District Metering Areas, etc. Currently, the challenge is to
consider all the features in the mathematical models, but it is infeasible to compile a complete list
of all decision variables where each possible solution is evaluated because the problem formulation
becomes more complex and the search space grows in size. Therefore, the development of tools that
optimize the physical behavior of a WDN will facilitate the study and evaluation of improvements in
their design, operation, and exploitation. Consequently, efficient guided search methods should be
used for optimization of WDNs.

Metaheuristic methods such as multi-objective evolutionary algorithms (MOEAs) have been
successfully used to optimize WDNs [1,2]. The versatility of these algorithms has allowed their
use for problems related to water resources such as leak detection [3,4], optimal pipe sizing [5,6],
water quality [7], water demand [8], drainage networks design [9], irrigation networks [10,11], etc.
The success of such algorithms lies in their capacity to explore the space of feasible solutions and
generate an approximation to the set of solutions in a single execution. Several methods implement
different searching strategies, and each method possesses its own set of configurable parameters,
whose setting determines the proper performance of the algorithm. Therefore, selection of a MOEA
and its set of parameters that optimize the performance of a given water network is not a trivial task,
being in itself a multi-objective problem.

Regarding management, WDNs are inherently complex systems owing to the requirements that
must be met by the network (e.g., nodal pressure and water flows), and the set of operational variables
that regulate its performance, including pump operation schedules. Noteworthy, the requirements
and operational variables involved in management of the network are time dependent. Therefore,
analysis of the network is often restricted to a discrete time frame, usually within a nominal day. Such
complexity has motivated the use of computational methods to optimize the network performance
in a given time frame [1]. Although the hydraulic performance of the network can be successfully
addressed through available numerical routines such as EPANET [12], operational decisions that are
key to both the hydraulic behavior and maintenance costs of the network are often decided through
inference and practical experience.

Since 1970s, numerous researchers have focused on the pump operation of WDNs. Optimal
operation of pumps is often formulated as a cost optimization problem and it has been traditionally
addressed by single-objective cost functions [1,13]. However, a more flexible approach considers
a multi-objective optimization problem that simultaneously addresses both operational costs and
coupled pump scheduling operation [2,14,15], in an effort to improve characterization of service life
and maintenance costs of the network. Other objectives considered, apart from operational costs,
include the difference between initial and final water levels in storage tanks [16], water quality [17],
greenhouse gas emissions associated with pump operations [18], etc.

Contrary to single-objective optimization problems, there is no single solution in a multi-objective
optimization problem, and the concept of dominance only establishes a partial order between the set
of feasible solutions, also known as the Pareto front. In addition, visual inspection is insufficient to
judge the quality of the different approximations to the Pareto front, and the use of statistical inference
becomes necessary to provide some certainty on the performance superiority of a given MOEA with
respect to another.

Given this context, the selection and assessment of a proper MOEA to address optimization of a
WDN necessarily requires the ability to (i) efficiently implement a set of algorithms for a given network
problem, and (ii) to use proper quality indicators to assess and compare the performance of each
algorithm to approximate the Pareto front.

jHawanet is based on integration of two independent tools in a single project. So, EPANET
is used as a hydraulic network solver and jMetal is used as optimization engine. jMetal is an
object-oriented Java-based framework designed specifically for multi-objective optimization of complex
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problems. The collaborative work of EPANET and jMetal presents many advantages, facilitating
the implementation of solution representations, operators, problems, density estimators, parameters
tuning, etc. The effective coupling of both libraries is not trivial. Such situation is in our impression a
major drawback for the widespread adoption of multi-objective optimization algorithms by researchers
and engineers.

Other programs for water network optimization such as GAnet [19] or Gondwana [20] have
been developed previously. These programs integrate a hydraulic network solver model with an
optimization algorithm but they do not allow to evaluate the performance of different algorithms for a
single case study. Among others, Jetmarova et al. [21] highlights as research challenges developing
methods for objective comparison of multiple optimization techniques and to evaluate the sensitivity
of solutions and here is another contribution of our work. Noteworthy, jHawanet allows to determine
the performance of the main algorithms available in the literature through a fair comparison, since
some quality indicators to assess the performance of the algorithms are included into the framework.
On this regard, the contributions of our work can be summarized in the following: A novel project for
the implementation of MOEAs to optimize WDNs is developed. The project allows coupling between
the jMetal framework for evolutionary optimization and the EPANET Programmer’s Toolkit library
(EPAtoolkit). Finally, jMetal is used to compare three metaheuristic algorithms for solving a classic
multi-objective optimization problem in WDN, pump operation.

The remainder of the paper is organized as follows: Details of the jMetal framework and the
EPAtoolkit library are presented first, followed by a description of the linking project, including
the implemented classes for efficient coupling between the framework and the library. An example
application is later presented by comparing different MOEAs for the optimization of case studies for
water distribution networks that include pump scheduling. The results identify the most efficient of
the three analyzed algorithms considering the quality indicators available in jMetal.

2. jHawanet: Programming Environment

Before discussing the implemented project, it is convenient to first introduce the main characteristics
of the EPAToolkit library and the jMetal framework, along with the rationale behind their selection.
This brief introduction is followed by a description of the coupling project, including the developed
classes for the description of the hydraulic network and its multi-objective optimization under
given constraints.

2.1. EPAToolkit: Library for Modeling of Water Distribution Networks

The EPANET program, developed by the U.S. Environmental Protection Agency (USEPA), has
become the de facto standard in both industry and academia for the hydraulic simulation and analysis
of water distribution networks [12]. The program is free for distribution, and includes the EPAToolkit
dynamic link library (DLL), which allows programmers to personalize the EPANET engine module
according to their own particular needs. The latest version, launched in March 2008, is originally
written in the C programming language and has separate code modules for input data processing,
hydraulic analysis, water-quality analysis, solving systems of linear equations with sparse matrices,
and report generation. In total the library contains 55 functions and 104 variables that are available for
input parameters.

This work employs EPAToolkit in optimization routines that require iterative hydraulic simulations
to obtain a set of solutions. In this regard, a key advantage of EPAToolkit is the integration with additional
libraries available in the programming environment, allowing implementation of sophisticated
workflows, integration with complex optimization routines, and advanced statistical analysis of the
hydraulic simulation results.

Originally, EPAToolkit was compiled for use in Windows 32-bit OS programming environments,
allowing functions to be incorporated into a Windows DLL, such as Delphi Pascal 5.0, Visual Basic
6.0, etc. In order to use EPAToolkit in other programming languages (e.g., Java, Python), it would
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be necessary to generate a new header file with modifications to the types of data used by functions,
variables and input parameters. This is not a trivial task, and consequently, Section 2.3 explains how
the connection was made and the importance of its interaction with the final jHawanet project.

2.2. jMetal: Framework for Multi-Objective Evolutionary Optimization

jMetal is an open-source framework for the implementation and assessment of both single-objective
and multi-objective metaheuristics. The framework was developed in Java by Durillo et al. [22], allowing
for code flexibility, simplicity, extensibility, and portability [23]. The framework is organized in four
packages, named jmetal-core, jmetal-algorithm, jmetal-problem, and jmetal-exec. These packages contain
the core functionalities, implemented methods, test functions, and experiments, respectively.

The jmetal-core package supports a wide range of decision variables, including binary,
real, and integer representations, in addition to permutations and integer-real, real-binary, and
integer-permutation hybrids. These variable representations give the researcher greater flexibility for
codification of solutions and operators on multi-objective strategies.

The set of solutions found by a multi-objective evolutionary algorithm is stored in a primary
archive, whereas the set of solutions that are non-dominated is stored in a second archive. This second
archive is updated continuously and has the same size as the primary archive. Among the strategies to
prune the second archive are crowding distance, hypervolume, and adaptative grid [24]. All these
strategies are supported by in the jmetal-core package.

Starting from version 5.0 jMetal includes routines to obtain algorithm-specific information during
runtime, including the size of the current population in a genetic algorithm, the current velocity of
particles in a particle swarm optimization, and the current iteration, among others.

Additionally, jMetal supports computation of eleven quality indicators such as Spread, Epsilon,
Hypervolume, and Generational Distance. These quality indicators assess the performance of such
methods in terms of distribution and convergence of solutions in the Pareto front [25]. In Section 2.2.1
we expand on quality indicators in the context of multi-objective optimization.

The jmetal-algorithm package offers implementations of well-known metaheuristic optimization
algorithms such as NSGA-II, SPEA2, MOEA/D, and SMPSO, as well as recently proposed strategies
such as NSGA-III, WASFGA, and ESPEA [23]. These algorithms cover a variety of search strategies,
which constitutes an ideal set for computing reference Pareto fronts, as well as benchmarking of newly
developed methods.

The jmetal-problem package contains implementations of well-known continuous multi-objective
family test functions of ZDT, DTLZ, WFG [26], the many objective-optimization families MAF and
CDTLZ [27], among others.

jMetal also allows calculation of distances in the decision and objective spaces, comparison metrics
between two solutions based on ranking-base dominance, hypervolume contribution, and constraint
violations through utility classes. A convenient utility is the class GenerateReferenceFrontFromFile, which
computes a reference Pareto front from a set of different metaheuristic optimization algorithms.

Finally, the jmetal-exec package assembles the required classes to conduct experiments. Once
again, jMetal includes templates for these classes where we can set up the experiment options. Among
them, we have the number of independent runs and threads, the list of problems and methods, and the
quality indicators. jMetal generates statistics such as tables with the mean and the standard deviation,
median and interquartile range (IQR), the Friedman test results, and codes to conduct the Wilcoxon
test and to generate boxplots in common statistical packages such as R. Section 2.2.2 provides further
details on the available statistical methods for multi-objective optimization.

In our judgement, the features implemented in jMetal make it the ideal framework to perform
multi-objective evolutionary optimization of WDN. Given our choice of jMetal as the framework for
optimization, the Java programing language was used for implementation of the coupling library.
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2.2.1. Quality Indicators

Owing to their stochastic nature, a single MOEA will produce a different approximation to
the Pareto front for a given instance of the same problem. Therefore, each algorithm possesses an
underlying stochastic variable whose values approximate the Pareto front [28].

A quality indicator attempts to measure the quality of a sampled approximation to the Pareto
front in terms of (a) convergence, (b) distribution, or (c) a combination of both [29], therefore allowing
comparison between different MOEAs on a same problem. The indicator maps the approximation
to the Pareto front to a real number, and allows statistical inference on the underlying stochastic
distribution of the obtained number in order to compare performance [30].

An ideal quality indicator should be strictly monotonic, invariant to the scaling of the objective
functions, computationally affordable and applicable with the available information [31]. Unfortunately
none of the available quality indicators can either meet simultaneously the above properties,
or simultaneously measure convergence and distribution [29]. Therefore, the performance of a
given multi-objective algorithm is often determined by a combination of indicators from different
categories [25,28].

Table 1 summarizes the characteristics of the quality indicators considered for this study, namely
Epsilon (I+ε ) [32], Spread (ISP) [33], and Hypervolume (IHV) [15,34,35]. It is worth noting that
jMetal can generate the best approximation to the Pareto front for a given algorithm and problem,
performing in addition the stochastic analysis required to calculate a given quality indicator and
perform statistical analysis.

Table 1. Quality indicators considered for the case studies.

Quality Indicator Category Monotony Complexity Requirements

Spread (ISP) Distribution Not strict Quadratic -

Epsilon (I+ε ) Convergence Not strict Quadratic Pareto front

Hypervolume (IHV) Convergence &
Distribution

Strictly
monotonous Exponential to m Worst point

2.2.2. Statistical Analysis

It is often convenient to summarize a random sample from a distribution using descriptive
statistics of central tendency (e.g., median and mean) and dispersion (e.g., standard deviation, IQR).
These measures are useful in describing general properties of the underlying distribution, but any
formal analysis should also include inferential statistics.

Methods for inferential statistics can be grouped into parametric and non-parametric tests. The first
group assumes that random samples come from statistical distributions with a fixed set of parameters
(e.g., normal distribution). Such assumption is likely to be violated by samples coming from a MOEA
result. On the other hand, non-parametric tests, by not assuming properties in the data, allow more
rigorous comparisons between stochastic methods [36].

To perform a formal hypothesis test, the level of significance α by which the null hypothesis will
be rejected must be established a-priori. Instead of setting a default value for α, an alternative consists of
calculating the lowest level of significance that results in the rejection of the null hypothesis, also known
as the p-value. The smaller the p-value, the stronger the evidence against the null hypothesis [36].

Due to the stochastic component of MOEAs, each time a method is applied to the same problem, a
different Pareto front approximation is obtained. In this sense, each optimizer has an associated random
variable whose possible values approximate the Pareto front. The underlying statistical distribution of
the variable is unknown and, in many cases, impossible to determine theoretically. This is the reason
why empirical studies are the most common mechanism to assess performance of MOEAs [28].

After running a MOEA multiple times in the same instance of a problem, a sample of approximate
Pareto fronts is obtained. Therefore, comparing the performance of two MOEAs means comparing two
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samples of approximations. The most widely used approach in the literature is to map each sample of
approximations to the Pareto front into a real value using quality indicators. The samples of values for
the quality indicators are then used for statistical inference, in order to judge which algorithm is better
at approximating the Pareto frontier of a given problem within the level of confidence provided by the
calculated p-value.

2.3. Coupling Project between EPAToolkit and jMetal

Here we introduce the jHawanet project, which allows implementation and comparison of MOEAs
for optimization problems on WDNs through the combination of jMetal and EPAToolkit. Figure 1
depicts the workflow in jHawanet to address multi-objective optimization problems in WDNs through
evolutionary algorithms. The workflow considers five steps (represented with color shades in the
figure), namely Problem definition, jMetal implementations, Multi-objective function evaluation, Algorithms
comparison, and Results.
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The Problem Definition step allows to establish the decision variables, objective functions, and
restrictions of the mathematical model.

The second step (jMetal Implementations) implements the optimization model as a problem class
in jMetal and assembles the experiments. Here, we choose the MOEAs, the operators and general
parameters, the quality indicators, and we establish the number of independent experiments to
approximate the Pareto front. In this step it is also possible to select and/or generate new MOEAs, and
modify their parameters and/or operators to values more suitable to the characteristics of the problem.

The third step (Multi-objective Function Evaluation) corresponds to the iterative evaluation of a
solution set generated by a MOEA in the problem class of jMetal. For this purpose, we designed
EpaJava, a coupling library that allows calls from Java to EPAToolkit. EpaJava was implemented through
the Java Native Access library (JNA), allowing dynamic and native invocations of EPAToolkit. A set of
classes were developed in the library to accurately represent the hydraulic components involved in the
modeling of the WDN (e.g., pipes, pumps, reservoirs, tanks). Therefore, users familiar with EPAToolkit
should be able to accurately model a network in the coupling library. In practice, the library loads the
water network previously defined in the EPANET input file (first step), where the decision variables
are dynamically modified according to the optimization model (second step).

After running the experiment, jMetal automatically generates the Pareto front approximation,
calculates the required quality indicators, the statistical indexes, and summarizes them (Algorithms
Comparison step). Finally, the information obtained from the Results step allows researchers to judge the
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more suitable set of MOEAs according to their optimization problem, but more importantly, it allows
them to make informed decisions regarding operation of design of their WDNs.

3. Example Application: Pump Optimization Problem

We decided to test our coupling library on case studies of water distribution networks that include
optimization of pumping regime. Briefly, the pumping regime problem consists of determining the
optimal operation scheduling of pumps that supply water from a source to either storage tanks or
demand nodes [1].

From an optimization standpoint, the pumping regime problem corresponds to an NP-hard type
of problem, highly non-linear and severely constrained, with time-dependent variables [37]. Such
properties invalidate the use of mathematical programming to address the optimization problem,
opening the way to MOEAs.

Since it is not possible to know a-priori which multi-objective algorithm is sufficient to approximate
the Pareto front of a given pumping regime problem, a reasonable approach involves implementing
a set of algorithms that cover a wide range of search strategies. Therefore, we can verify a-posteriori
which subset of search strategies, operators, and parameters are efficient in providing a well distributed
and sufficient approximation to the Pareto front.

It is worth to note that the pumping regime problem for water distribution networks is particularly
suited for our coupling library, since it allows straight-forward implementation and quality assessment
of a set of multi-objective algorithms tasked with approximation of the Pareto front. For our test we
have chosen the NSGA-II, SPEA2, and SMPSO multi-objective evolutionary algorithms to optimize the
proposed case studies.

3.1. Problem Statement

The literature provides many optimization problems related to pumping operations in WDN. In
this work, the problem statement for pumping regime in a water distribution network has been detailed
extensively elsewhere [1,2]. Concretely, the problem can be posed as a two-objective optimization
problem. The first objective is the minimization of energy costs. Equation 1 depicts the total energy
cost CE(S) of a pump scheduling solution S, where Ec(n, t) represents the total energy consumption of
n pumps in operation during each time t of a total of NT periods. Meanwhile, Pc(t) is the energy tariff
at time t. The second objective is the minimization of maintenance costs CM(S) detailed in Equation (2).
The quantification of these costs is difficult and case dependent. In order to estimate it and according to
the literature, the number of pump switches is used [1,2]. To perform the mathematical calculation, rt

is a binary variable equal to one when starting a pump that is turned off in the hour t.

CE(S) =
NT∑
n=1

NT∑
t=1

(Pc(t) × Ec(n, t) × S(n, t)) (1)

CM(S) =
NT∑
n=1

NT∑
t=1

rt (2)

Note that S can be represented by a binary matrix of n rows by 24 columns (i.e., Snx24), where zero
represents an off pump and one represents an on pump. Finally, the set of obtained solutions must
meet a series of hydraulic and operational constraints that ensure their feasibility. Such constraints
involve water mass and energy conservation at each node of the network, minimum pressure, and
demand flow requirements at each node, as well as continuity of water levels in each reservoir from
the end of a nominal day to the beginning of the next day.



Water 2019, 11, 2018 8 of 17

3.2. Case Studies

Three benchmark networks were selected to optimize pump scheduling and to analyze the
behavior of selected multi-objective algorithms. In this regard, Van Zyl, Baghmalek and Anytown
networks have been tested by several researchers. Consequently, many solutions are available in the
literature, which allows the results to be compared and the conclusions to be extended to networks
with a search space of this order of magnitude. A brief description of each case study is provided below.
The network components, as well as pipes, nodes, pumps, and valves specifications are presented in
some referred papers. Additionally, Epanet files (.inp) are provided as supplementary material.

The Van Zyl network was proposed by Van Zyl [14]. The network is depicted in Figure 2, and
consists of a reservoir that feeds two tanks at different elevations through three pumps. The pumping
station at the reservoir contains two identical fixed pumps in parallel (Pumps I and II). The system
also has a booster pump (pump III) located at higher elevation than tank II. The elevations of tanks I
and II are 85 and 80 m, respectively, while the diameters are 20 and 25 m. The hydraulic time step
and patterns time are 1 h and the total time analysis is 24 h. The minimum pressure at the nodes
must be 15 mca. The main constraint in the tanks is that the water level has to be kept between an
allowable minimum (Hmin) and maximum (Hmax). In this case, the minimum level is 0 m for both
tanks, while the maximum levels are 5 m for tank I and 10 m for tank II. The initial levels are 4.5 and
9.5 m, respectively. Regarding the demand of the system, only the two nodes located between the
tanks have demands. They vary reaching the highest level of consumption at 7:00 with a peak factor
of 1.7 and at 18:00 with a peak factor of 1.5. The h 00:00, 13:00, and 24:00 have the lowest demands.
In these cases, a factor of 0.5 is presented. Energy consumption tariffs have two variations. The first
one, 0.0244 ($/KWh) ranged from 00.00 to 07.00 h. From that time, the prices increase to 0.12 ($/KWh).
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The second example entails an analysis of the Baghmalek network [2], depicted in Figure 3. This
case study corresponds to a section of the drinking water supply of Baghmalek city, southwest of Iran.
The network comprises a deposit reservoir with a fixed water level, one tank located at 760 m with a
diameter of 4.63 m, six identical fixed speed pumps operating in parallel, 34 pipes, and 32 nodes that
demand water. The highest consumption levels are located at 01:00 and 8:00. In these periods the peak
factor reaches around 2.0. In other words, there is almost 200% consumption of considered demand.
On the contrary, during the first three and last h of the day the use of water does not exceed 50% of
the base demand. Regarding energy rates, they vary during the day and three loading intervals were
considered; from 00:00 to 8:00 the price is 0.003 ($/kWh) from 09:00 to 18:00, the price is 0.006 ($/kWh)
and finally from 19.00 onwards the price is 0.012 ($/kWh). In addition, a charge of 0.48 ($/KWh) is
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considered for the maximum electricity consumption during the 30 days of billing. The minimum
required pressure head at the demand nodes is 15 m and the minimum and maximum allowed levels
at the tank are 0.5 and 4.5 m, with an initial level of 4.5 m.Water 2019, 8, x 9 of 4 
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4. Experimental Results and Discussion

The parameters values for NSGA-II, SPEA2, and SMPSO methods were drawn from their original
articles. As seen in Table 2, the methods share the same parameters settings. This ensures a fair
comparison among methods because it is possible to establish which search strategy performs better in
a specific type of problem.

Table 2. Parameters values of NSGA-II, SPEA2, and SMPSO methods.

NSGA-II SPEA2 SMPSO

Population size 100 100 100

Archive size - 100 100

Integer SBX crossover Distribution index nc = 20,
Crossover rate pc = 0.9 -

Integer polynomial mutation Distribution index of nm = 20
Mutation rate pm = 1/D∗

Selection strategy Binary tournament

*D is the number of decision variables (solution dimensionality).

The population size was set to 100 solutions, the same size was set as the maximum primary
archive for SMPSO. The crossover operator for NSGA-II and SPEA2 was an integer version of the SBX
with distribution index nc = 20 and pc = 0.9 as crossover rate (probability). All methods implement
an integer version of the polynomial mutation operator, in this case with a distribution index of
nm = 20 and a mutation rate of pm = 1/D, where D is the number of decision variables (solution
dimensionality).

We execute 30 independent experiments per each combination of method-network. The stop
condition in all cases was 30,000 evaluations of the objective function. The presented case studies
are offline problems and require computational simulations to assess the fitness of each solution.
Independently of the computational complexity of each method, the higher computational cost of each
experiment falls on the evaluation of the objective function. Therefore, by using a stop condition we
ensure to establish which search strategy performs better in a specific type of problem.

In this section, we present the experimental results obtained in the context of the experimental
framework discussed above. The comparison of solutions in multi-objective optimization is
substantially more complex than in single objective optimization, because there is no single performance
metric that can be used to measure several desired qualities for the optimal solution set [39]. Therefore,
some WDN optimization studies have limited the performance analysis to a visual comparison of
solutions in terms of the quality of the Pareto fronts obtained, as shown in Figure 5.
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Figure 5 demonstrates that using the Pareto front as the only measure of performance comparison
between algorithms is insufficient. Specifically, NSGA-II and SPEA2 build the same Pareto front for the
Anytown and Baghmalek networks, so the only conclusion is that SMPSO works worse in these two
case studies, but we cannot establish significant differences between NSGA-II and SPEA2. Moreover,
in the Van Zyl network all algorithms contribute to building the Pareto front at some of its points, so it
is not possible to establish differences between NSGA-II, SPEA2, and SMPSO.

Consequently, additional evaluations about the performance and search behavior of multi-objective
algorithms in relation to their parameters and/or WDN features are needed. On this regard, based
on the statistics instrument offered by jMetal, we arrive at conclusions regarding the performance of
NSGA-II, SPEA2, and SMPSO on the test problems Van Zyl, Baghmalek, and Anytown.

Figure 6 shows boxplots for the Epsilon (I+ε ), Spread (ISP), and Hypervolume (IHV) indicator
distributions calculated for the case studies. Red lines indicate the median value, while the orange
lines indicate the mean value. Grey bars indicate the best performing algorithm for each indicator, as
inferred by the Wilcoxon and Friedman statistical tests.
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The first row in Figure 6 depicts the median, mean, and the IQR for the ISP distributions as a
function of algorithm and case study. SMPSO achieves on average the best (lowest) values in all three
case studies. NSGA-II was the second-best algorithm with three-second places, while SPEA2 had the
worst performance for the three case studies. The Wilcoxon test confirms that SMPSO spread values on
Van Zyl, Baghmalek, and Anytown networks outperform the ones obtained by NSGA-II and SPEA2,
with a statistical significance of 95%. However, this test did not show differences statistically significant
between NSGA-II and SPEA2 for the Baghmalek and Anytown networks.

Table 3 presents the Friedman average ranking of the ISP metric for the three algorithms under
consideration. The results are distributed according toχ2 with two degrees of freedom at 5% significance
level (p-value < 0.05). In this case, SMPSO, NSGA-II, and SPEA2 were ranked first, second, and
third, respectively.

Table 3. Average ranking of the algorithms considering the ISP metric. Friedman statistic considering
reduction performance (distributed according to χ2 with 2 degrees of freedom: 6.0, p-value < 0.05).

Algorithm Ranking

SMPSO 1.0

NSGA-II 2.0

SPEA2 3.0

The analyzed performance indicator assesses the distribution of solutions along the Pareto front.
Consequently, in the context of the experiments conducted, SMPSO is the algorithm that reaches the
best distribution of the non-dominated solutions, followed by the NSGA-II and SPEA2 algorithms.

The performance distribution obtained by the three algorithms on the additive version of the
I+ε metric is presented in the second row of Figure 6. SPEA2 was the best algorithm with three first
places, followed by NSGA-II with two-second positions on the Baghmalek and Anytown networks.
Finally, SMPSO with a one-second place on the Van Zyl network was the algorithm with the poorest
behavior. The comparisons performed by the Wilcoxon test confirm SPEA2 as the algorithm with
better performance at a 95% significance level on all three networks under study. At the same time,
NSGA-II outperformed, with statistical significance, SMPSO on Baghmalek and Anytown while not
found statistical difference on Van Zyl.

The Friedman test ranking, presented in Table 4, is less conclusive than the previous quality
indicator. In this case, the obtained results had 10% of significant level (the recommended value is 5%).

Table 4. Average ranking of the algorithms considering the I+ε metric. Friedman statistic considering
reduction performance (distributed according to χ2 with 2 degrees of freedom: 4.6666, p-value < 0.1).

Algorithm Ranking

SPEA2 1.0

NSGA-II 2.33

SMPSO 2.66

From the previous results we can conclude that, under the experimental framework presented,
SPEA2 is the algorithm with the best convergence. On the other hand, the SMPSO algorithm does not
generally converge well to the true Pareto front of the networks under consideration.

The IHV metric implemented in jMetal follows the strategy proposed originally by Zitzler [15].
The inputs are the Pareto front approximations generated by the algorithms involved in the experiments,
and the approximation generated by the analyzed algorithm, while the output is its Hypervolume.

First, are obtained the maximum and minimum values per each objective of the Pareto front. After
that, it is normalized as well as the approximation to the Pareto front. The original IHV metric is for



Water 2019, 11, 2018 13 of 17

maximization problems. Consequently, as jMetal handles the optimization problems as minimization
ones, the now normalized Pareto front has to be inverted. Finally, it is calculated the hypervolume
contributions of all solutions of the normalized approximation to the Pareto front. It is essential
to highlight that all solutions outside the convex hull, formed by the origin of coordinates and the
inverted normalized Pareto front, are set up to the origin. The previous means that contribution to the
hypervolume of these solutions are zero.

The third row in Figure 6 displays the median and IQR values for the IHV distribution as a function
of algorithm and case study. Once again, SPEA2 was the algorithm with the best (highest) values
for the Van Zyl and Baghmalek networks. The second place was for the NSGA-II algorithm with
two-second positions. Finally, SMPSO with the first place in Anytown and two third places was the
algorithm with the worse performance on this quality indicator. The Wilcoxon test also confirms
SPEA2 as the algorithm with superior behavior on the three networks, considering differences that are
statistically significant at the 95% level.

The Friedman test ranking, presented in Table 5, also confirm the previous results. SPEA2 obtained
the first ranking, followed by NSGA-II and SMPSO, respectively. SMPSO was the method with the
worse performance on the Hypervolume. Similar to what occured with the Epsilon quality indicator,
SPEA2 was the method that leads to a Pareto set approximation.

Table 5. Average ranking of the algorithms considering the IHV metric. Friedman statistic considering
increasing performance (distributed according to χ2 with 2 degrees of freedom: 6.0, p-value < 0.05).

Algorithm Ranking

SPEA2 3.0

NSGA-II 2.0

SMPSO 1.0

Finally, Table 6 summarizes the set of pairwise comparisons between SPEA2 and the rest of the
algorithms across the three quality indicators for the two-objective optimization model of Van Zyl,
Baghmalek, and Anytown networks. Performance of the SPEA2 algorithm was compared to that of
the two state-of-the-art MOEAs throughout the three networks (six pairwise comparisons). The ‘+’
symbol indicates that result was statistically significant in favor of the SPEA algorithm, the ‘-‘ symbol
indicates that the result was statistically significant in favor of the competing algorithm, and the ‘=’
symbol indicates no significant differences between the algorithms.

Table 6. SPEA2 pairwise comparisons—Wilcoxon test summary for the Van Zyl, Baghmalek, and
Anytown networks.

ISP I+ε IHV Total

+ 0 6 5 11

- 4 0 1 5

= 2 0 0 2

It is clear from Table 6 that the SPEA2 algorithm outperformed its competitors across I+ε and
IHV metrics.

The No Free Lunch theorem for optimization states that the good performance of an algorithm on
a class of problems is at the cost of poor performance on others [40]. With the parameter configuration
used in this paper, we aimed to present the MOEA comparison methodology and assess the search
strategy from each method. No problem-tune parameters experiments were conducted because they
were out of the scope of the paper. Consequently, the experimental results presented in this paper
could vary in the case of experiments with different settings.
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Elitism is the strategy that allows the evolutionary algorithms to preserve the best solutions
(parents or children) from one generation to the next. This ensures that the algorithm has an increasing
monotonous performance [41]. After analyzing the search strategies of NSGA-II, SMPSO, and SPEA2
methods, their similarities and differences, we can conclude that the last one performs better due
to the archive prune operators. In SPEA2, the truncation operator prevents the boundary solutions
from being removed from the primary archive, facilitating the preservation of effectiveness in terms of
convergence [42]. This behavior, in the context of the networks under consideration, results in SPEA2
as the method on average with the best performance.

5. Conclusions

To date, many multi-objective algorithms have been applied successfully to WDN problems, but
there is still lack of knowledge on appropriate metrics to assess their performance. This work proposes
a new methodology based on integration of two softwares in a single project, called jHawanet. On this
subject, EPANET is one of the most important tools in the hydraulic simulation of water networks, and
jMetal is an object-oriented Java-based framework designed specifically for multi-objective optimization
of complex problems.

The collaborative work of both systems presents many advantages. Noteworthy, jHawanet
allows to determine the performance of the main algorithms available in the literature through a fair
comparison, avoiding biases caused by visual inspection or other spurious methods. Additionally,
jHawanet reduces the processing times of the results through the automated comparison available
in jMetal and additionally, it can be used by researchers to develop their own algorithms and also to
allow them to compare their new techniques against other metaheuristics.

The proposed methodology was applied to the well-known multi-objective optimization problem
of pump scheduling. So, jHawanet was tested with three multi-objective evolutionary algorithms
(SPEA2, NSGA-II, and SMPSO) and three benchmark networks. Based on the statistical analysis of the
results provided by jHawanet, it is possible to state the following:

• In terms of the quality of the Pareto fronts obtained, the visual comparison is insufficient and
unreliable to determine which algorithm has better performance in the optimization problem.

• Considering the quality indicators provided by jMetal, the SPEA2 algorithm outperforms
the NSGA-II and SMPSO algorithms. In this regard, both the Epsilon and Hypervolume
quality indicators demonstrate that SPEA2 is the best performing algorithm for the studied
benchmark networks, while the Spread indicator shows no significant differences between the
considered algorithms.

Finally, it is essential to highlight that the presented methodology is generic and can be applied to
any WDN multi-objective optimization problem. EpaJava is publicly available under the MIT license,
and it can be obtained freely from https://github.com/jhawanet/epajava. Researchers interested in the
entire jHawanet project, please contact the authors. In both cases, we kindly ask you to cite this article.
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Abbreviations

The following abbreviations are used in this manuscript:

NSGA Non-dominated Sorting Genetic Algorithm
SPEA Strength Pareto Evolutionary Algorithm
SMPSO Speed-constrained multi-objective particle swarm optimization algorithm
WDN Water distribution network
MOEA Multi-objective evolutionary algorithm
USEPA U.S. Environmental Protection Agency
DLL Dynamic link library
OS Operation System
JNA Java Native Access library
MOEA/D Multi-objective evolutionary algorithm based on decomposition
WASFGA Weighting achievement scalarizing function genetic algorithm
ESPEA Electrostatic Potential Energy Evolutionary Algorithm
ZDT Zitzler–Deb–Thiele problems
DTLZ Deb– Thiele–Laumanns–Zitzler problems
WFG Walking-Fish-Group problems
MAF Many objective-optimization families
CDTLZ Constrained Deb– Thiele–Laumanns–Zitzler problems
I+ε Epsilon index
ISP Spread index
IHV Hypervolume index
MIT Massachusetts Institute of Technology
IQR Interquartile range
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