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Abstract: This study proposes a hybrid computational intelligence model that is a combination of
alternating decision tree (ADTree) classifier and AdaBoost (AB) ensemble, namely “AB-ADTree”,
for groundwater spring potential mapping (GSPM) at the Chilgazi watershed in the Kurdistan province,
Iran. Although ADTree and its ensembles have been widely used for environmental and ecological
modeling, they have rarely been applied to GSPM. To that end, a groundwater spring inventory map
and thirteen conditioning factors tested by the chi-square attribute evaluation (CSAE) technique were
used to generate training and testing datasets for constructing and validating the proposed model.
The performance of the proposed model was evaluated using statistical-index-based measures,
such as positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity
accuracy, root mean square error (RMSE), and the area under the receiver operating characteristic
(ROC) curve (AUROC). The proposed hybrid model was also compared with five state-of-the-art
benchmark soft computing models, including single ADTree, support vector machine (SVM), stochastic
gradient descent (SGD), logistic model tree (LMT), logistic regression (LR), and random forest (RF).
Results indicate that the proposed hybrid model significantly improved the predictive capability
of the ADTree-based classifier (AUROC = 0.789). In addition, it was found that the hybrid model,
AB-ADTree, (AUROC = 0.815), had the highest goodness-of-fit and prediction accuracy, followed by
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the LMT (AUROC = 0.803), RF (AUC = 0.803), SGD, and SVM (AUROC = 0.790) models. Indeed, this
model is a powerful and robust technique for mapping of groundwater spring potential in the study
area. Therefore, the proposed model is a promising tool to help planners, decision makers, managers,
and governments in the management and planning of groundwater resources.

Keywords: groundwater modeling; ensemble model; over-fitting; performance; Chilgazi watershed; Iran

1. Introduction

Groundwater serves as the source of water supply needed for different sectors, including
agriculture, industry, animal husbandry, and communities in many countries around the world [1,2].
Groundwater is often the result of infiltration of rainwater, snowmelt water into soil and underlying
rocks, and thereupon fills the pore space of soil and rocks [3,4]. Recently, based on the Bundesanstalt
fur Geowissenschaften und Rohstoffe [5] report, the consumption of groundwater has increased over
the last few years, such that it amounts to 1000 km?, while the recharge of groundwater globally has
reached 12,700 km3/year [5]. Furthermore, the level of pollution and wider distribution of groundwater
is low, which, in turn, has attracted more human population throughout the world [6].

In Iran, most of the people living in rural and urban areas (70%) are dependent on groundwater
as a safe water resource [7]. In recent years, due to climate change and intensive withdrawal of
available groundwater resources, many regions of Iran have become dry and semi-dry, which has
caused a serious lack of water throughout the country [1,2,8-12]. Since groundwater consumption
in Iran has been increasing dramatically, development of proper methods to assess the aquifer
productivity and groundwater potential areas are badly needed. These methods are essential for
future systematic development, profitable management, and arresting the decline of groundwater
resources [13]. Due to the requirement of fresh groundwater increases, plans for groundwater spring
potential zones become an important task to successfully determine, manage, and protect groundwater
programs. Therefore, groundwater spring potential mapping (GSPM) is important for protecting water
quality and managing the use of groundwater [14]. Hence, GSPM is useful for proper groundwater
protection and management [15].

In recent decades, remote sensing (RS) integrated with geographical information system (GIS)
has been popularly applied for GSPM [16-29]. Many statistical models have been applied to GSPM,
such as analytical hierarchy process (AHP) [12,30-33], frequency ratio (FR) [13,15], multi-criteria
decision analysis (MCDA) [34-36], weight of evidence (WofE) [37-39], and evidential belief function
(EBF) [40-43].

In recent years, machine learning algorithms (MLAs) have been proposed and suggested to
solve many real world problems, including groundwater spring potential mapping, which are logistic
regression (LR) [22,37,44], random forest [12,14,42], Naive Bayes [45], and decision tree (DT) [46—48].
However, they are also widely used in some fields of hydrology worldwide, including (i) surface
water hydrology, such as rainfall and runoff forecasting [49,50], stream flow and sediment yield
forecasting [51,52], evaporation and evapotranspiration forecasting [53-55], lake and reservoir water
level prediction [56,57], flood susceptibility mapping and forecasting [58-62], and snow avalanche
forecasting [63]; (ii) groundwater hydrology, such as groundwater level prediction [64], soil moisture
estimation [65], and groundwater quality assessment [66].

More recently, machine learning ensemble models have been shown to be better than conventional
methods in many fields, especially in natural hazards such as floods [58,59,62,67-71], wildfires [72],
sinkholes [73], droughts [74], earthquakes [75,76], gully erosion [77,78], land/ground subsidence [79],
and landslides [80-108]. However, exploration of these methods for GSPM has always been considered
a big challenge. On the other hand, due to the flexibility and high prediction power of machine learning
ensemble models, they are more applied in water studies, such as GSPM. Literature review shows



Water 2019, 11, 2013 3 of 30

that some methods have been used to identify areas with high potential of groundwater. In other
words, modeling has not only continued, but it has progressed more rapidly in recent years in many
fields. This illustrates that the subject of groundwater is of great importance and is being pursued to
achieve high-precision maps to avoid costly traditional groundwater exploration methods and also
to use groundwater aquifers in critical times, especially in drought periods. Achieving groundwater
potential maps with high prediction accuracy by hybrid techniques seems to be a necessity these days.
Therefore, the main objective of this study was to use a hybrid machine learning model for mapping
areas with high potential of groundwater at Chilgazi watershed, northwest of Iran. In this study,
the ADTree algorithm as a single/base algorithm and AdaBoost (AB) as a Mate classifier algorithm
were selected for modeling groundwater. The AB algorithm is a powerful ensemble that combines
sub-training datasets. Then, an ADTree was performed on each dataset, and finally, all these datasets
were summed and output was achieved. This process enhanced the prediction power of ADTree and
results were found more reasonable. The ensembles of ADTree algorithm are still rare in groundwater
potential mapping.

Therefore, this study can be considered as a pioneering work in this area. The generated maps
can be useful for decision makers, planners, managers, and government agencies for the sustainable
management of ground water resources. The main objectives of this study were (i) applying an ensemble
machine learning model, AB-ADTree, for groundwater spring potential mapping; (ii) selecting the most
important conditioning factors for groundwater productivity; and (iii) comparing the performance
of the applied model and also suggesting a promising model for groundwater exploitation instead
of traditional methods, such as drilling, hydro-geological, geological, and geophysical. Additionally,
we compared and validated the results obtained from the proposed model with six state-of-the-art
soft computing benchmark models, including logistic regression (LR), logistic model tree (LMT),
stochastic gradient descent (SGD), support vector machine (SVM), alternating decision tree (ADTree),
and random forest (RF). Modeling process and susceptibility maps were done in Weka 3.6.9 and ArcGIS
10.3, respectively.

2. Research Area and Groundwater Spring Geodatabase

Description of Research Area

The Chilgazi watershed, which is located north of Sanandaj city, Kurdistan province, Iran,
lies between 46°45’ to 46°57" E longitudes and 35°25" to 35°28" N latitudes. This area covers an area of
around 272 km?. The elevation of the study area ranges from 1550 to 2859 m (Figure 1). The Ghishlagh
Dam is located at the outlet of the Chilgazi watershed. The average annual temperature is 14.2 °C; the
average daily minimum temperature in winter is 6.5 °C, and the average daily maximum temperature
in summer is about 37 °C. The average annual precipitation is 464.2 mm, such that it mainly occurs
in December to April (more than 75%). The climate of the study area based on De-Marttone climatic
system is classified as semi-arid [109]. Most of the area is covered by agricultural lands (23,465 ha) and
rangelands (3768 ha). In addition, barren lands, pastures, residential areas, and gardens are other types
of land use in the study area. The study area is geologically part of elevated Zagros (Northern Zagros)
where joints, gaps, and faults have been created. Also, soil of the study area is mainly semi-deep
with predominant sandy-loamy texture. Most of the study area has been covered by the Quaternary
deposits, including andesite-basalt (Ky.), Sanandaj shale (Kg), and limestone (KL). In addition, surface
water and groundwater are the two sources of water supply, where surface water is often used for
irrigation purposes and groundwater is commonly utilized for agricultural production as well as
domestic purposes.
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Figure 1. Location of the research area and groundwater springs.

3. Data Acquisition

3.1. Data Collection and Interpretation

The locations of springs were determined in three steps: (1) The initial locations of springs
were acquired from the Iran Water Resources Management Company (IWRMC), recorded between
2008 and 2010; (2) these locations were overlaid on the topographic map with a scale of 1:25,000 in
order to control the initial location; and (3) some springs were randomly checked by field surveying
for the final confirmation of their locations. Table 1 illustrates some statistical measures of springs.
Basically, the discharge (lit/s) of all springs ranged between 0.2 and 10. Additionally, the average water
temperature of springs (T), electrical conductivity (EC), and potential of hydrogen (pH) were 14.812 °C,
364.688, and 7.525, respectively.

In this study, the target (dependent) variable is spring locations over the study area as binary
coding (spring (1) and non-spring (0) locations); however, independent variables (conditioning factors)
were selected, based on the literature and data availability. Accordingly, a total of 633 springs were
recorded and detected, of which 70% (444) of spring locations were randomly utilized for training
and the other (30% or 190) were considered for validation of models using SPSS software. In the
modeling process, using machine learning the independent variables should be binary, such as spring
and non-spring occurrences. The locations of springs in the study area were easily recorded by global
position system (GPS); however, the non-spring locations were recorded randomly over the study area
using the “create random point” tool in Arc GIS 10.2. It is assumed that these locations are free from
springs and that they do not have enough potential for spring occurrence. Some researchers have
used these techniques for modeling groundwater productivity [29,110,111]. Therefore, to construct the
datasets, similar to the training sample size, 633 locations were randomly selected and also partitioned
into 70% (training) and 30% (validation) for modeling and evaluation, respectively. All spring locations
and conditioning factors were converted to pixel sizes of 20 X 20 m to construct the final dataset.
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Table 1. Statistical measure of springs in the study area.

Minimum Maximum Mean SD Variance
Q (lit/s) 0.2 10 0.5631 0.278 0.278
T(°C) 0.3 27 14.812 4.636 21.494
EC (umho/cm) 0.0 627 364.688 126.576 160.216
pH 0.1 8.8 7.525 2.097 4.398

3.2. Groundwater Spring Conditioning Factors

Selecting the most relevant conditioning factors (geo-database), related to the occurrence of a
spring, is a critical issue for GSPM. Hence, based on the literature review, 17 groundwater spring
influencing factors were detected and classified into four groups: Topography (slope angle, curvature,
slope aspect, plan curvature, elevation, profile curvature, and sediment transport index), hydrology
(rainfall, sediment transport power (SPI), distance to river, topographic wetness index (TWI), and river
density), geology (lithology, fault density, distance to fault, and permeability), and land cover (land use)
factors (Table 2). To generate the thematic (slope angle, slope aspect, elevation, curvature, profile
curvature, plan curvature, sediment transport index (STI), SPI, TWI, distance to rivers, and river
density) maps, a digital elevation model (DEM) of the study area with 20 m spatial resolution was
constructed from the topographic map (1:25,000 scale). Hence, for all the conditioning factors, a pixel
size of 20 x 20 m was selected.

3.2.1. Topographic Factors

Slope angle was considered as a terrain feature to recognize groundwater conditions [112,113].
It affects the recharge through infiltration so that the more the slope angle is, the greater the infiltration
and the recharge are [114]. Slope angle of the study area ranged from 10 to >40 degrees which was
then classified into five classes, such as (1) 0-10; (2) 10-20; (3) 20-30; (4) 30—40; and (5) >40 (Table 2).

Slope aspect is a well-known conditioning factor of GSPM [12,13,22]. Slope aspect can affect
hydrologic response, such as solar radiation, soil-water retention, soil porosity, hydraulic conductivity,
snow ablation, evapotranspiration, water cycling, and vegetation communities [115-119]. Generally,
in the northern hemisphere, north-facing slopes are colder and wetter than south-facing slopes, which
are warmer and drier [120]. Therefore, the north-facing slopes have more potential for spring occurrence
that indicates that groundwater is higher than at the other places. The slope aspect map of this area
was derived from DEM with nine classes (Table 2), including Flat, North, Northeast, East, Southeast,
South, Southeast, West, and Northwest.

Elevation is known as the height above the earth surface; it is related with climate and environment,
thus affecting groundwater springs [121]. It can affect the weather and climate change, and can influence
soil properties and vegetation communities [39]. Basically, the higher the elevation is, the more the
potential of springs because of more rainfall in comparison to lower elevations. The elevation map of
this study was extracted from DEM and classified into five classes, including (1) <1800; (2) 1800-1900;
(3) 1900-2000; (4) 2000-2200; and (5) >2200 (Table 2).

Curvature generally has a negative relationship with groundwater recharge [13]. Thus, it is
considered as a conditioning factor affecting groundwater spring [13]. The curvature map of the study
area was generated in five categories: (1) ((—13.5)-(-2.24)); (2) ((—2.24)—(—0.661)); (3) ((—=0.661)—(—0.394));
(4) >((=0.394)—~(-1.66)); and (5) ((—=1.66)—(—13.3)) (Table 2).

Plan curvature and profile curvature are the curvatures of a contour line formed by intersecting
the surface with a horizontal plan and a vertical plan, respectively; thus, they affect groundwater
springs [83]. Plan curvature describes the divergence and convergence of flow and it can affect the
concentration of flow on the ground [122]. However, profile curvature can affect the pore water
pressure, saturated and recharge resulting in the development of groundwater. The plan curvature
map of study area was extracted from DEM and classified into five levels, such as (1) ((=7.78)-(-1.3));
(2) ((-1.3)—-(-0.381)); (3) ((—0.381)-0.339); (4) >(0.339-1.45); and (5) (1.45-8.91) (Table 2). The profile
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curvature was also extracted from DEM and classified into five classes, including (1) ((—7.13)-(—1.46));
(2) ((~1.46)—(-0.450)); (3) ((—0.450)-0.141); (4) >(0.141-0.791); and (5) (0.791-7.89) (Table 2).

STI/low susceptibility (LS), as an important conditioning factor in the study of groundwater
spring, shows the erosion power of overland streams due to two structural elements, including carrier
content of alluvium flow and basin evolvement [123,124]. The STI is computed from the following
equation:

Ay 06 sinp 13 )
22.13) (0.0896) @

STI = (

where A is the specific basin area (m?/m), and 3 the slope gradient [78]. In this study, the STI values of
study area were divided into five classes, involving (1) 0-3.83; (2) 3.83-8.66; (3) 8.66-13.3; (4) 13.3-18.8;
and (5) 18.8-42.5 (Table 2).

3.2.2. Hydrological Factors

Rainfall is a hydrologic process for recharging aquifers [125,126]. Groundwater potentiality
increases as rainfall increases [114]. In this study, the mean annual rainfall data of ten meteorological
stations were acquired from the L.R. of Iran Meteorological Organization (IRIMO). Rainfall in the study
area ranged between 300 and >480 mm, which was then classified into seven classes, including (1)
300-340; (2) 340-360; (3) 360-380; (4) 380—400; (5) 400-440; (6) 440-480; and (7) >480 (Table 2).

SPI has been considered as one of the conditioning factors which contributes to groundwater
springs [41,42]. Generally, the higher the SPI is, the higher the potential for spring occurrence because
of having a higher water table. It was extracted DEM, where SPI values can be computed by the
following equation [127]:

SPI = Agtan f3 )

where A; is defined as the specific basin area, and {3 is defined as the local slope gradient in degree.

The SPI values ranged from 500 to 116,000 which were divided into five categories: (1) 0-500;
(2) 500-1000; (3) 1000-1500; (4) 1500-2000; and (5) 2000-116,000 (Table 2).

TWI is an important conditioning factor for GSPM [13,128], as permeability and pore water
pressure of materials are affected by water infiltration and soil strength [42]. It has been extensively
used to describe the effect of topography on the size and location of saturated source areas which
are prone to runoff generation. Basically, areas with higher TWI indicate also the higher potential for
spring occurrence. The following equation was used for the TWI computation [129]:

TWI = Ln(t ais B) 3)

where A is defined as the specific basin area, and tanf} is defined as the angle of slope at that point.
The TWI values for the study area were classified into five classes: (1) 0.649-3.31; (2) 3.31-4.16;
(3) 4.16-6.42; (4) 6.42-8.88; (5) 8.88-10.9 (Table 2).

Distance to rivers affects the moisture content of soil and rock on the slope, thus affecting
groundwater springs [28]. This factor can affect the recharge process so that the shorter the distance
from river, the higher the potential to infiltration in comparison to farther distance from the river
networks [130]. According to the DEM of the study area, the multi-buffer values of rivers were
generated with five classes: (1) 0-100; (2) 100-200; (3) 200-300; (4) 300-400; and (5) >400 (Table 2).

River density is considered as an important conditioning factor for GSPM [114], as when the
drainage density is lower, the infiltration and recharge are greater [125,131]. The higher the drainage
density is, the lower the infiltration and the higher the surface runoff are, which indicates that this factor
has a reverse relationship with groundwater [131]. The river density of the study area varied from 0 to
0.00633 (km/km?) which was then divided into five categories: (1) 0~0.000744; (2) 0.000744-0.00169;
(3) 0.00169-0. 00248; (4) 0. 00248-0.00337; and (5) 0.00337-0.00633 (Table 2).
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3.2.3. Geological Factors

Lithology is related to both soil porosity and water permeability of aquifers [114,132]. In general,
karst and fissured rock aquifers have lower capacity and specific storage of groundwater springs
than sedimentary aquifers [114]. The lithology map of the area was constructed from the geological
map at 1:100,000 scale collected from the Geological Survey & Mineral Exploitation of Iran (GSMEI).
In this study, lithology was reclassified into ten classes, including (1) alluvial fan and terraces (Qt1 and
Qt2); (2) alluvial deposits (Qal); (3) limestone (Kul, Kpf, and Kf1); (4) sandstone (Kvsl); (5) shale (Kss);
(6) turbidite sequence (Ktsc); (7) conglomerate with intermediate of Sandston (Klt); (8) un-granulated
conglomerate with shale and sandstone (Kco); (9) lava and tuff (Kvc and Kv); and (10) coarse-grained
gabbro (gb) (Table 2).

Distance to fault is another vital factor for studying groundwater springs. This factor can affect
infiltration so that the shorter the distance from the fault, the higher the potential to infiltration in
comparison to farther distance from the river networks. Different types of faults can control the
movement of groundwater springs on the geological structure of an area [15]. Faults of the study area
were extracted from the geological map at 1:100,000 scale and distance to faults map was constructed
with five categories, such as (1) 0-100; (2) 100-200; (3) 200-300; (4) 300-400; and (5) >400 (Table 2).

Fault density is described as the relationship between the sum of fault lengths in the pixel and
the area of the corresponding pixel [121]. The areas with more faults, if they receive enough moisture
and water, are also more likely to develop springs and develop aquifers than the areas with less faults.
Therefore, these areas easily recharge the groundwater aquifers. The fault density of the study area
was calculated from the geological map at 1:100,000 scale and was then divided into five classes:
(1) 0-0.000418; (2) 0.000418-0.00114; (3) 0.00114-0.00185; (4) 0.00185-0.00267; and (5) 0.00267-0.00508
km/km? (Table 2).

Permeability is one of the geological factors that affects the groundwater spring occurrence using
discontinuity structures, such as joints, cracks, and faults. This factor was evaluated using expert
knowledge and field surveys based on the lithological units. Eventually, the permeability map was
classified into four categories, including very low, low, moderate, and high (Table 2).

3.2.4. Land Cover Factors

Land use affects infiltration and runoff, thus affecting GSPM [131]. Moreover, the development of
groundwater spring resources is due to land use [133]. In this study, land use was generated from
ETM™ satellite images in 2013 with different classes: (1) Woodland; (2) residential area; (3) barren land;
(4) outcrop land; (5) range land; (6) dry farming land; and (7) farming land (Table 2).
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Table 2. Groundwater spring conditioning factors and their classifications for modeling groundwater spring potential mapping (GSPM) at Chilgazi watershed.
Abbreviations: SPI, sediment transport power; TWI, topographic wetness index; LS, low susceptibility; STI, sediment transport index.

Main Factors No. Conditioning Factors Classes
1 Slope (°) (1) 0-10; (2) 10-20; (3) 20-30; (4) 30-40; and (5) >40
2 Aspect (1) Flat; (2) North; (3) Northeast; (4) East; (5) Southeast; (6) South; (7) Southwest; (8) West; and (9) Northwest
3 Elevation (m) (1) <1800; (2) 1800-1900; (3) 1900-2000; (4) 2000-2200; and (5) >2200

Topographic 4 Curvature (1) ((-13.5)—(=2.24)); (2) ((—=2.24)—(-0.661)); (3) ((—0.661)—(—0.394)); (4) >((—0.394)-(-1.66)); and (5) ((=1.66)—(—13.3))
5 Plan curvature (1) ((=7.78)-(-1.3)); (2) ((-1.3)—(—0.381)); (3) ((—0.381)-0.339); (4) >(0.339-1.45)); and (5) (1.45-8.91))
6 Profile curvature (1) ((-7.13)-(-1.46)); (2) ((—1.46)—(—0.450)); (3) ((—0.450)-0.141); (4) >(0.141-0.791)); and (5) (0.791-7.89))
7 SPI (1) 0-500; (2) 500-1000; (3) 1000-1500; (4) 1500-2000; and (5) 2000-116000
8 TWI (1) 0.649-3.31; (2) 3.314.16; (3) 4.16-6.42; (4) 6.42-8.88; and (5) 8.88-10.9
9 STI/LS (1) 0-3.83; (2) 3.83-8.66; (3) 8.66-13.3; (4) 13.3-18.8; and (5) 18.8—42.5

Hydrological 10 Rainfall (mm/y) (1) 300-340; (2) 340-360; (3) 360-380; (4) 380—400; (5) 400-440; (6) 440-480; and (7) >480
11  Distance to rivers (m) (1) 0-100; (2) 100-200; (3) 200-300; (4) 300-400; and (5) >400
12 River density (km/km?) (1) 0-0.000744; (2) 0.000744-0.00169; (3) 0.00169-0. 00248; (4) 0. 00248-0.00337; and (5) 0.00337-0.00633

(1) Alluvial fan and terraces (Qt1 and Qt2); (2) alluvial deposits (Qal); (3) limestone (Kul, Kpf and Kf1); (4)
13 Lithology sandstone (Kvsl); (5) shale (Kss); (6) turbidite sequence (Ktsc); (7) conglomerate with intermediate of Sandston (Klt);
(8) un-granulated conglomerate with shale and sandstone (Kco); (9) lava and tuff (Kvc and Kv); and (10)
Geological coarse-grained gabbro (gb)
14  Distance to faults (m) (1) 0-100; (2) 100-200; (3) 200-300; (4) 300-400; and (5) >400
15  Fault density(km/km?) (1) 0-0.000418; (2) 0.000418-0.00114; (3) 0.00114-0. 00185; (4) 0. 00185-0.00267; and (5) 0.00267-0.00508
16 Permeability (1) Very low; (2) low; (3) moderate; and (4) high
Land cover 17 Land use (1) Woodland; (2) residential area; (3) barren land; (4) outcrop land; (5) range land; (6) dry farming land; and (7)

farming land
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4. Theoretical Background of Machine Learning Algorithms

4.1. Logistic Regression (LR)

The LR model has become a widely used and accepted model to analyze the binary outcome
variables [134,135], describing both independent and dependent variables. In LR, the relationship
between independent and dependent variables is nonlinear [136]. Thus, it was used to describe the
relationship between spring occurrence and spring-affected factors, and can be expressed as follows:

B 1
T 14em

p 4)
where p is defined as the probability of a spring occurrence, and m infers the linear combination of a
set of spring-affected factors.

4.2. Logistic Model Tree (LMT)

LMT is a comprehensive approach, which combines a decision tree and linear logistic regression
technique and takes advantages of them [137]. It has a high speed of learning process as a stage wise
fitting process is applied to the structure of LMT [138].

Compared with a traditional decision tree, LMT employs the logistic regression functions to value
the probability of each class, and applies the LogitBoost algorithm to build the logistic regression
functions at the nodes of a tree. It uses the well-known CART algorithm [139] for pruning. A posterior
probability for each class is determined as follows:

P(class = c|x) = Ce— ®)

where Hc(x) is transformed such that )¢, He(x) = 0, and c is the number of classes.

4.3. Stochastic Gradient Descent (SGD)

It is necessary to introduce a simple supervised learning set-up before introducing a stochastic
gradient descent approach. An arbitrary input x and a scalar output y make up an example z(x, y).
In this study, x is the spring-affected factor, and vy is the spring and non-spring. There is a function
h(y,y) which measures the cost of predicting y when the actual answer is y, and a function fg(x)
parameterized by a weight vector 60 is chosen. Then we seek the function f which can minimize the
loss D(z,0) = h(fo(x),y) averaged on the examples:

R(f) = f h(fo(x), y)dP(z) ©)

Ru(f) = = Y h(f(x0), ) )
=1

where R(f) measures the generalization performance, and R, (f) measures the training dataset
performance. The SGD algorithm is a drastic simplification without the gradient of R, (fp) [140].
This model can directly optimize the expected risk, since the examples are randomly withdrawn from
the ground truth distribution.

4.4. Support Vector Machine (SVM)

SVMs are a set of optimal separating hyper plane-based machine learning techniques [141,142].
The goal of the SVM model is to minimize both model complexity and error test. In this case, our aim



Water 2019, 11, 2013 10 of 30

is to discriminate between spring and non-spring. SVMs have separate examples in different classes
using the following function:

N
h(x) = {w,x) +¢ =) (wi) +c=0 ®)
i=1

1

where x represents the independent spring-affected factors, w represents the vector of weight, and c is
a constant.

4.5. Alternating Decision Tree (ADTree)

ADTree is a generalization of decision trees, combining the boosting algorithm and decision
tree [143,144]. ADTree graphical rule sets form leaves of the tree. Each branch of the tree ends in
an outcome and goes for another rule until it reaches the root [145]. The path continues with all of
the node children when reaching a prediction node. Once a set of instances reaches the leaf node,
a classification is established over them. For numerical prediction purposes, the leaf nodes would be
the numeric outcomes for which the values are computed, based on a weight as a contribution of that
node to the final outcome. The final prediction probability is formed from the summation of all the
weights contributing to the root of the tree [144].

4.6. Random Forest (RF)

Random forest (RF), which was first developed by Breiman [146], is a non-parametric model and
an extension of the classification and regression trees (CART) algorithm. It produces many classification
trees to enhance the prediction performance of the model. In the RF model, the splitting process of the
tree at each node is done using a randomized subset of the variables. The output of the RF model is
obtained by the averaging of the results of all trees [147]. The RF model is constituted by numerous
trees, that each tree is produced by bootstrap samples using the out-of-bag (OOB) error. The OOB is an
unbiased estimate of the generalization error that has been explained and interpreted by Breiman [146].
This technique (bootstrap by OOB error) has advantages, including: (1) Prevention of over-fitting
during modeling by training dataset; (2) decreasing the bias and variance of the training dataset
because of a large number of trees; (3) decreasing the correlation among the individual trees when the
diversity of forest arises by using limit variables; (4) robust error estimates using the OOB data; and
(5) achieving a higher prediction performance (Wiesmeier et al. [148]). Breiman [146] and Liaw and
Wiener [149] have explained the mathematical equations of the RF in detail. In this study, the RF was
used to analyze the relationship between groundwater spring locations as binary dependent variables
(groundwater spring locations (1) and groundwater on-spring locations (0)), and independent variables
such as slope angle, curvature, slope aspect, plan curvature, elevation, profile curvature, and sediment
transport index, rainfall, sediment transport power (SPI), distance to river, topographic wetness index
(TWI), and river density, lithology, fault density, distance to fault, permeability, and land use. The RF
was used to obtain a probability value for each pixel of the study area to prepare groundwater spring
potential mapping.

4.7. AB Learning Ensemble Techniques

As a kind of ensemble algorithm, AB constructs a composite classifier by sequentially training
classifiers. The algorithm was first proposed by Freund and Schapire to improve the performance of
weak classifiers [150].

This algorithm assigns a weight to each factor in the training dataset C. At the same time,
each sample in the training dataset C is assigned an equal weight (1/#); therefore, in the first process,
all of the samples have the same opportunity to be selected. It takes T rounds of training-based learners
with T different training sample groups G¢(t = 1,2,...T) to generate the AB model, and this process
continues until reaching a terminated condition [151].
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“AB-ADTree” Model

In this study, we combined a decision tree classifier, Alternating Decision Tree (ADTree),
with a Meta/ensemble classifier, AB—named “AB-ADTree”—in order to spatially predict springs.
The framework of the proposed ensemble model is shown in Figure 2. Basically, the GSPM using the
proposed model was performed in five steps: (1) Data collection and interpretation; (2) selecting the most
conditioning factors using the chi-square technique in modeling; (3) training the AB-ADTree ensemble
model; (4) validating and comparing spring models; and (5) preparing groundwater potential maps.
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Figure 2. The flowchart of the methodology for groundwater spring potential mapping. Abbreviations:
ROC, receiver operating characteristic.

4.8. Accuracy Assessment (Validation) and Comparison of Methods

The most important issue in introducing a novel model, and also comparing some methods with
each other, is to assess the performance (classifier performance or model validation). Validation as an
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essential process in any natural hazard phenomenon which reflects the predictive power of a model is
related to the comparison of model performance with a real-word dataset [152].

4.8.1. Statistical Measures

Generally, there are statistical criteria for validating machine learning models [153]; however, in this
study, six statistical index-based measures, including sensitivity (recall), root mean square error (RMSE)
specificity, negative predictive value (NPV), accuracy, positive predictive value (PPV), and the area
under the receiver operating characteristic (ROC) curve (AUROC), were used to evaluate the predictive
capability of the proposed model with other benchmark models. Most of the above-mentioned criteria
were computed based on the contingency table (confusion matrix), which is shown in Table 3 where
TP is the number of pixels that are correctly classified as positive (springs) predictions, while the
number of pixels that are correctly classified as negative (non-springs) predictions was TN. FP and
FN are the pixels that were incorrectly classified as positive (springs) and negative (non-springs)
predictions, respectively.

Table 3. Confusion matrix. Abbreviations: TP, number of pixels correctly classified as positive (springs)
predictions; TN, number of pixels correctly classified as negative (non-springs) predictions; FP, number
of pixels incorrectly classified as positive (springs) predictions; FN, number of pixels incorrectly
classified as negative (non-springs) predictions.

Predicted

X| (Spring) X, (Non-Spring) ~ Sum
X] (spring) TP FN P
X{, (non-spring) FP TN N

Observed

More specifically, sensitivity (recall) is the number of correctly classified springs per total predicted
springs, while specificity is defined as the number of incorrectly classified springs per total predicted
non-springs. Accuracy (efficiency) is the proportion of spring and non-spring pixels which are correctly
classified [123,126,154]. PPV and NPV are the probabilities of pixels that were correctly classified
as springs and non-springs, respectively. RMSE indicates the error metric between the estimated
and observed values [154]. A smaller RMSE indicates a better performance of the models [155].
The statistical index-based measures were calculated using following equations:

Sensitivity = TPTi——PFN )
Specificity = % (10)
Accuracy =5 E:Ii?liu FN ()
TP
PPV = TP+ EP (12)
TN
NPV = o (13)

1 n
RMSE = \/;Zi—l (Xpredicted - Xactual)2 (14)

where n is defined as the total sample in a dataset; Xpredicted is the predicted value in the dataset;
and X,ctua is the actual (output) value.
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4.8.2. Receiver Operating Characteristics Curve (ROC)

The receiver operating characteristic curve was first suggested by Spackman [156] to evaluate
the performance of empirical learning systems [105]. It is another statistical tool which is a popular
and highly useful graphical representation of evaluation of the model performance [157]. Graphically,
it is plotted on two axes (two-dimensional), including x-axis labeled with true positive rate or
sensitivity (TP = TP/(TP + FN) = TP/N)and y-axis labeled with false positive rate or 100-specificty
(FP =FP/(FP 4+ TN) =FP/N) [158]. In the machine learning techniques, ROC is a flexible and
robust framework for evaluating the performance of classifier [159,160]. The ROC is quantitatively
defined using the area under the curve (AUC), which is widely used as a popular measure in the
classification of performance [153]. It is more applicable over other performance metrics when no
threshold is fixed and applied to the scores, and is invariant to changes in cost and class distribution [161].
In the optimal classifier (perfect model), the AUC has a value of 1, while for a random classifier
(inaccurate model) a value of 0.5 is obtained [162].

4.8.3. Statistical Assessment

In order to check the statistical difference between the two groundwater spring potential models,
Friedman and Wilcoxon rank tests were used in this study, where Friedman test indicates that there
is no significant difference between the two models and Wilcoxon rank test indicates that statistical
difference is observed between the two models. Friedman test, as a non-parametric test, is based on
the null hypothesis that the performances of groundwater spring models is different at the significance
level of @ = 0.05. The p-value was used to evaluate this hypothesis, as if a hypothesis is likely true,
then the null hypothesis is rejected, which indicates a significant difference between the two models
and vice versa [58]. However, the Friedman test cannot perform pairwise comparisons between the
models. Therefore, the Wilcoxon sign-rank was used to evaluate the systematic pairwise differences
between the models. In general, the null hypothesis is rejected if the p-value is <0.05 and the z-value is
>(—1.96 and +1.96) [58].

4.9. Selection of Training Factors Using Chi-Square Technique

The chi-square statistical test was employed to select training factors among attributes (conditioning
factors). It is a traditional statistic to measure the relationship between two variables (factors) in the
contingency table. The chi-square test compared the observed and expected frequencies of variables,
so that the greater the chi-square for a variable, the higher the relationship. The results of this test were
obtained using the following basic functions:

XZ_ZZ(X“E—:“) (15)

(xi))
N
where Ej; is the expected value for each cell in the contingency table. We used the chi-square statistical
test to specify the independence between spring and no-spring locations with other conditioning factors.
If x? equaled 0, it was assumed that there was no association between them and the conditioning factor

would be eliminated from the model training.

By = (16)

5. Results and Analysis

5.1. Groundwater Spring Conditioning Factor Analysis

Both models and input data affect the quality of GSPM results [15]. The influence of conditioning
factors on groundwater spring occurrence is different, such that some of them may reduce the model
accuracy. The main step in the spatial GSPM is the selection of suitable factors and the elimination of
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irrelevant conditioning factors to find the most reliable database. In this study, the chi-square attribute
evaluation (CSAE) technique, which is one of the most efficient and popular methods [163], with 10-fold
cross validation for the training dataset was used to assess the prediction capability of conditioning
factors. Results of the chi-square test (Figure 3) show that the most important conditioning factors for
groundwater spring potential were TWI (AM = 98.598), followed by distance from river (AM = 97.73),
SPI (AM = 83.736), slope angle (AM = 77.624), plan curvature (AM = 67.59), STI (AM = 55.488), Land use
(AM = 48.146), geology (AM = 44.805), curvature (AM = 31.404), stream density (AM = 31.830), rainfall
(AM = 30.530), elevation (AM = 30.304), and permeability (AM = 17.481).
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Figure 3. Most effective conditioning factors for groundwater spring potential mapping.
5.2. Model Training and Assessment

The results of seven models, namely AB-ADTree, ADTree, SGD, LMT, SVM, and LR, constructed
for groundwater spring potential prediction using the selected conditioning factors and training dataset
are shown in Table 4. The training dataset was used to train the models. In the training dataset,
the hybrid model (AB-ADTree) had the highest performance based on PPV, NPV, sensitivity, specificity,
accuracy, kappa, AUC, and RMSE criteria. This shows that the hybrid model outperformed other
individual models. AB-ADTree had the highest PPV (0.815), followed by ADTree (0.751), RF (0.749),
LMT (0.746), LR (0.746), SVM (0.745), and SGD (0.724), indicating that these models in 81.5%, 75.1%,
74.6%, 74.6%, 74.5%, and 72.4% of the cases correctly classified pixels in the groundwater spring
occurrence class.

Regarding NPV, AB-ADTree had the highest performance (0.785), demonstrating that 78.5% of
pixels were correctly classified as the non-groundwater potential occurrence class, followed by RF
(0.748), SGD (0.745), SVM (0.739), LR (0.738), LMT (0.736), and ADTree (0.718). AB-ADTree obtained
the highest sensitivity (0.775), showing that 77.5% of the groundwater spring occurrence pixels were
correctly classified as the groundwater spring occurrence class, followed by RF (0.748), SGD (0.757),
SVM (0.736), LR (0.734), LMT (0.730), and ADTree (0.698). The highest specificity (0.824) of the
AB-ADTree model showed that 82.4% of the non-groundwater spring occurrence pixels were correctly
classified as the non-groundwater spring occurrence class, followed by ADTree (0.768), LMT (0.755),
RF and LR (0.750), SVM (0.748), and SGD (0.712). The AB-ADTree model also acquired the highest
performance (0.800) evaluated by the accuracy criterion, followed by RF (0.749), LMT, SVM and LR
(0.742), SGD (0.734), and ADTree (0.733). Results of RMSE demonstrated that AB-ADTree had the
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lowest error (0.375), followed by LR (0.417), LMT and SVM (0.418), ADTree (0.424), and SGD (0.515).
Regarding AUC, the hybrid model of AB-ADTree had the highest AUC (0.881), followed by RF (0.818),
ADTree (0.817), LR (0.816), SVM and LMT (0.815), and SGD (0.675). The findings prove that the
designed hybrid model showed the highest performance in groundwater spring potential prediction
based on all criteria used in the training phase of modeling in this research.

Table 4. GSPM model validation using training dataset. Abbreviations: LMT, logistic model tree; LR,
logistic regression; SVM, support vector machine; RF, random forest; SGD, stochastic gradient descent;
PPV, positive predictive value; NPV, negative predictive value; RMSE, root mean square error; AUC,
area under the curve.

AB-ADTree ADTree SGD LMT LR SVM RF

True positive 344 310 336 324 326 327 332

True negative 366 341 316 335 333 332 333

False positive 78 103 128 109 111 112 111

False negative 100 134 108 120 118 117 112
PPV (%) 0.815 0.751 0.724 0.748 0.746 0.745 0.749
NPV (%) 0.785 0.718 0.745 0.736 0.738 0.739 0.748
Sensitivity (%) 0.775 0.698 0.757 0.730 0.734 0.736 0.748
Specificity (%) 0.824 0.768 0.712 0.755 0.750 0.748 0.750
Accuracy (%) 0.800 0.733 0.734 0.742 0.742 0.742 0.751
RMSE 0.375 0.424 0.515 0.418 0.417 0.418 0.401
AUC 0.881 0.817 0.675 0.815 0.816 0.815 0.818

5.3. Models Validation and Comparison

Validating or testing the dataset that was not used in the training step was employed for the
prediction capability of seven models for the identification of groundwater spring potential and
their comparison. Results of the prediction power of the models are shown in Table 5. The hybrid
model showed a higher performance than other individual models in the testing phase for most
of the evaluation methods. The AB-ADTree model had the highest probability to correctly classify
pixels of the groundwater spring potential classes (73.2%), followed by LR (73.1%), LMT (72.6%), RF
and SVM (72.4%), SGD (71.4%), and ADTree (70.8%), whereas SGD showed the highest probability
to correctly classify pixels to non-spring potential (76.5%), followed by LR (75.8%), RF and SVM
(75.7%), LMT (75.4%), AB-ADTree (75.3%), and ADTree (73.6%). The SGD model classified 78.9%
of the spring occurrence pixels correctly as spring potential classes showed the highest sensitivity,
followed by RF, SVM, and LR (77.4%), LMT (76.8%), AB-ADTree (76.3%), and ADTree (75.3%), whereas
the AB-ADTree model classified 72.1% of the non-spring occurrences pixels correctly as non-spring
potential classes which had the highest specificity, followed by LR (71.6%) and LMT (71.1%), RF and
SVM (70.5%), ADTree (68.9%), and SGD (68.4%). The highest classification accuracy belonged to
AB-ADTree (74.2%), followed by RF, LMT, and SVM (73.9%), SGD (73.7%), ADTree (72.1%), and LR
(65.4%). The ADTree model had the lowest RMSE (0.375), followed by AB-ADTree (0.419), RF (0.413),
SVM (0.425), LMT and LR (0.426), and finally SGD (0.513). The AB-ADTree model demonstrated the
highest AUC (0.829), followed by RF (0.809), SVM (0.807), LR (0.805), LMT (0.803), ADTree (0.790),
and SGD (0.675). The results reveal that the designed hybrid model of AB-ADTree performed much
better than other studied models in the validation phase of modeling in this research.
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Table 5. GSPM Model validation using validation dataset.

AB-ADTree ADTree SGD LMT LR SVM RF

True positive 145 143 150 146 147 147 147
True negative 137 131 130 135 135 134 134
False positive 53 59 60 55 55 56 56
False negative 45 47 40 44 43 43 43
PPV (%) 0.732 0.708 0.714 0.726 0.728 0.724 0.724
NPV (%) 0.753 0.736 0.765 0.754 0.758 0.757 0.757
Sensitivity (%) 0.763 0.753 0.789 0.768 0.774 0.774 0.774
Specificity (%) 0.721 0.689 0.684 0.711 0.711 0.705 0.705
Accuracy (%) 0.742 0.721 0.737 0.739 0.742 0.739 0.739
RMSE 0.419 0.375 0.513 0.426 0.425 0.426 0.413
AUC 0.829 0.790 0.675 0.803 0.807 0.805 0.809

5.4. Groundwater Spring Potential Mapping

After successful modeling in the training phase, the AB-ADTree, ADTree, SGD, LMT, SVM LR,
and RF models were used to calculate the groundwater spring potential index for all pixels. Exported in
GIS format, these indices were visualized by means of five susceptibility classes of groundwater spring
potential, including very low susceptibility (VLS), low susceptibility (LS), moderate susceptibility (MS),
high susceptibility (HS), and very high susceptibility (VHS). Different classification methods can be
used for the classification of potential indices, such that in the current research, the quantile method
was used, based on the literature review and the nature of data.

AB-ADTree, ADTree, SGD, LMT, SVM, LR, and RF were used for preparing the GSPM at
the Chilgazi watershed. Two main steps for generating groundwater spring potential indices and
reclassifying these indices were used for the preparation of maps. In the first step, a unique susceptibility
index was assigned to each pixel of the research area and in the second step, these indices were classified
into different classes using the quantile method [164], resulting in six maps by six models (Figure 4).
Results show that the west part of the Chilgazi watershed showed higher potential for spring occurrence
than other parts.
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Figure 4. The GSPM using; (a) AB-ADTree, (b) ADTree, (c) SVM, (d) SGD, (e) LMT, (f) LR, and (g) RE.
5.5. GSPM Validation and Comparison

The reliability of these spring potential maps was evaluated using success and prediction rates
(Figure 5). For this purpose, the training dataset and validation dataset were overlaid on the GSPM
and the AUC was calculated for training and validation datasets. According to Figure 5a (success rate
curve), results indicate that the hybrid model, AB-ADTree, had the highest goodness-of-fit base on the
training dataset (AUC = 0.846). This implies that, at the present condition of the study area, this model
could appropriately distinguish the areas with high groundwater spring potential. On the other hand,
most of the spring locations were located in high and very high potential areas of the map. It was
followed by the RF (AUC = 0.812), LR (AUC = 0.818), LMT equal to SGD (AUC = 0.811), and SVM
(AUC = 809) models. This means that the ability of the RF model to classify and detect the areas with
high groundwater potential is higher than that of the LR, LMT, SGD, and SVM models.

For prediction rate or model validation that was built using the validation dataset, the highest
AUC belonged to AB-ADTree (0.815), followed by LMT (0.808), RF (0.804), LR (0.803), and SGD and
SVM (0.790). Therefore, the map resulting from the novel hybrid model was ranked as the most
accurate and reliable model among others. Yesilnacar [165] classified the success of a model using a
quantitative—qualitative relationship. Basically, if a model has an AUC between 0.9 and 1, its prediction
accuracy is excellent, and for 0.8-0.9, 0.7-0.8, 0.6-0.7, and 0.5-0.6, the prediction accuracy is very good,
good, average, and poor, respectively. Regarding this classification and Figure 5b, the findings indicate
that all machine learning models had a good prediction power in groundwater potential mapping,
although the ability of the AB-ADTree, LMT, RF, and LR models for groundwater was relatively higher
than the ADTree, SGD, and SVM models in the study area.
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Figure 5. Area under the ROC curve (AUROC) of the seven models for groundwater potential mapping
(GSPM) using training (a) and validation (b) datasets.

5.6. Similarities Between Prediction Power of Models

The seven models used in this study showed very good to good prediction abilities, while it
remained to be determined whether there were statistically significant differences between them or not.
The Freidman test was used at the significance level of 5% for this purpose (Table 6). The mean ranking
of the seven models for the study area is shown in Table 6. Results reveal that because the p-value
was 0.000, i.e., less than 0.05, the null hypothesis was rejected, indicating that there were statistically
significant differences between the six models.

Table 6. Average ranking of the seven groundwater spring potential models (GSPM) using the

Friedman test.

GSPM Mean Ranks X Sig.

AB-ADTree 1.34
ADTree 2.27
SGD 5.89

LMT 3.05 3390.071 0.000
LR 3.09
SVM 4.90
RF 3.59

The Freidman test was not able to provide comparisons between the seven models. Therefore,
the Wilcoxon sign-rank test was carried out to check the statistical significance of pairwise differences
between the GSPM models. In this test, there was a pairwise comparison between the models at
the 5% significant level. The p-value and z-value were used to evaluate the statistically significant
differences between models. The results can be seen in Table 7. Because the p-value in all of the
pairwise comparisons was less than 0.05 (0.000) and the z-value exceeded the z critical values (from
—1.96 to +1.96), the null hypothesis was rejected, implying that the performances of the seven GSPM
models were significantly different from each other.
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Table 7. Performance of the seven groundwater spring potential models (GSPM) using Wilcoxon
sign-rank test (two-tailed).

Pair Wise Comparison Npd Nnd z-Value p-Value Significance
AB-ADTree vs. ADTree 525 835 —20.704 0.000 Yes
AB-ADTree vs. SGD 33 854 -25.320 0.000 Yes
AB-ADTree vs. LMT 102 785 -19.956 0.000 Yes
AB-ADTree vs. LR 63 821 -21.162 0.000 Yes
AB-ADTree vs. SVM 44 843 —24.197 0.000 Yes
AB-ADTree vs. RF 59 836 -13.569 0.010 Yes
ADTree vs. SGD 0 887 —25.800 0.000 Yes
ADTree vs. LMT 361 526 —6.042 0.000 Yes
ADTree vs. LR 309 573 -12.142 0.000 Yes
ADTree vs. SVM 17 870 —25.697 0.000 Yes
ADTree vs. RF 789 48 -23.658 0.000 Yes
SGD vs. LMT 859 29 -25.677 0.000 Yes
SGD vs. LR 887 0 —25.800 0.000 Yes
SGD vs. SVM 855 32 —25.558 0.000 Yes
SGD vs. RF 815 26 -22.348 0.020 Yes
LMT vs. LR 428 459 —2.067 0.039 Yes
LMT vs. SVM 55 833 -25.027 0.000 Yes
LMT vs. RF 659 29 -20.123 0.000 Yes
LR vs. SVM 886 0 —25.785 0.000 Yes
LR vs. RF 826 15 -18.236 0.031 Yes
SVM vs. RF 802 18 -19.680 0.000 Yes

(The standard p-value is 0.05) NPD: Number of positive differences, NND: Number of negative differences.

6. Discussion

Recognizing the areas that have enough potential for groundwater exploration based on the spring
density can be considered as one of the significant areas for water resources management, especially in
semi-arid watersheds such as Chilgazi in the case study. Therefore, machine learning and ensemble
techniques can be used as alternative and effective tools for preparing GSPM due to their ability and
flexibility. This study applied and extended a hybrid machine learning algorithm, AB-ADTree, for
this purpose, and the results were compared and validated based on statistical metrics and also some
soft computing benchmark models. The factor selection using the chi-square attribute evaluation
(CSAE) technique concluded that among 17 conditioning factors, only 13 factors were more significant
and were considered for modeling—in which TWI was the most important factor. TWI indicates
topographic wetness of the ground surface, and the higher the TWI is, the higher the probability of the
water table to be closer to the ground surface. Springs occur in regions where the water table reaches
ground surface. Naghibi and Dashtpagerdi [166] reported that according to the generalized cross
validation technique TWI, slope angle and fault density were more important factors for GSPM in their
study area. Additionally, some conditioning factors, including aspect, profile curvature, permeability,
fault density, and distance to fault, were removed from the modeling in the training phase due to
having zero chi-square values. There are two reasons for that: (i) The removed conditioning factors
were maybe not contributing to explaining the spatial distribution of springs in the study area; (ii) it is
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probable that the cartography or method used for extracting the removed conditioning factors did not
properly reflect them.

Results of modeling depict that the proposed ensemble model and benchmark machine learning
models had satisfactory performances for groundwater spring potential mapping. The area under the
ROCs illustrates that all models had an AUC from 0.790 to 0.815, indicating that although all models
had high performance and prediction accuracy, the proposed model, AB-ADTree, outperformed
and outclassed the other benchmarks models (ADTree, SGD, LR, LMT, SVM, and RF). In this line,
this model had acceptable results in the other fields of the environment, such as groundwater well
potential mapping [166], ecological modeling [167], landslide susceptibility modeling [168], and flood
susceptibility modeling [169,170]. The findings pinpoint that the AB-ADTree ensemble model had a
better fit to the training dataset during the modeling process, and then it had high prediction accuracy.
In other words, adaptive boosting, known as AdaBoost, randomly divided the training dataset into
some sub-training datasets. Then, on each dataset, the ADTree was employed and, finally, an output
was obtained based on a weighted sum of all ADTree base performed models [171]. This process
improved the goodness-of-fit and prediction accuracy of the ADTree by decreasing the over-fitting,
and also errors, in training dataset [94,172,173].

Among benchmark machine learning models, the RF model had the highest prediction accuracy
(AUC = 0.809), followed by the LMT, LR, SGD, SVM, and ADTree models. The LMT is one of the
decision tree classifiers that is a combination of linear logistic regression model and a decision tree
classifier that, in this study, had higher performance. On the other hand, the LR, SVM, and SGD
models are based on the equation function to obtain the weight for each conditioning factor to spatially
predict the groundwater potential. The results were obtained for the current study area, although the
results may be different in other regions. This conflict is reflected by the uncertainties in the modeling
process due to data and model selection. In other words, data (conditioning factors) are different from
one region to another and it makes a different result during modeling. Additionally, the result of
a model is totally different with another model in a given region with similar conditioning factors.
Hence, each model should be tested and evaluated based on its conditions, and the best model with the
highest predictive power should be selected. Meanwhile, the main goal was to reach a high-precision
groundwater potential map that will allow to identify areas with high groundwater aquifers in the
future to use in a critical condition, such as drought. Therefore, we tested the proposed model and
other models for GSPM and it was confirmed to use in other environmental regions with similar
conditions with more caution and requirements.

7. Conclusions

Springs, as groundwater resources, are important for many sectors, such as domestic consumption
and agriculture in arid and semi-arid areas of the world. Sometimes, several families or villagers
depend heavily on a spring; therefore, their spatial modeling is necessary. Different approaches can be
taken for this type of modeling. We designed a hybrid machine learning approach called AB-ADTree
to deal with this issue. Hydrological factors, including TWI, distance to river, and SPI, among others,
such as topographic, geological, and land cover factors, were first evaluated as the most affecting
conditioning factors for GSPM based on the chi-square attribute evaluation (CSAE) factor selection
technique. This indicates that these factors can be applied to explore groundwater in the study area
and similar areas in semi-arid regions.

To model GSPM, we selected the ADTree algorithm, and its ensemble was then applied based
on the AB algorithm. This resulted in designing a hybrid machine learning model, AB-ADTree,
to spatially predict groundwater spring locations in the Chilgazi watershed, Kurdistan province, Iran.
The efficiency of this approach was verified by applying several soft computing benchmark algorithms,
such as SGD, LMT, LR, SVM, and RF. The hybrid model was successfully trained and evaluated such
that it acquired the highest rank of testing criteria, including PPV, NPV, sensitivity, specificity, accuracy,
RMSE, and AUC, in both training and validation datasets. GSPM maps were generated by all of the
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applied models and evaluated by AUROC. The hybrid generated model had the highest prediction
accuracy in comparison to other models. The Friedman and Wilcoxon rank statistical tests were used
for further confirmation of the results. The findings indicate that the hybrid model, AB-ADTree,
can be considered as a promising technique for the mapping of groundwater potential that has been
overcome based on the study area conditions, and it is recommended that for other regions, it should
be further tested and evaluated. Moreover, it can be useful for decision makers, planners, managers,
and government agencies for the sustainable management of ground water resources.
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