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Abstract: Low- and high-speed streaks (ejection, Q2, and sweep, Q4, events in quadrant analysis)
are significant features of coherent structures in turbulent flow. Streak formation is closely related
to turbulent structures in several vortex models, such as attached eddy models, streamwise vortex
analysis models, and hairpin vortex models, which are all standard models. Vortex models are
complex, whereby the relationships among the different vortex models are unclear; thus, further
studies are still needed to complete our understanding of vortices. In this study, 30 sets of direct
numerical simulation (DNS) data were obtained to analyze the mechanics of the formation of coherent
structures. Image processing techniques and statistical analysis were used to identify and quantify
streak characteristics. We used a method of vortex recognition to extract spanwise vortices in the x–z
plane. Analysis of the interactions among coherent structures showed that the three standard vortex
models all gave reasonably close results. The attached eddy vortex model provides a good explanation
of the linear dimensions of streaky structures with respect to the water depth and Q2 and Q4 events,
whereby it can be augmented to form the quasi-streamwise vortex model. The legs of a hairpin vortex
envelop low-speed streaky structures and so move in the streamwise direction; lower-velocity vortex
legs also gradually accumulate into a streamwise vortex. Statistical analysis allowed us to combine
our present results with some previous research results to propose a mechanism for the formation
of streaky structures. This study provides a deeper understanding of the interrelationships among
different vortex models.

Keywords: image processing; streaky structures; hairpin vortex; attached-eddy vortex;
streamwise vortex

1. Introduction

Turbulence is generally not altogether chaotic, whereas there are many regular coherent structures
in a turbulent flow. The coherent structures include streaky structures formed by low- and high-speed
streaks, the bursting phenomenon that includes ejection and sweep events (in quadrants Q2 and Q4),
vortex structure models (streamwise vortex model, attached eddy vortex model, hairpin vortex model
and hairpin vortex groups), as well as superscale structures.

Low- and high-speed streaks are important in turbulence dynamics because of their large scale [1].
Experimental research into low- and high-speed streaks using hydrogen bubbles was first conducted by
Kline et al. [2]. The characteristic scales of streaky structures were also identified by many researchers
as the average nondimensional width W = 20–40y* and spanwise distance D = 100y* in the boundary
layer region [3–5]. Note that y* = v/u* defines the inner scale, where v is kinematic viscosity and u* is
friction velocity, which represents the shear stress velocity. Lin et al. [6] used particle image velocimetry
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(PIV) to capture the flow fields. Their results show that the spatial distribution of high-speed streaks is
similar to that of low-speed streaks.

Zhong et al. [1] identified elongated streamwise low- and high-speed streaks near the free
surface in open-channel flows by spanwise correlation analysis. The presence of large-scale streaks
across the whole flow depth has been confirmed by many researchers. Previous evidence indicates
that the distance between neighboring low-speed streaks is the water depth scale (H–2H) [7–10].
Sukhodolov et al. [11] found that streamwise streak length could exceed 3H while Zhong et al. [1]
found the length to be greater than 10H. The existence of streaky structures throughout the whole
turbulent layer is now commonly accepted [7,12–14].

Various hypotheses and models of vortices have been created to explain the formation of low- and
high-speed streaky structures. Many studies proposed super-streamwise vortex models of Q2/Q4 events,
which included alternating low- and high-speed streaks in the spanwise direction [9,15,16]. The attached
eddy hypothesis developed by Townsend [17] explained Q2/Q4 events and the development of streaky
structures, which scale linearly with their water depth from the inner region to the outer region. Adrian
and Marusic [18] advocated a model using hairpin vortices and packets: hairpins and packets cause the
ejection of low-speed streaks between the two legs of the hairpin vortex when the super-streamwise
vortices feed themselves by sweeping low-momentum hairpins and packets into the low-speed regions.
Secondary flow cells have also been modelled as vortices which originate in the vicinity of the side
walls [19,20].

The existing research indicates that vortex models have limited use. Researchers accept the
existence of super-streamwise vortices theoretically, but the literature reviewed above shows that there
is no consensus among researchers concerning the formation of vortices. For example, the streamwise
vortex model cannot explain how streak length varies linearly from inner region to outer region.
The attached eddy vortex is a single structure, which does not explain the distribution and organization
of the many funnel vortices in turbulent flow. Hairpin vortex models are usually developed for a
single flow field and vortex structure in the x–y or x–z plane. However, current understanding of the
characteristics of hairpin vortices is insufficient to generate a robust interpretational theory. There are
relatively few studies of vortex models, and thus there is a lack of systematic quantitative vortex model
analysis; vortex models can still be improved.

We used models to investigate vortices as coherent structures in turbulent flow, using direct
numerical simulation (DNS) data. We identified the positions of low- and high-speed streaks using
image processing and calculated the characteristic dimensions of streaky structures in both the inner
and outer layers using a statistical method. We identified streamwise vortices, attached eddy vortices,
and hairpin vortices by analyzing the variation in streak dimensions with respect to water depth and
analyzed the spatial relationships between streaky structures and spanwise vortex position to explain
the relationship between the three vortex models. Finally, we propose a new hypothesis.

The remainder of this paper is organized as follows. Section 2 describes the methods used to
analyze the DNS data and to identify and calculate the characteristic dimensions of streaky structures.
Section 3 presents an analysis of the regular variation in streaky structures and the mechanics of the
three vortex models. Section 4 offers a summary and a brief discussion of our major findings and the
conclusions we draw from them.

2. Materials and Methods

2.1. Closed Channel Flow: DNS

Particle image velocimetry (PIV) is the principal experimental method of measuring the flow field.
The area captured by the camera is relatively small, due to the limited intensity of laser light, as the
physical width (z direction) of the image. Thus the number of low- and high-speed streaks sampled is
relatively small, whereby the characteristic scale of streaks is not particularly accurate. Therefore, we
used the numerical data of Del Alamo et al. [21] to investigate coherent structures in turbulent flow,
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and thereby obtained complete flow field information for closed channel flow. Data series L950, which
we used extensively, contains data for almost all recognized large-scale coherent structures scaled by
water depth [5,21,22]. Figure 1 shows that the dimensionless length and width of the DNS flow field
are both large, whereby the characteristic scales of the streaks are relatively accurate. We give a brief
introductory summary here. Detailed information can be found in Del Alamo et al. [21].
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Figure 1. The computation region of direct numerical simulation (DNS) in closed channel flow.

The friction Reynolds number for the flow was 934, which indicates that the range of temporal
and spatial fluid scales involved in turbulence was considered to be relatively large. The simulation
covers a spatial domain (x, y, z) of 16πh/3 × 1h × 2πh, where h is the half-channel height and the domain
is discretized into an array (x × y × z) of 2048 × 193 × 1536 points. Each grid point contains three
velocity components corresponding to nine velocity gradient data points. The streamwise (x), vertical
(y), and spanwise (z) dimensions are shown in Figure 1, which summarizes of the DNS data; u, v, and
w represent the instantaneous velocities in the x, y, and z directions, respectively. Major parameters of
the DNS data are summarized in Table 1.

Table 1. Parameters of the DNS (data from Del Alamo et al. [21]).

Parameter Lx/H Lz/H Ly/H ∆x+ ∆z+ ∆yc+ Nx Nz Ny

Original 8π 3π 2 7.6 3.8 7.6 3072 2304 385
Present study 16π/3 2π 1 7.6 3.8 7.6 2048 1536 193

In Table 1, H is the water depth; Lx, Ly, and Lz are the spatial domains along the x, y and z
directions, respectively; ∆x and ∆z are the grid resolutions in the x and z directions, respectively; Nx

and Nz correspond to the grid numbers; ∆yc is wall-normal grid spacing at the channel center; Ny

represents the grid numbers along the y direction; the superscript + denotes normalization by the inner
scale (u* and v); and u* is the friction velocity and represents the shear stress velocity, for example,
∆x+ = ∆xu*/v.

For each of the three-dimensional instantaneous velocity fields, totals of 153 × 30 x–y planes,
204 × 30 y–z planes, and 193 × 30 x–z planes were extracted for analysis. There were 2048 × 124 (x–y
plane), 245 × 1536 (y–z plane), and 2048 × 1536 (x–z plane) grid points. We extracted 193 × 30 x–z
planes for analysis, and there are 2048 × 1536 grid points in each x–z plane.

2.2. Detection of Streaky Structures

The formation of low- and high-speed streaks are related to instantaneous turbulence fluctuations.
Three steps were followed to study the characteristics scale of streaky structures: (1) the detection
function was used to identify the high- and low-speed streaks; (2) image processing, including
binarization and morphological operations, was used to extract the image structure of both low- and
high-speed streaks [6,10]; and (3) statistical analysis was used to calculate the characteristic scales
of streaks.
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2.2.1. Detection Function

The method, after modification, used the following two functions,

Fd(m, n, y+, t) =
u′(m, n, y+, t)

ustd(y+)
(1)

Ct(y+) = C×max[ustd]/ustd(y+) (2)

where (m, n) is the grid position in the x–z plane; u’ is the streamwise velocity fluctuation; ustd(y+) is
the standard deviation of the streamwise velocity at y+; Ct(y+) is the water depth threshold at y+; Fd is
the dimensionless value of detection function; C is a constant, equal to 0.6, as recommended by Lin
et al. [6]; and max[ustd] is the maximum value of ustd in the flow domain. Fd > Ct (high-speed) and
Fd < −Ct (low-speed) identify the streaks. Justification for the two equations and specific details are
provided in Wang et al. [10].

Figure 2a shows the contours of Fd for low-speed streaks at y+ = 21.05. The positive and negative
values of Fd indicate the existence of instantaneous streamline fluctuations, forming the low- and
high-speed streaks. Low-speed regions (brown), high-speed regions (blue), and other flow regions
(green) can be recognized by applying a threshold value of Ct(y+) to the contour map, as shown
in Figure 2b.
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Figure 2. Visualization of streaks represented by the dimensionless value of detection function Fd: (a) 
original Fd with the range of the color bar set from −2.5 to 2.5; (b) after applying the threshold value 
to Fd. 

2.2.2. Image Processing  

Figure 2. Visualization of streaks represented by the dimensionless value of detection function Fd:
(a) original Fd with the range of the color bar set from −2.5 to 2.5; (b) after applying the threshold value
to Fd.
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2.2.2. Image Processing

To better quantitatively analyze the low- and high-speed streaks, a binary procedure was used to
extract the streaks: values less than−Ct were assigned the value 1, whereas values greater than –Ct were
assigned a value 0. Figure 3 shows the image processing procedure for extracting low-speed streaks.
The procedure for extracting high-speed streaks is similar, but uses a different Ct threshold value.
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Figure 3. Image processing: (a) binary image, (b) opening operator, (c) closing operator,
and (d) clean image.

The original Fd image was binarized (Figure 3a), and a basic morphological transformation was
used to filter out noise in the binary images. This transformation was done in two steps [23]. First,
the opening operator (Figure 3b) and closing operator (Figure 3c) were used to delete some isolated
regions and fill some holes. The opening operator is derived from the fundamental morphological
operations of dilation as well as erosion and was used to break the adhesion between objects and
remove small particle noise; the closing operator combines the operations of erosion and dilation and
can be used to connect neighboring regions and fill in small holes. The area of the streak graph does
not change significantly during calculation when using the opening and closing operators.

Second, some isolated objects were deleted from the binary image with the bwareaopen function.
After these two steps were performed, the streaky structures were clearly visible (Figure 3d).
The selection of specific parameters and values is described by Lin et al. and Wang et al. [6,10].

2.2.3. Model of Streaky Structures

We used streak width (w) and the distance between adjacent streaks (d) to scale and characterize
streaky structures. As the structures vary spatiotemporally, the image was parsed line-by-line to
quantify both w and d. We assumed that the number of streaky structures in a line of the image was
ns. The streak widths are denoted by w1, . . . , wi−1, wi, wi+1, . . . , wns when the streak distances are
denoted by d1, . . . , di−1, di, di+1, . . . , dns−1.

For the random row in the image (rth line), the mean streak width of the rth line, w(r), and the
mean streak width of the whole velocity field at each y+, W (y+), were obtained by Equations (3) and (4):

w
(r)

=

ns∑
i=1

wi

ns
, (r = 1, 2, . . . , m) Wy+ =

m∑
r=1

w
(r)

m
(3)

where m is the total number of rows of the flow field. Similarly, the mean spanwise distance of each row,
d(r), and the mean spanwise distance of the whole velocity field at each y+, D(y

+
), were calculated by

d
(r)

=

ns−1∑
i=1

(di+1 − di)

ns− 1
, (r = 1, 2, . . . , m) D(y+) =

m∑
r=1

d
(r)

m
(4)

The dimensionless characteristic scales of the streaks can be obtained by D+ = Du*/v and
W+ = Wu*/v. The 30 instantaneous x–z velocity fields (DNS data) were captured at each y position in
all cases.
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Comparisons between characteristic scales and previous data are given in Figure 8 of
Wang et al. [10]. The variations in the mean spanwise distance relative to calculated wall distance
are completely feasible, and the above method can be used to analyze the characteristic scales of
streaky structures.

3. Results

The relationship between the spanwise distance between streaks and the vortex model used is
significant for analysis of the entire phenomenon. The spanwise interstreak distances for both low- and
high-speed streaks D/H and water depth y/H were plotted. Figure 4 shows that the trend of high-speed
streaks is similar to that of low-speed streaks. As water depth y/H increases, D/H reaches a turning
point close to half the water depth of the closed-channel flow. The increased amplitude decreases
significantly near the half water depth due to a weak boundary layer.
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Most research on streaky structures has been concerned with the inner region (y+) and outer
region (H) scales. The relationship between two streaky structures of different scales is unclear.
We calculated the spanwise distances over the entire water depth continuously for both the inner and
outer regions. The results show that the development of streaky structures along the entire flow depth
is a continuous process.

D/H increases linearly with y/H in the outer layer (i.e., when 0.1 < y/H < 0.8), and the slope is
approximately 2. Streaky structures are closely linked to the vortex model used. Our results are
interpreted in the context of the streamwise and attached eddy vortex models as follows.

3.1. Streamwise Vortex Model

The spanwise distances are approximately twice the water depth, and the formation of streaky
structures in the outer layer is related only to water depth. This is consistent with streamwise vortex
structures being generated automatically from the self-organization of wall-bound turbulence [7].
In this case, the streamwise vortex also shows that the strong pumping action of low-speed fluid creates
an ejection event in the associated second quadrant, Q2 (u < 0, v > 0). Fluid moving at high speed from
the water surface toward the bed creates a sweep event in Q4 (v < 0, u > 0). The low- and high-speed
streaks are located at the downwelling and upwelling sides of the streamwise vortices respectively.

The conceptual streamwise model in Figure 5 was built to explain the formation of streaky
structures and Q2/Q4 events; the distance between adjacent streaks near the water surface is twice the
water depth [1,14,18].
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3.2. Attached Eddy Vortex Model

Figure 6a shows that the increases in the characteristic scales of the streaks are linear, which is
a core assumption of Townsend’s attached eddy vortex hypothesis [17,23]. Our results indicate the
suitability of the attached eddy vortex model.

Figure 6a shows that, according to the model, the attached eddy vortex develops from the
near-wall region into a conical vortex in the streamflow direction. The formation mechanics of low- and
high-speed streaks and the Q2/Q4 events are similar to those of the streamwise vortex. In particular,
the spanwise distances between adjacent low-speed (or high-speed) streaks are closely related to
the size of the streamwise vortices and thus linearly proportional to y. Three cross-stream plane
sections (slices) of the attached eddies at different water depths y are shown in Figure 6; the blue and
red backgrounds indicate the low-speed and high-speed streaks, respectively. Figure 6a shows the
Q2\Q4 events when Figure 6b shows that the dimensions of the vortex increase linearly as water
depth increases and the relationship between D and h remains basically constant with D ≈ 2h. Overall,
the attached eddy vortex model explains the distance between adjacent streaks from the inner region
to the outer region.
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Figure 6. Streaky structures described in terms of the attached eddy hypothesis: (a) A pair of vortices
and the (b) corresponding high- and low-speed streaky structures for each slice.

3.3. Hairpin Vortex Model

The hairpin vortex model developed by Adrian is a relatively new vortex model [24].
We investigated the positional relationships between spanwise vortices and streaky structures in the
x–z plane to determine the suitability of the hairpin vortex model.

3.3.1. Vortex Extraction in the X–Z Plane

We used the two-dimensional swirling-strength λci-criterion [25]. Streaky structures form in the
in x–z plane, so a brief introduction to extracting a vortex in the x–z plane is given.

The swirling strength λci is given by

λci =

 √R− P2/4, 4R− P2 > 0 ;
0 4R− P2

≤ 0 ;
(5)

where

P = −
∂u
∂x
−
∂w
∂z

, R =
∂u
∂x
∂w
∂z
−
∂u
∂y
∂w
∂z

(6)

Following Wu and Christensen [26], we defined the normalized swirling strength Λci as Λci =

λciωz/|ωz|, where ωz is the fluctuating spanwise vorticity and λci and Λci are swirling strength
discriminators. Λrms

ci (y) is the local root mean square of Λci at the wall-normal position y, and we
defined the normalized swirling strength Ωci by

Ωci(x, y) =
Λci(x, y)
Λrms

ci (y)
(7)

In an ideal fluid, there is a clear boundary between rotating and irrotational fluid. Zero (0) can
be used as a threshold to easily extract the vortex. However, in a nonideal (actual) fluid, viscosity
causes dissipation of the vortex, which greatly complicates vortex identification. We used a non-zero
threshold of 1.5 to identify a vortex, following the recommendation of Wu and Christensen [26], so that

|Ωci| ≥ 1.5 (8)

Negative or positive values of Ωci in Equation (8) represent a clockwise or counterclockwise
vortex, respectively.
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3.3.2. Vortex Density

When the vortex structure has been determined by the preceding methods, the vortex population
density Π+ is calculated by

Π+ =
Nvortex(y+)

Nx(y+) ·Nz(y+) · ∆x+ · ∆z+
(9)

where Nvortex is the spanwise number of vortices at position y+.
The prograde and retrograde vortices in the x–z plane were separated, and the population densities

of the vortices were computed for each position of y+. Figure 7 shows that the population density of 2D
vortices varies with water depth, reaching a maximum in the near-wall region at y+ = 40.22. This result
may be partly due to the number of streamwise vortices in the deeper water. In the outer region, vortex
density decreases gradually as y+ increases. As the shear stress in the x–z plane is approximately zero,
the population density of prograde vortices is equal to that of retrograde vortices at each y+ position.
These results agree with those obtained by Chen et al. [27], which confirms the logic of our vortex
extraction method.
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3.3.3. Location of Vortices and Streaks

Figure 8 shows the cores of spanwise vortices surrounded by nine velocity vectors (red), high-speed
streaks (yellow), low-speed streaks (blue), and the in-between region (green) that were obtained by the
preceding methods. We extracted and analyzed 400× 800 grid points in the x–z plane. The dimensionless
area is 3040 × 3040, and x+ and z+ represent the dimensionless length along the streamwise and
spanwise directions, respectively.
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high-speed streaks is approximately equal to 0. 

Figure 8. Positional distributions of streaks and spanwise vortices.

To further investigate the relationship between streaky structures and spanwise vortices, the vortex
core (ui,j) velocity and the eight surrounding streamwise velocities (Figure 9) were averaged using
Equation (10). Equation (11) was then used to calculate Fd at the core of each vortex. We use Ct(y) to
identify the region of the distribution of vortex cores.

u =
1
9

9∑
i=1

ui (10)

Fd =
u′

ustd(y+)
(11)

where ū is the average velocity of spanwise vortices in the x–z plane, ū′ is the fluctuating velocity, and
Fd is the detection function of average vortex velocity. We can now calculate the statistical measures of
the vortices in different streaky structures.
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Figure 9. Grid for streamwise velocity u showing the core of the vortex.

In previous research, streaks have generally been divided into low- and high-speed. However,
to obtain a more detailed analysis of the relationships between spanwise vortices and streaky structures,
we divided the x–z plane into three types using the threshold Ct(y+): low-speed streaks, high-speed
streaks, and in-between regions.

Figure 10 shows that the numbers of vortices differ greatly within the different streaks. The
spanwise vortices in the in-between region occur in the greatest numbers, followed by low-speed
streaks, with the least numbers in the high-speed streaks. When y/H > 0.1 the number of vortices in
high-speed streaks is approximately equal to 0.
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Figure 10. Vortex numbers in low- and high-speed streaks and in-between regions.

It should be noted that the three areas occupied by the three types are also different. By dividing
the number of vortices by the area containing them, we eliminated the influence of area from our
analysis to better understand the distributions of spanwise vortices located in streaky structures.

3.3.4. Vortex Density in Different Streaks

We first calculated the areas of the low- and high-speed streaks. The values of both low- and
high-speed streak widths are influenced by the threshold value (Ct) and are difficult to recognize
relative to the spanwise distance. If Ct is too large, the streak width will not include the whole with of
the streak; nevertheless, if Ct is too small, the streak width will contain parts of the in-between region.
However, even with different threshold values, the change tendencies are basically consistent. Here,
we used the threshold value suggested by Lin et al. [6] to identify the width of low- and high-speed
streaks. Figure 11 shows that as y+ increases, streak width first increases and then decreases. As the
water depth increases from inner region to outer region, the streak scale also increases. When water
depth is close to the surface (about 0.7H), the weak boundary layer restrains the streak scale, and the
streak width will decrease. This trend is stable and clearly demonstrated.
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The area percentages of low- and high-speed streaks in the x–z plane at each position y+ are also
important characteristic dimensions and can be regarded as the normalized areas of streaks. The area
percentage, defined as Ps, can be obtained by

As =
m∑

i=1

nsi ·wi (12)
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Ps =
As

At
× 100% (13)

where As is the total area of low- or high-speed streaks and At is the total area of the flow field
(2048 × 1536). Figure 12 shows that the percentage area of both low- and high-speed streaks decreases
as y+ increases. In the near-wall region (y/h < 0.1), the gradients are steep; in the outer region (y/h > 0.3),
the decreasing trends become less steep. This result shows that the streaks occur mainly in the near-wall
region where there is high shear stress. Mean shear stress decreases as y/h increases, and so does its
effect on the streaks. Streaks in the outer region decrease in number and so the percentages of both
low- and high-speed streaks in the x–z plane also decrease.
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Figures 11 and 12 both show that the formation of streaks between the near-wall region and the
outer layer is a continuous process, as also shown in Figure 4.

3.3.5. Calculation of Vortex Density

Equation (10) was used to calculate the density of spanwise vortices in different streaky structures,
as shown in Figure 13. The density of spanwise vortices is highest in low-speed streaks, intermediate
in the in-between region and least in the high-speed streaks. Thus, there are big differences between
the number of vortices and vortex density located in different streaky structures.
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The hairpin vortex model developed by Adrian [24] has gained widespread acceptance, due to
experimental visualization using particle image velocimetry and direct numerical simulation. Figure 14
shows the standard coherent structure model of a hairpin vortex developed by Adrian [24].
The alignment of coherent vortices induces a low-speed fluid region inside the hairpin packets.
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Due to the closed-loop feedback cycle between hairpin vortex cells and streamwise vortices [1,28],
the streamwise vortices are stable.
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Research into hairpin vortex behavior has become an important direction of research. However,
the sample sizes used in the research are fairly small, so the regularity of the relationship between
streaky structures and spanwise vortices in the x–z plane must be further researched by analyzing
large samples.

We obtained statistics from large DNS data samples, and we found that spanwise vortex density
in low-speed streaks is greater than in high-speed streaks. This result indicates that hairpin vortex
legs are closer to the low-speed streaks and further from the high-speed streaks. Thus, the results we
obtained exhibit an important feature of hairpin vortex legs when they envelop low-speed streaks to
move along the quasi-streamwise direction, as shown in Figure 14. The legs of the hairpin vortex are
spanwise vortices in the x–z plane, as shown in Figure 15. Spanwise vortices are mainly distributed in
the region of low-speed streaks, consistent with the structure of hairpin vortices. Our results support
the logic of the hairpin vortex model and reveal mechanisms of hairpin vortex behavior more explicitly.
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4. Discussion and Conclusions

4.1. Discussion

A large-scale vortex is a conceptual model, or representation, of a natural phenomenon intended
to be used in the provision of logical explanations of all kinds of coherent structures in turbulent
fluids. Classical and prevailing views of vortices have led to many vortex models being developed.
We identified both low- and high-speed streaks from the wall to the surface using image processing
technology; the meandering large scale motions are impossible to ignore. The low- and high-speed
streaks are formed by an ejection event (Q2, u < 0, v > 0) and a sweep event (Q4, v < 0, u > 0) [14,18].
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We used the super-streamwise vortex (Figure 5) as the interpretative model to explain the preceding
results and the spanwise distance of nearby streaks (2H). We found that the scale of the streaks increased
in proportion to their distance from the wall. The result is consistent with the classical model, which
combines length growth with growth in eddies, developed by Townsend [17]. Our results also explain
the logarithmic growth in open channel flow. The distributions of spanwise vortex density in low- and
high-speed streaky structures suggest further research into hairpin vortices. We statistically sampled
large datasets to compare and analyze three vortex models. Our analysis of the results shows the
benefit of explaining coherent structures from the three different model perspectives.

The literature contains little record of large dataset statistical sampling, but it is urgently needed
to demonstrate the suitability of different vortex models and to clarify the relationships between them.
As stated in the introduction, the large-scale streamwise vortex model provides a good explanation
of the coherent structures of Q2/Q4 events and the spanwise distances between adjacent streaky
structures near the water surface (which is about 2H). However, the large-scale streamwise vortex
model is relatively coarse and represents a large structure (Figure 5), and it cannot accurately explain
the continuous development of streaks from the inner region to the outer region. The attached eddy
vortex model cannot provide a precise organized structure for the large vortices that accumulate in
turbulence. The hairpin vortex model requires more usage and analysis to show its suitability.

Vortex models are limited. However, our research into the characteristic dimensions of streaky
structures across the entire water depth, described in this study, leads us to conclude: the streamwise
vortex model, the attached eddy vortex model, and the hairpin vortex model are all suitable models in
certain circumstances.

We used quantitative analysis to develop a theoretical model in which packets of attached eddy
vortices self-organize and accumulate along the flow direction, thereby forming a cumulative vortex
structure, the streamwise vortex. Figure 16 shows that many attached eddy vortices are connected
along the flow direction to form the large-scale structure of a streamwise vortex. This behavior
provides more details about the formation of large-scale streamwise vortexes. The model explains
the characteristics of streamwise vortices (Q2/Q4 events and low- and high-speed streaky structures)
and linear streaks based on water depth. Our investigation into the spatial relationships between
spanwise vortex density and streaky structures shows that the legs of the hairpin vortex model envelop
low-speed streaks. These low-speed hairpin vortex legs can be organized and accumulated into
larger-scale quasi-streamwise vortices (Figure 16).
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Further analysis of the details of the vortex models led us to propose a simple hypothesis: the
three coherent structures, modeled individually as a streamwise vortex, while an attached eddy vortex
and a hairpin vortex both exist separately in turbulent flow. It is likely that they are all manifestations
of the same turbulent structure under different paradigmatic approaches, as shown in Figure 16.
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4.2. Conclusions

We based this study on 30 sets of closed-channel flow DNS data. Image processing was employed
to identify low- and high-speed streaks, using a detection function and a threshold value, Ct. Statistical
methods were used to calculate the characteristic dimensions of both low- and high-speed streaks.
We investigated three models of coherent structures (streamwise vortex, attached eddy vortex, and
hairpin vortices) and demonstrated their application. Analysis of the characteristic dimensions of
streaky structures and vortices and further analysis of the relationships among the three vortex models
led us to suggest a straightforward hypothesis. The results we obtained are summarized as follows.

(1) The average width of streaks and the average distance between adjacent streaks that we observed
are consistent with the results of previous studies, which indicates the suitability of our method
of identifying and calculating both low- and high-speed streaky structures.

(2) The development of streaks from the inner turbulent region to the outer region is a continuous
process. The length of streaky structures increases linearly with the water depth, and it is
approximately twice the water depth. This result also shows the suitability of both the streamwise
vortex and the funnel vortex models.

(3) The spanwise vortex density in the x–z plane is greatest within low-speed streaks, intermediate
in the in-between region, and least in the high-speed streaks. We infer that the legs of the
hairpin vortices envelop the low-speed streaky structures to move in the streamwise direction
and conclude that the hairpin vortex model provides a suitable representation.

(4) The theoretical model of the locations in the x–z plane of streamwise vortices, attached-eddy
vortices and hairpin vortices established the possibility of the coexistence of three vortex
structures; this recognition increases our understanding of the mechanics of coherent structures
in turbulent flows.
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Abbreviations

Parameter Description Unit
As Total area of low- or high-speed streaky structures
At Total area of the flow field (2048 × 1536)
Ct(y+) Streak threshold at y+

d(r) Dimensionless spanwise distance at each y+
D Nondimensional spanwise distance
Fd Detection function value of average vortex velocity
Fd Dimensionless value of detection function
m Total number of rows of the flow field
Nx Grid numbers in the x direction
Ny Grid numbers in the y direction
Nz Grid numbers in the x direction
Nvortex Number of spanwise vortices at position y+

Ps Area percentages of low- and high-speed streaky structures
u Instantaneous velocity in the x direction m/s
u* Friction velocity m/s
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uij Velocity at the position of vortex core
ū Average velocity of spanwise vortices in the x–z plane m/s
ū′ Fluctuating velocity m/s
u′ Streamwise velocity fluctuation m/s
v Instantaneous velocity in the y direction m/s
w Instantaneous velocity in the z direction m/s
W Average nondimensional width
x Streamwise direction
∆x Grid resolution in the x directions
y* Inner scale
y Vertical direction
∆yc Wall-normal grid spacing at the channel left
z Spanwise direction
∆z Grid resolution in the z directions
(m, n) Grid position in the x–z plane
ustd(y+) Standard deviation of the streamwise velocity at y+

λci Two-dimensional swirling-strength 1/s
Λci Dimensionless swirling strength
ωz Fluctuating spanwise vorticity 1/s
Λrms

ci (y) Local root mean square of Λci at the wall-normal position y
Ωci Normalized swirling strength
Π+ Vortex population density
υ Kinematic viscosity cm2/s
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