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Abstract: Rapid urbanization, inappropriate urban planning and the changing climate in many
countries have resulted in flooding, water shortage and water pollution around the world. Although
the sponge city concept has been applied in both macro-scales and micro-scales to address those
challenges, research on the heterogeneity of different cities for sponge city construction and the
collaborative management between cities is insufficient. Therefore, this paper proposes a multivariate
cluster analysis framework and conducts an empirical study using 96 Chinese cities. By considering
the local infrastructure, economic development, water resource distribution, water quality and
precipitation characteristics in each city, and integrating the principal component analysis and a
self-organizing feature mapping network, this paper shows the potential of regional and interregional
sponge city collaborative management. This will provide an opportunity for developing a new sponge
city management mechanism and will promote the establishment of multi-functional departments
for urban flood control and water quality improvement.
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1. Introduction

The rapid urbanization and increasingly extreme weather events make urban flood a significant
concern in scientific communities around the world [1]. For example, the construction of buildings,
roads and grounds have removed the natural rainwater-retaining infrastructures (e.g., woodlands,
green spaces, natural lakes and wetlands), created impermeable surfaces, changed their ecological
and hydrological characteristics and caused floods [2]. The drastic water resource loss results in water
shortage and decreases surface water quality, which is not only detrimental to people’s health but also
to the aquatic ecosystem [3,4].

Traditional urban water management mainly focuses on the rapid-draining of rainwater to
downstream rather than retaining and reusing it as a resource, and is thus considered unsustainable [5,6].
Therefore, several concepts and theories, such as the Best Management Practices (BMPs), Sustainable
Drainage Systems (SuDS), Low Impact Development (LID) and Water Sensitive Urban Design (WSUD)
have been developed for sustainable urban water management [7]. Those strategies are useful for
reducing runoff and peak flow. However, challenges such as high construction cost, increasing demand
for urban land, and low public perceptions hindered their application [8].

The principles and experiences of BMPs, LID and SuDS provided the basis for sponge city
construction, which has drawn significant attention since 2010 [9]. A “Sponge city” works in a way
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that is similar to a sponge; it can absorb water in the event of heavy rainfall by using green measures
such as water seepage brick, rainwater garden and sink green space, and can release water in time of
drought [10]. As a result, the sponge city could minimize human’s influence on the regional hydrologic
cycle, contribute to flood control and promote rainwater utilization.

As a result of the economic growth, urbanization and industrialization, China’s cities face
increasingly severe problems that threaten their sustainability. From a government perspective, China’s
top-down governmental structure takes advantage of solving urban water challenges. Therefore, the
Chinese government launched a nationwide pilot Sponge City program in 2014 to reduce urban water
runoff, improve water quality, and mitigate water storage and greenhouse gas emission (GHGs). The
government targets to upgrade 20% of its urban areas using the sponge city concept by 2020, and an
increase to 80% by 2030 [4]. Accordingly, the Chinese legislations require that all newly planned urban
districts, industrial parks, development zones and residential areas should be designed and built in
accordance with the new sponge city standards. Moreover, many pilot Sponge City programs have
been launched since 2015 to recycle 70% stormwater [11].

The implementation of sponge cities can be divided into macro-scale and micro-scale developments.
The macro-scale is the integration of regional natural hydrology systems with anthropic infrastructures,
while the micro-scale represents the site-level design such as rain gardens and constructed wetlands.
Previous studies have demonstrated the progress, challenges and opportunities of sponge city
constructions. For example, Jia et al. [12] documented different technical pathways for sponge city
construction, Wang et al. [7] evaluated the public’s perception and willingness to pay for the sponge
city, Chan et al. [13] and Wang et al. [10] summarized the effectiveness of implementing sponge city for
urban flood control. Many researchers also observed the considerable knowledge gaps in the cost of
sustaining a sponge city, and in the quantitative evaluation of sponge city technologies and programs.
By using Wuhan city as a case study, Dai et al. [14] recommended that the government should slow
down the sponge city construction to catch up with stakeholders’ perception.

Most current studies focus on the application of advanced hydrological technologies in a single
city by relying on provincial and national guidelines [15,16]. However, these guidelines only provide
general advice. The adaptability of imitating the sponge city plan from another city is under doubt. For
example, various conditions, such as the level of runoff, climatic, soil condition and population density
might contribute to the sponge city failure [4]. At the same time, the pilot sponge city programs in
China mainly focus on the central and southeastern China where the annual precipitation ranged from
410 to 1830 mm, while the western part of the country has been overlooked [11]. Moreover, few current
studies focus on the heterogeneity and homogeneity of cities for sponge city design and construction.
Therefore, this paper is to develop a framework to explore the heterogeneity between different cities.
By using Principal Component Analysis (PCA) and Self-organizing Feature Map (SOM), regional
sponge city management strategies could be proposed to address some barriers in current sponge
city management.

2. Methodology

2.1. Framework Overview

A systematic framework based on PCA and SOM was developed by considering critical aspects
involved in the sponge city construction. The heterogeneity between cities depends on not only their
current surface water quality and stormwater management strategies, but also the total amount of
locally available water resources, population density and financial ability of the local government.
Figure 1 is an overview of the framework, where variations from the natural environment, local
infrastructure, economic development, water resource distribution, water quality and precipitation
characteristic were considered. Selected indicators were then screened based on their data availability
and reliability. PCA was then employed to identify reasons for heterogeneity between cities and to
reduce the inputs of SOM for more reliable classification.
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of key aspects that might interact with the sponge city consumption [2,5], and the sub-indicators are 
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Figure 1. Proposed sponge city management framework.

2.2. Indicator Selection and Screening

The hydrology, climate, soil characteristics, as well as the urban planning policy are different
for cities, while the national laws or regulations may not be applicable to the local context. The
inappropriate guidance from the central government to the provincial and local councils might cause
problems in planning, design, construction, operation and the evaluation of sponge city projects [4].
For example, the changing climate leads to high-intensity rainfall events in a short time, the climate
zone of a city and the ratio of its impervious surface resulted in different water runoff amounts. As a
result, cities with larger impervious surfaces have higher flooding risk [10]. In this study, indicators
related to the economic, social and environmental development of different cities were selected for the
homogeneity analysis. In general, the primary indicators are selected based on the identification of key
aspects that might interact with the sponge city consumption [2,5], and the sub-indicators are selected
based on data availability and reliability.

Although some indicators are crucial for the heterogeneity determination between cities, they
were screened out because of their unavailability for a large number of cities and their low reliability.

For example, surface runoff coefficient is an integrated indicator to evaluate the catchment loss
depending on the nature of land surface, slope and rainfall intensity. It is also affected by the degree of
soil compaction, vegetation, and depression storage. However, it is not available for most cities as
it is currently mainly estimated for small regions. Moreover, the practical approach for urban slope
estimate requires a linkage between the results of regional studies and the site-specific assessments,
which is also infeasible from the current literature or databases and is thus unreliable.

2.3. PCA

PCA is the linear conversion of a multivariable space into a new subspace, retaining maximum
variance from its original space with the least number of dimensions possible [17]. To better understand
the heterogeneity between cities, selected indicators for major cities in China (96 in total, based on
the Chinese city tier system, name of each city is shown in the result section) were used as inputs
for PCA in Matlab. It should be noted that the multiple evaluation indicators affecting the water
resource relocation, water quality and urban flooding potential are not comparable in terms of the
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unit of measurement, data standardization is therefore necessary. Indicators contributing positively
to the sponge city construction (such as the length of rainwater pipelines, green coverage of built-up
areas, total water resources, etc.) were standardized by using Equation (1), and indicators negatively
affecting the sponge city construction (for example the total amount of sewage discharge, the annual
precipitation of more than 150 mm days, etc.) were processed by Equation (2).

xi j − xmin

xmax − xmin
× 100% (1)

xmin − xi j

xmin − xmax
× 100% (2)

where, xij is the indicator j for city i, xmax and xmin are the maximum and minimum j in all cities. A
general procedure of PCA is described briefly below:

(1) The raw data matrix is reorganized with each row representing observations from different years
and each column representing values of each flow;

(2) The new data matrix, X, is normalized to have zero mean based on its number of column, m;
(3) The covariance matrix R is reconstructed based on the following equation, where M is the

conjugate transpose operator,

R =
1

m− 1
XMX (3)

(4) Singular-value decomposition (SVD) decomposition is performed on R as per Equation (4), where,
Λ is the diagonal matrix of the eigenvalues of R in decreasing numerical order, and V is the matrix
of the eigenvectors of R as columns.

R = VΛVM (4)

(5) Matrix N is constructed by selecting the first “α” columns of V corresponding to the first
principal eigenvalues. It is then used to transform the original space of variables to the reduced
dimension subspace:

W = XN (5)

The columns of matrix N are the selected eigenvectors and are called loadings. The W matrix is
the reduced subspace of the original variable space; its vectors are called scores.

2.4. SOM

The extraction of principal components from PCA provides the basis for the homogeneity
classification. Neural networks are widely used for classification because of their massive parallelism,
distributed storage and processing, self-adaptation, high fault tolerance and robustness. There are
dozens of different neural networks such as linear neural networks, multi-layer mapping BP networks,
radial basis function RBF networks, feedback networks, self-organizing feature mapping networks,
and Hopfield networks [18]. Among them, SOM has a strong advantage in clustering [19].

SOM is an unsupervised artificial neural network (ANN) used to produce a low-dimensional
(typically two-dimensional), discretized representation of the input space of the training samples [20].
It differs from other artificial neural network methods in that it uses a proximity function to maintain
the topological properties of the input space. At the beginning of the training, the input neurons
participate in each other’s competitive activities. The neuron node with the largest output is the
winner. The winning node has the ability to suppress other competitors and activate its neighboring
nodes, and then define all nodes within a radius centered on the winning node and adjust their similar
weight matrix [21]. As the training continues, the radius of the winning node will decrease until the
winning node itself is included. That is to say, in the initial stage of training, not only the weight of
the winning node is adjusted, but also the geometric neighbors in a large area around it are adjusted
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accordingly [22]. As the training process progresses, the weight matrix associated with the winning
output node gets closer to the pattern class it represents. Then, the winner node needs to be fine-tuned
to adjust the weight matrix. At the same time, only the nodes with similar topological neighbors are
adjusted accordingly.

Based on Matlab “nnstart” toolkit, this research used the self-organizing map neural network
to evaluate the heterogeneity of sponge city constructions by using the first ten PCs from the PCA
model (reasons explained in Section 3.2). The map size of the SOM was set to be four because a smaller
network (i.e., 3 × 3) could not adequately present the regional classification, while there were many
similar clusters in an extensive network (5 × 5).

3. Results and Discussion

3.1. Indicator Selection

The sponge city construction is a complex system. To make the indicators scientific, representative,
comparable and adaptable, a two-layer indicator system was used and shown in Table 1. It should be
noted that each sub-indicator representing precipitation has 12 variables (from January to December)
to describe its temporal difference. Therefore, 102 sub-indicators reflecting characteristics regarding
the natural environment, economic development, infrastructure construction, water pollutant, water
resources and precipitation characteristics were selected for 96 cities. The data used were directly
derived from the 2017 China Statistical Yearbook, the China Urban Construction Statistical Yearbook,
2017 China City Statistical Yearbook, China Water Statistics Yearbook 2017 and the China Meteorological
Data Network.

Table 1. Index system for heterogeneity analysis.

Primary Indicator Sub Indicator Primary Indicator Sub Indicator

Natural environment

Urban afforestation area

Social development

GDP per captia
Urban afforestation in parks Urban area

Afforestation area in DA Urban population
Afforestation ratio in DA CBD area

Infrastructure

Road network density in DA CBD population
Road area in DA Area of developed area

Drainage density in DA Urban temporary population

Length of sewage pipes
Water resources

Total water supply
Length of rainwater pipes Domestic water usage
Length of combined pipes Total water resources

Number of WWTP

Precipitation

Mean monthly rainfall
Capacity of WWTP Mean monthly temperature

Capacity of other facilities Maximum one day rainfall

Water pollutant

Total WW discharged NDR larger than 10 mm
Total WW treated by WWTP NDR larger than 50 mm

WW treated by other facilities NDR larger than 100 mm
Amount of sewage produced NDR larger than 150 mm

Amount of sewage treated

DA: Developed area, WWTP: Wastewater treatment plant, WW: Wastewater, NDR: Number of days with rainfalls.

3.2. PCA Result

PCA can generate a series of independent and uncorrelated new variables (principal components)
by getting rid of the irrationality weight judgment, which can then be used for the comprehensive score
evaluation. A Pareto chart with the percentage of variance explained by each principal component
is shown in Figure 2. The first two principal components could explain 58% data variations in the
indicator system, while the first six principal components explain 75% and the first ten could explain
85% of the total variations. Therefore, the first two principal components in a 2D basis were not able to
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provide sufficient information for the classification, but were still useful for a quantitative explanation
of reasons for the heterogeneity among different cities.
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The score and loading plots of PCA are shown in Figure 3. As can be seen from Figure 3a, cities in
the southeast and the northwest have similar PC2 (the second principal component) but different PC1
(the first principal component) value, while Shanghai and other southeastern cities have a similar PC1
but different PC2 value. Therefore, the 96 selected cities could be grouped based on their location and
are shown as the southeastern, central, northeastern in Figure 3a. Such difference could be explained
by combing the score (Figure 3a) and the loading (Figure 3b) plot. In the PCA, loadings (or variables)
near the coordinate origin (“X = 0” or “Y = 0”) have a lower influence on the overall heterogeneity.
Therefore, the separation of cities from the southeast and the northwest are mainly caused by their
precipitation characteristics and developed urban area (i.e., similar to the separation between Shenzhen
and Beijing). While the difference between Shanghai and other southeast cities are caused by the
urban afforestation area and temperature. During sponge cities construction, intense precipitation
and extremes precipitation events will increase the urban flood risk. However, this is less likely to
take place in the northwestern, which should be considered during the planning and designing stage.
Similarly, the highly urban afforestation ratio and higher temperature make Shanghai more adaptable
to heavy rains than Beijing because of its potential lower runoff coefficient, which should also be
accounted for during the sponge city construction.
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3.3. SOM

The schematic diagram of SOM training is shown in Figure 4, with sub-indicators listed in Table 1
as input. Seven indicators are removed during the model construction because their values for all cities
are zero, making the model not able to converge.
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Figure 4. Schematic diagram of the Self-organizing Feature Map (SOM) training model.

The default topology of the SOM is a hexagon. It classified cities based on their distance between
the neighboring neurons. The distance between neighbors is shown in Figure 5. The grey hexagons
are the neuron node, the blue lines indicate the connection between the neurons, and the color blocks
between them are the weight vectors representing the degree of proximity. In color from yellow to
black, the darker the block, the farther it is between the two blocks.
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Figure 6 shows the location of neurons and indicates how much training data is associated with
each neuron, namely the number of cities being grouped in each cluster. The 4 × 4 topology gives a
total number of 16 neurons in this study. The maximum number of hits associated with any neuron is
18, indicates that there are 18 input vectors (cities) in the cluster. By numbering neurons in the SOM
cluster from left to right (first row from 1 to 4, and second row from 5 to 8, and so on), classifications of
different cities in each neuron are shown in Figure 7.
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As can be seen, cities in the same geographical region with similar meteorological conditions could
be clustered into the same neuron. For example, Lan zhou, Xi ning and Ying chuan in northwestern
china are clustered in Neuron 5 due to their semi-arid continental monsoon climate, characterized by
dryness and abundant sunshine. Su zhou, Hang Zhou and Ning Bo in the southwest are wet and rainy
in spring, hot and humid in summer, cool and clear in autumn, and dry and cold in winter, together
with the similar economic development level and urban infrastructure level, they are clustered in one
group in neuro 15. However, the consistency caused by geographical connectivity is not absolute,
which might be affected by the number of extreme precipitation events level of social and economic
development. For example, Zhuhai and Guangzhou are in the same province but are clustered into
different neurons. The combination of SOM and PCA indicates that extreme precipitation events are
the main reason for such difference. Similarly, the separation of Shanghai and Nanjing in different
neurons are mainly caused by their afforestation ratio and the road network density.

On the other hand, the homogeneity of cities in different geographical regions can be consistent.
For example, Nan Yang, Xiang Yang and Xu Zhou (from neuron 14) belong to different provinces (He
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Nan, Hu Bei and Jiang Su, respectively), but are clustered in the same cluster. This is reasonable not
only because of their similar social and economic development level, but also due to the fact that they
locate along the Huai River basin, which is a transitional belt between the humid and the semi-arid
region in China.

Although with different meteorological conditions, cities at the same administrative level also
show certain commonness, just as the score of Zhengzhou and Shenyang city are consistent and
stable, which is mainly determined by the complex social and economic interference rather than the
meteorological conditions. This indicates that collaborative sponge city management mechanism
could be established even for cities in different regions, which is also applicable to other countries and
regions that face similar urban water problems.

Overall, the SOM proves that multiple indicators relevant to the natural environment, social
economics and the infrastructure of sponge cities show regional clustering features, and could identify
the heterogeneity of different cities. Therefore, collaborative management strategies and control
elements relevant to the management of sponge cities can be correlated in the future.

4. Implications

Sponge city construction is a complex system in which many variables, such as hydrology, land-use
systems, urban development and biodiversity need to be accounted for. Such a large number of
variables make the evidence-based research, especially quantitative analysis of the soil composition,
plant species and urban surface runoff characteristics crucial [23]. Whilst we acknowledge that
indicators and data used in this study are not an exhaustive literature survey, it is a comprehensive
one, and their relative scores should be indicative of the heterogeneity of different cities.

However, the regional data supporting sponge city implementation is still limited (e.g., construction
and maintenance costs) and thus make stakeholders unwilling to spend money on integrating sponge
city solutions [24,25]. For example, green infrastructures can provide multiple benefits besides
stormwater management [26]. However, insufficient data make the quantitative evaluation difficult
and therefore these benefits are not considered in most previous research [5,27,28], leading to the
resistance to change. Such data limitation becomes a hindrance to empowering the public to create
change and participate in public-private partnerships supporting sponge city projects [10,11]. Moreover,
data uncertainty might be a severe challenge that can risk the failure of the sponge city concept. Such a
challenge might be addressed by advanced modelling and data management techniques such as the
Bayesian network and the Monte Carlo simulation, which are suggested for future research.

Although major cities in China were used in the case study, the authors believe that urban water
challenges are similar for most developing counties. As such, the current work is crucial for sustainable
urban water management in more cities regarding regional cooperation. The results suggest that
more attention should be paid to the top-level, regional collaborative management strategies during
sponge city construction. For example, instead of the administrative boundaries, it is necessary to
formulate sponge city management strategies for cities with similar ecological conditions and adjacent
geographical spaces, which might be more efficient to improve the efficiency of macro-level sponge
city management.

Previous research indicates that local authorities should lead the sponge city construction and be
responsible for adaptation actions to be taken in the early stages of policy processes [29]. However,
unclear relevant actors within the local authority are also confronted with unclear leadership, with urban
planners being potential leaders during sponge city construction. The combination of the planning
and implementing stage will help water professionals influence and encourage implementations
of sustainable solutions [30], but their early involvement cannot guarantee a change to sustainable
alternatives. Therefore, the cooperation and linkage between different administrative departments
and stakeholders should be strengthened during the design, construction and management stage.
Such cooperation should include not only the related functional departments, but also the linkage of
control objectives and management elements. Moreover, up to date information technologies such as
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artificial intelligence and internet of things should be integrated with the sponge city construction and
management, which will help to improve the overall efficiency of sponge city management [31].

5. Conclusions

This study developed a framework to prove the rationality of collaborative sponge city management
by cluster analysis. The results show that the 96 selected cities could be clustered into 16 groups by
considering their difference among the natural environment, local infrastructure, economics, water
resource distribution, water quality and precipitation characteristics. The integration of PCA and
SOM could visibly explore the heterogeneity and homogeneity of different cities. The constructed
feature maps are topologically ordered, and the spatial location of a neuron corresponds to the features
of input pattern and can meaningfully present the characteristics of different cities. It proves that
those cities show the characteristics of regional clustering under diverse climatic and ecological
conditions. Moreover, it shows the potential of interregional sponge city collaborative strategies
even for regions and cities with very distant space. This will provide an opportunity for developing
regional and interregional sponge city cooperation mechanism and will promote the establishment of
multi-functional departments for sustainable urban water management.
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