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Abstract: A Poisson regression based on eigenvector spatial filtering (ESF) is proposed to evaluate
the flood risk in the middle reaches of the Yangtze River in China. Regression analysis is employed to
model the relationship between the frequency of flood alarming events observed by hydrological
stations and hazard-causing factors from 2005 to 2012. Eight factors, including elevation (ELE), slope
(SLO), elevation standard deviation (ESD), river density (DEN), distance to mainstream (DIST), NDVI,
annual mean rainfall (RAIN), mean annual maximum of three-day accumulated precipitation (ACC)
and frequency of extreme rainfall (EXE) are selected and integrated into a GIS environment for the
identification of flood-prone basins. ESF-based Poisson regression (ESFPS) can filter out the spatial
autocorrelation. The methodology includes construction of a spatial weight matrix, testing of spatial
autocorrelation, decomposition of eigenvectors, stepwise selection of eigenvectors and calculation of
regression coefficients. Compared with the pseudo R squared obtained by PS (0.56), ESFPS exhibits
better fitness with a value of 0.78, which increases by approximately 39.3%. ESFPS identifies six
significant factors including ELE, DEN, EXE, DIST, ACC and NDVI, in which ACC and NDVI are the
first two main factors. The method can provide decision support for flood risk relief and hydrologic
station planning.

Keywords: spatial autocorrelation; Poisson regression; eigenvector spatial filtering method; flood
risk evaluation

1. Introduction

Floods are the most common and destructive natural disaster around the world. The dam-breaking
and waterlogging events caused by floods have caused great losses of human lives and property
throughout history [1]. When the water level measured in large parts of a river becomes too high and
exceeds its maximum capacity, flooding could occur. A recent study ranked floods as the greatest
threat to 616 cities around the world over earthquakes and storms [2]. There are many types of floods
such as river floods, flash floods, urban floods, sewer flooding and coastal flooding in China. Affected
by the monsoon climate and geographical conditions, China is seriously impacted by flood disasters,
especially flash floods and river floods [3]. Floods in the region has a wide range of impacts and can
be sudden and strong, occur for long periods, frequent or seasonal. These obvious characteristics
make floods one of the most important factors restricting China’s economic and social development.
Hence, management and mitigation before and after a flood disaster are necessary and significant.
The evaluation of risks in flood-prone areas and the construction of hydrological stations are effective
means of prevention and monitoring before floods. Areas susceptible to flood must be detected in
advance so that urbanization and industrialization can be prevented in these areas. In addition, some
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watersheds prone to flooding should be monitored with hydrological stations in the case of dangerous
water levels.

Floods in different regions at different times are often caused directly by different factors [4] while
climate and human activities are common factors [5]. Against the background of climate change in
recent years, extreme rainy weather brings concentrated, intense and consecutive rainfall that quickly
transforms into sediment and runoff [6,7]. Many cities were recently reported to encounter the highest
recorded rainfall in history because massive urbanization and unwise city planning have replaced
many forests and rivers with industrialized areas [8]. Vegetation is able to contain soil and some
rainfall [9]. Conversely, large scale urban expansion reduces city permeability, However, the drainage
functions developed in cities cannot reach the level required to swiftly discharge runoff in time [10].

Two categories of flood models have been researched and developed which is either physically
based or statistically based [11]. The Storm Water Management Model, a good representative of many
hydrological models, has been widely employed to simulate the flow and flood processes [12]. Apart
from detailed data and complicated calculations [13], these models can only simulate the extent and
velocity of flood inundation over small-scale areas through one dimensional or two-dimensional
hydraulic models and require much time and hardware to compute [14]. Both of two categories have
been conducted in the many previous study based on the Yangtze River [15].

Regarding statistical models that only consider correlation and cause-and-effect relationships,
qualitative or semiquantitative methods such as multicriteria analytic hierarchy process (AHP) are
frequently used to model the risks of disasters such as floods or landslides [16,17]. A previous study
combined the AHP with a Bayesian Network to research the flooding risk in Guangzhou [18]. These
models are used widely because they have good calculation performance with simpler statistical
theory. Other studies also use machine learning methods such as decision tree, SVM (support vector
machine) and artificial neural network (ANN) to predict the spatial distribution of flood risk over
large-scale regions with accuracies higher than 80% [19,20]. Expert weighting of the AHP is relatively
subjective and the different factors in different regions at different times that result in disasters tend
to show distinct relative importance, hence, experiences about the weights of factors in certain areas
cannot be transfer directly to others [21]. Machine learning algorithms such as ensembled decision
tree model and ANN is more complicated and just like a black box so that its network structure and
weight parameters are not interpretable [22]. Moreover, these models ignore the spatial autocorrelation
that exists flood disasters. Considering spatial effects in these models will probably further increase
their performance.

Multivariate regression usually involves several spatial factors and non-spatial attribute data.
Geographic Information System (GIS) is a powerful tool to collect, process, manage and analyze
spatially referenced layers in table, vector or raster format [23], and quantization calculation can mostly
be easily integrated into it. Moreover, the visualization of GIS can make risk assessment accessible and
easy to understand. Risk analysis of natural disasters integrated with GIS has been applied widely in
the recent decades [24].

Poisson regression has been commonly applied to estimate disasters or disease risks and perform
factor analysis [25,26]. The method is very suitable for modeling the data on the accumulated count
of events that take place with low probability, such as diseases rate and death rates, especially when
the observations approximately follow the Poisson distribution. Moreover, simple models such as
generalized linear regression including Poisson regression are more suitable for small dataset and
have more interpretability than complex machine learning algorithms. Aforementioned statistical
models consider a weighted score or a probability as the metric of flood risk while the study considers
the count of flood alarming events in history as the metric of flood risk because the frequency is
also representative of occurrence rate when different hydrological stations have the same number of
observations. The new data from hydrological stations currently available, allow a much better spatial
pattern analysis. Moreover, some count observations often exhibit spatial autocorrelation which exists
in most geospatial processes [27], according to the First Law of Geography [28]. Failure to consider
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spatial effects of flood alarming events based on the nature of the basin’s connectivity in the regression
model will lead to model uncertainty, thus, spatial autocorrelation must be included in the regression
model [29,30]. Whether spatial autocorrelation exists in the observations of geographical units can be
tested using Moran’s I.

Eigenvector spatial filtering method is proposed to account for spatial effects [31]. This
method selects a subset of eigenvectors from the spatial weight matrix that represent the spatial
distribution pattern and then adds them to the ordinary Poisson regression model as independent proxy
variables [32]. The linear combination of these eigenvectors filters the spatial autocorrelation out of the
observations, which enables the observations in different geographical units to be independent [33,34].

In this paper, we propose the eigenvector spatial filtering Poisson regression (ESFPS) model for
the estimation of flood risk, using the frequency of flood alarming events observed by hydrological
stations in the middle reaches of the Yangtze River in China. Independent hazard-causing variables
include elevation (ELE), slope (SLO), elevation standard deviation (ESD), river density (DEN), distance
to mainstream (DIST), normalized difference vegetation index (NDVI), annual mean rainfall, mean
annual maximum of three-day accumulated precipitation (ACC) and frequency of extreme rainfall
(EXE), because these factors are considered to aggravate or trigger flooding or are closely associated
with flood risk in the study area. The model results will be compared with the results of Poisson
regression and negative binomial regression, and the best model will be used to predict the flood risk
throughout the basin and analyze the spatial distribution pattern of flood risk.

2. Study Area and Data

2.1. Study Area

The focus of this study is the middle reaches of the Yangtze River spanning 108◦24′–117◦26′ E and
24◦33′–33◦14′ N and present a typical subtropical monsoon climate. The central drainage basin of the
Yangtze River mainly covers three provinces—Hubei, Hunan and Jiangxi—in the central part of China,
as shown in Figure 1. The weather is relatively humid with four clear seasons, and rainfall is especially
abundant and is concentrated from April to August. As shown in Figure 2, according to the rainfall
records from six meteorological stations in the three provinces, most of the monthly mean precipitation
in the different provinces exceeds 150 mm during this period. Moreover, there are large amounts of
variegated rivers and lakes, of which Dongting Lake in Hunan and Hubei Provinces and Poyang Lake
in Jiangxi Province are China’s largest and second-largest freshwater lake, respectively. In addition,
many hydrologic stations and dams have been constructed along the Yangtze River and its main
tributaries including the Han River, the Xiang River, the Yuan River and the Gan River in the study
region. As a strategically important economic area, the region plays an extremely significant role in
flood monitoring and forecasting. The varied topography, subtropical monsoon climate and a complex
water system make this area among the highest flood prone areas especially where several destructive
dam-break floods and many waterlogging events have occurred in history. The main flooding types in
the area are river flooding, flash flooding and urban waterlogging caused by the former two types.
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2.2. Data Source

In China, the major hindrance to the study of flood risk is the unavailability and scarcity of
hydrological data and potential flood-related factors in digital GIS format. Geographically referenced
data about hydrological stations were obtained from a list from Baidu Wenku, which contains the
names, coordinates and other detailed information of all hydrologic stations around China. As Table 1
shows, daily hydrological observation data at 8:00 a.m. were acquired by means of web spider from
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the Hydrological Information Inquiry website built by the Hydrology Bureau from Hunan and Hubei
Province. Monthly mean rainfall from 1981 to 2010 and different types of meteorological statistical
data can be accessed in the National Meteorological Information Center. Topological data using SRTM
DEM with 30 m resolution and MODIS NDVI raster data with 500 m resolution can be acquired
from Geographical Space Cloud (http://www.gscloud.cn/). Raster data of precipitation interpolated
by meteorological observations in vector format seems invalid and inaccurate due to the sparsity of
meteorological stations in the study region. Hence, a nearly real-time dataset named TRMM_3B42RT
short for 3-h 0.25

◦

× 0.25
◦

merged TRMM and other satellites estimates in raster format is applied
and processed to calculate statistical factors concerning precipitation during the period from 2005 to
2012 (https://precip.gsfc.nasa.gov/index.html). The vector data of the river network included in the
Chinese National Basic Geographic Information System data are open to the public on the website of
the National Geomatics Centre of China.

Table 1. Data sources of the study.

Data Product Name Resolution Data Source

GDEMDEM 30 M 30 m http://www.gscloud.cn/
MODIS NDVI 500 m http://www.gscloud.cn/

Hydrological Observation Data daily http://61.187.56.156/wap/index_sq.asp
TRMM_3B42RT 0.25 degree https://precip.gsfc.nasa.gov/index.html
River Network vector http://ngcc.sbsm.gov.cn/

2.3. Derivation of Hazard Factors

The flood risk at a hydrological station is represented by the historical frequency of flood alarm
events which occur when dangerous water levels higher than the historical warning level are observed.
Hazard factors that affect the risk of flooding in the middle reaches of the Yangtze River mainly include
topological factors, hydrological factors and trigger factors. Topological factors such as elevation, slope
and elevation standard deviation come from the DEM. Hydrological factors include river density and
distance to mainstream. Vegetation is also an important factor. Trigger factors are mainly derived from
rainfall data because flash floods and river floods caused by concentrated heavy rainfall are dominant
in the study area.

2.3.1. Frequency of Flood Alarming Events

In hydrological observations, daily reports usually contain river names, hydrological observatory
names, observation time, water level, flow, rise and fall of floodwater, warning level, highest water
level in history and location information. Obviously, water level that is equal or even higher than
warning level at a certain time indicates a flood alarming event, which indicates an excessively high
level of water and requires the attention of people to prevent flooding from occurring. In the study
area, approximately more than one hundred hydrological stations have been built and functioned
normally to monitor water regimens. Every province in the middle reaches of the Yangtze River has
set up an open website to display and query hydrological observation data in real time. The study
employs the web crawler technology to gather hydrological observation report data at 8:00 a.m. every
day from 2005 to 2012. After data processing and cleaning in consideration of the validity of every
observation record and functionality of every hydrological station, 104 hydrological stations and their
daily report data are included for research and analysis, totaling 303,80 records during the study period.
Each observation record at a certain station is considered a flood alarming event if the water level is
equal to or greater than the warning level. Then, we count the frequency of all flood alarming events
totaling 1647 observed by these hydrological stations. From the histogram of flood alarming events in
Figure 3, most of hydrological stations have low occurrence rate of flood alarming events close to 0 and
large parts of hydrological stations observed 0 times of flood alarming events in the study period. Few

http://www.gscloud.cn/
https://precip.gsfc.nasa.gov/index.html
http://www.gscloud.cn/
http://www.gscloud.cn/
http://61.187.56.156/wap/index_sq.asp
https://precip.gsfc.nasa.gov/index.html
http://ngcc.sbsm.gov.cn/
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stations have high frequencies. In most cases, the larger the frequency is and the lower the number of
hydrological stations is.Water 2019, 11, x FOR PEER REVIEW 6 of 23 
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2.3.2. Topological Factors

Elevation is the most fundamental feature indicating the characteristics of the underlying surface.
It is commonly acknowledged that water tends to accumulate in lower areas that are difficult to
flow out from and that a hydrological station built in a relatively low area is prone to frequent flood
alarming events.

Moreover, almost all of the previous studies that focused on the evaluation of flood risk considered
elevation to be an important factor [17,21,35]. As is shown in Figure 4, the altitude of the study area
ranges from −194 m to 5495 m and fluctuates largely. Slope can be defined as the steepness or gradient
within a series of adjacent units of terrain, slope is usually measured as an angle in degrees or as a
percentage and indicates the variation in elevation. In general, river currents flow faster over steep
areas, reducing the hazard of flooding, while water easily accumulates on flat terrains, leading to a
high and dangerous water level. Therefore, the slope of the area where hydrological stations are built
must be taken into account [36]. The distribution of slope in the study area can be seen in Figure 5.
Elevation standard deviation is calculated by some adjacent cells such as the neighboring cells in
a 3 × 3 window, which represents a locally limited area. In reality, a relatively spacious areas are
still susceptible to flooding because it has some local subareas with greater slope. Instead, another
measurement of the elevation variation within larger ranges that needs to be included is the elevation
standard deviation [18,21]. Corresponding to the resolution of the DEM and our study scale, this study
uses a 5 × 5 neighboring window that represents an area of 150 m2.
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The calculation method for elevation standard deviation (ESD) is shown in Equation (1):

ESD =

√√
1

n− 1

n∑
i=1

(
(Ei − E

)2
(1)

In the formula, Ei and E represent the cell value and mean within the window respectively and n
is the number of cells in the window. Elevation standard deviation can be generated by focal statistics
on DEM as seen in Figure 6.
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2.3.3. Hydrological Factors

The density of a river system refers to the ratio between the summed length of the mainstream
and tributaries in the basin and the area of the basin which represents the river’s length within a unit of
area. Climatology also reveals that the shapes of rivers have their own characteristics that allow for the
discharge of surface runoff in time. River density is an important factor in controlling the occurrences
of floods and river flow because these areas with high densities of rivers are prone to flooding [18].
Raster data of the river density are obtained by using the line density analysis to convert the vector
data of the river network in the study region to raster data in Figure 7.
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Drainage proximity is measured by the distance to the mainstream or tributaries. The occurrences
of flood alarming events and even flooding are related to the distribution of the drainage system [18].
A raster layer of the distance to mainstream is generated by performing Euclidean distance analysis on
the mainstream network using vector data in ArcGIS10.2.1 as shown in Figure 8.
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2.3.4. NDVI

The effects of forest vegetation change on runoff and flooding are very significant: As forest
coverage increases, the ability of river basins to intercept rainfall runoff is significantly enhanced,
and the amount of rainfall converted to runoff is reduced. Meanwhile, flood peak flow decreases.
Changes to vegetation cover can change soil properties and reduce soil erosion. The vegetation and
the corresponding soil water absorption reduce the amount of flooding [37]. Vegetation blocks and
intercepts floods and protects slopes. Therefore, NDVI, which is widely used in vegetation research of
remote sensing is the best indicator factor of plant growth status and spatial distribution of vegetation
density as shown in Figure 9.
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2.3.5. Trigger Factors

Statistical factors related to precipitation are derived from the processing and calculation of raster
data, in which the value of every cell signifies a 3-h rainfall rate(mm/h) based on map algebra. This type
of rainfall dataset has 0.25◦ × 0.25◦ resolution, which geographically corresponds to 25 km × 25 km
area that is similar to a county. Many state-of-the-art studies apply real-time data for more accurate
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simulation and analysis [38]. Considering its fine temporal resolution and better accuracy than rainfall
raster data interpolated by rainfall observations of weather stations, the dataset is an ideal source for
researchers to calculate trigger factors of flood. First, we accumulated six raster layers of the rainfall
rate to represent daily precipitation. Second, every three consecutive raster layers were summed by
using map algebra, and eventually, the raster of annual mean rainfall is produced. The detailed steps
for processing the raster data are shown in Figure 10:

Water 2019, 11, x FOR PEER REVIEW 10 of 23 

ideal source for researchers to calculate trigger factors of flood. First, we accumulated six raster layers 

of the rainfall rate to represent daily precipitation. Second, every three consecutive raster layers were 

summed by using map algebra, and eventually, the raster of annual mean rainfall is produced. The 

detailed steps for processing the raster data are shown in Figure 10: 

raster layer of 3-hour 

rainfall rate
accumulated daily rainfall 

accumulate

sum three days

count

annual mean rainfall

maximum of three-day 

accumulated precipitation

frequency of extreme rainfall
 

Figure 10. Flow chart of rainfall raster processing. 

The raster data of the 3-h rainfall rate is accumulated ArcGIS10.2, and then, the derived raster 

data of daily rainfall are accumulated or counted further, and ArcPy is fit for efficient and fast batch 

processing. 

Although annual mean rainfall is not directly related to flood alarming events and floods, it 

represents a meteorological pattern of different regions in the long run. Some previous studies have 

included similar factors that represent rainfall intensity such as annual mean rainfall or the Modified 

Fournier Index (MFI) [22]. The spatial distribution of annual mean rainfall is as shown in Figure 11.  

It is well known for everyone that flood alarming events and flooding are often caused by 

continuous and intense rainfall in short periods. According to the resources of recorded historic flood, 

the maximum of three-day consecutive precipitation plays the most essential role in occurrences of 

dangerous water levels and floods. Therefore, the mean of the annual maximum of three-day 

accumulated precipitation is necessary to consider the occurrence of flood alarming events from a 

short-term perspective. As is seen in Figure 12, the factor ranges from 84 mm to 249 mm. 

In meteorology, precipitation that is equal to or greater than 50 mm in 24 h is defined as torrential 

rain according to the official national standard released by China Meteorological Administration. The 

rise of river levels is more likely after extreme rainfall. Theoretically, more frequent extreme rainfall 

means a higher likelihood of flood alarming events and even flooding at worst. The count of heavy 

precipitation was considered by some previous studies that tried to evaluate flood risk [18]. The 

frequency of extreme rainfall in raster format is shown in Figure 13.  

 

Figure 11. Annual mean rainfall. 

Figure 10. Flow chart of rainfall raster processing.

The raster data of the 3-h rainfall rate is accumulated ArcGIS10.2, and then, the derived raster
data of daily rainfall are accumulated or counted further, and ArcPy is fit for efficient and fast
batch processing.

Although annual mean rainfall is not directly related to flood alarming events and floods, it
represents a meteorological pattern of different regions in the long run. Some previous studies have
included similar factors that represent rainfall intensity such as annual mean rainfall or the Modified
Fournier Index (MFI) [22]. The spatial distribution of annual mean rainfall is as shown in Figure 11.
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It is well known for everyone that flood alarming events and flooding are often caused by
continuous and intense rainfall in short periods. According to the resources of recorded historic
flood, the maximum of three-day consecutive precipitation plays the most essential role in occurrences
of dangerous water levels and floods. Therefore, the mean of the annual maximum of three-day
accumulated precipitation is necessary to consider the occurrence of flood alarming events from a
short-term perspective. As is seen in Figure 12, the factor ranges from 84 mm to 249 mm.
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In meteorology, precipitation that is equal to or greater than 50 mm in 24 h is defined as torrential
rain according to the official national standard released by China Meteorological Administration. The
rise of river levels is more likely after extreme rainfall. Theoretically, more frequent extreme rainfall
means a higher likelihood of flood alarming events and even flooding at worst. The count of heavy
precipitation was considered by some previous studies that tried to evaluate flood risk [18]. The
frequency of extreme rainfall in raster format is shown in Figure 13.
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3. Methodology

The methodology of this study includes four steps: factor selection, eigenvector spatial filtering
Poisson regression (ESFPS), model assessment and flood risk mapping as is shown in Figure 14. The
second step is also divided into four parts: construction of a spatial weight matrix, testing of spatial
autocorrelation, calculation of eigenvectors, normalization of independent variables, eigenvector
selection and calculation of coefficients. The performance of ESFPS will be compared with that of the
Poisson Regression (PS) and the negative binomial regression (NB). The model metrices for assessment
includes fitness accuracy and generalization error. Afterwards, the best regression model is applied to
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compare their importance by weights of different factors that pass the significance test in a regression.
Finally, this model will be used to predict the flood risk in the middle reaches of the Yangtze River.Water 2019, 11, x FOR PEER REVIEW 12 of 23 
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3.1. Factors Selection

Multicollinearity problems of factors are often encountered in regression problems, hence, a
multicollinearity test must be performed before the regression [39]. Variance inflation factor (VIF)
and tolerance are suggested as indicators of multicollinearity. To calculate the collinearity of these
independent variables, every independent variable is used as the dependent variable and the remaining
independent variables are used as the independent variable in the same regression equation. Tolerance
and variance inflation factors can be calculated by Equations (2) and (3):

tolerance = 1−R2
j (2)

VIF =
1

tolerance
(3)

R j is the coefficient of determination of a regression of the j-th independent variable on other
independent variables. If the tolerance is close to 0, the collinearity problem is quite serious. The larger
the VIF is, the more severe the collinearity is. Generally, if the VIF is less than 5, the collinearity is not
serious, and the standard for a broader point is less than 10 [40].

3.2. Eigenvector Spatial Filtering Poisson Regression

3.2.1. Construction of Spatial Weight Matrix

In this study, Thiessen polygons are applied to define the neighboring relationship between two
different geographical units. In climatology, Thiessen polygons, also called Voronoi diagrams are
applied to estimate the precipitation in the neighborhood area of a point-shape unit [41]. This study
considers that the area covered by a river within a Thiessen polygon has similar hydrological conditions
based on the basic fact that close hydrological stations on the same drainage area usually encounter
high water levels and flood alarming events at the same time when flooding occurs. When a spatial
weighted matrix W is constructed, the queen neighborhood is often applied to determine whether two
units is neighbor each other [42]. Two polygons that share common points or edges are considered
neighbors. the value in the matrix is set to 1 if the i-th unit is linked to the j-th unit, otherwise, the
value is set to 0.

As is seen in Figure 15, the larger the red bubble is and the darker the color of the polygon, the
more frequently flood alarming events occurred. Geographical units with high frequency tend to
accumulate with each other and Thiessen polygons with low frequency are close to each other.
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After performing a spatial autocorrelation test on the frequency of flood alarming events and the
residuals of frequency calculated by ordinary least squares (OLS), relatively significant autocorrelation
is found in Table 2: the Moran’s coefficients are 0.32 and 0.23, respectively, which are higher than the
expected values, −0.01 and −0.03. The R square of 0.2623 means that ordinary linear regression is not
fit for modeling. A p-value that is close to zero means that significant spatial autocorrelation exists and
eigenvector spatial filtering algorithms can be applied.

Table 2. Results of the spatial autocorrelation test.

Moran’s I Expectation Variance p-Value R Squared

Frequency 0.3246 −0.0097 0.0040 1.547× 10−7

OLS residual 0.2255 −0.039 0.0043 2.743× 10−5 0.2623

3.2.2. Calculation of Eigenvectors

Before the calculation of eigenvectors, the raw spatial neighborhood matrix must be
row-standardized by Equation (4):

C = (I−
11T

n
)W(I−

11T

n
) (4)

where n is the number of studied units, W is the spatial neighborhood matrix of n × n, I is an identity
matrix of n × n, 1 is a vector of n × 1 whose values are all 1, and C is called the centralized weighted
matrix. The decomposition of the centralized weighted matrix can be expressed as Equation (5):

C = EΛET (5)
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The decomposition of C generates eigenfunctions that contain n eigenvectors and n corresponding
eigenvalues [33]. The n eigenvectors can be denoted as E = (E1, E2, · · · , En) and each of eigenvector
is capable of capturing latent spatial autocorrelation at different scales [34]. Λ is an n-by-n diagonal
matrix, and its diagonal elements are n eigenvalues of C, which can be denoted in descending order
as λ = (λ1, λ2, · · · , λn). It should be noted that all eigenvectors are orthogonal and uncorrelated [34].
Moreover, Moran’s I of every eigenvector is calculated by Equation (6):

Moran′s Ii =
n

1TC1
λi (6)

where λi is the i-th eigenvalue.

3.2.3. Z-Score Normalization

In a multicriterion evaluation system, the evaluation criteria usually have different dimensions
and orders of magnitude due to the different natures. When the levels between the indicators differ
greatly, if the analysis is performed directly with the original index values, the role of the higher-value
indicators in the comprehensive analysis will be highlighted, and the effect of the lower-level indicators
will be relatively weakened. Therefore, to ensure the reliability of the results and compare the weights
of different factors, the original indicator data must be standardized [43]. In addition, normalization
can improve the convergence speed of the model. The normalization of data involved scaling the data
down to a small specific interval.

The methods of normalization include min-max normalization and z-score normalization. Z-score
normalization is applied to transform nine factors before regression because the minimum and
maximum of each factor are unknow in the current datasets. The Z-score transformation of the j-th
factor of the i-th sample Xi j is as Equation (7):

Zi j =
Xi j −X j

S j
(7)

where X j and S j are the mean and standard deviation of the j-th factor.

3.2.4. Eigenvector Selection

We choose eigenvectors whose Moran’s I values are greater than or equal to a threshold as
eigenvectors with larger Moran’s I values indicates more spatial autocorrelation, and the threshold
has been researched in some previous studies on spatial autocorrelation [32]. The parameter can
also be lifted to limit the number of candidate eigenvectors and complexity of the final model and
0.25 is chosen for the threshold. In the statistical model, stepwise regression is an automatic method
of selecting among independent variables under certain criterion [44]. The AIC is a comprehensive
metric of goodness of fit and complexity of model and a model with lower value of AIC mean a better
one. Based on the Poisson regression model, forward stepwise selection of independent variables
including factors and spatial synthetic variables is chosen to conduct and if the new model has a lower
AIC than the previous model and passes the significance test of residuals of spatial autocorrelation
after an eigenvector is added to the model, the eigenvector will be included in the final model. If the
eigenvector cannot lower the AIC of the current regression model or significant spatial autocorrelation
of the residuals still exists between the predicted values output by the current model and ground truth
values, the eigenvector will be omitted. When all eigenvectors have been checked, the final Poisson
model is output. The detailed process is shown on the flowchart in Figure 16.
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3.2.5. Coefficient Calculation

Different from multivariate linear regression whose response variable is a continuous variable,
Poisson regression assumes that the response variable, which is the frequency of flood alarming
events in the study, is an observed count that follows the Poisson distribution, whose possible values
of Y are non-negative integers. More importantly, this model is based on the hypothesis that a
large count or frequency is rare. In the model, the Poisson incidence rate µ is regressed by its k
predictors Xi (ELE, SLO, ESD, DEN, DIST, NDVI, RAIN, ACC, EXE) and coefficients β1, β2, . . . , β9 are
estimated weight coefficients from flood alarming datasets. Poisson regression for sample i is written
as Equations (8) and (9):

Pr(Yi = yi
∣∣∣yi, ti) =

e−µiti(µiti)
yi

yi!
(8)

µi = ti × µ
(
Xi

Tβ
)
= ti × exp(β1ELEi + β2SLOi + . . .+ β9EXEi) (9)

where ti can be seen as an intercept of linear combinations of factors. Therefore, we can reasonably
assume that frequent flood alarming events occurred with low possibility at a certain hydrological
station, while most hydrological stations encountered few records of flood alarming events as illustrated
in the frequency distribution of flood alarming events in Figure 3.

Similarly, the coefficient of ESFPS can be formulated as Equation (10):

µi = ti × exp(β1ELEi + β2ESDi + . . .+ β9EXEi +
l∑

k=1

αkEk) (10)
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where Ek is the selected eigenvectors by the forward stepwise algorithm, and l is the number of the
selected eigenvectors.

3.3. Model Assessment

The Poisson model (PS) and negative binomial regression (NB) are used to compare with ESFPS,
and these models are provided with the same hazard-causing factors and data processing. Comparison
of model assessment is conducted mainly by two aspects, performance of fitness and generalization
error. Performance of fitness is assessed by pseudo R-squared and AIC while the metric of generalization
error is the mean square error of leave-one-out cross validation.

3.3.1. Accuracy of Model Fitting

The R-squared value which is widely used in linear regression cannot be extended to Poisson
regression models, and some pseudo R-squared models have been proposed to measure the
interpretation of the Poisson model. In Poisson regression, the most popular pseudo R-squared
measure is the function of the log-likelihoods of three models as shown in Equation (11):

Pseudo R2 =
LL f it − LL0

LLmax − LL0
(11)

where LL0 is the log-likelihood of the intercept-only model, LL f it is the log-likelihood of the current
model, and LLmax is the maximum log-likelihood possible.

3.3.2. AIC

The Akaike information criterion is a measure of the relative quality of statistical models for a
given set of data. The AIC of one model is calculated as Equation (12):

AIC = 2k− 2 ln
(
L̂
)

(12)

where k is the number of parameters and L̂ represents the maximum likelihood value for the model.
Therefore, this metric can serve as the means for model comparison and selection [45]. Among several
candidate models for the samples, the preferred model is the one with the minimum AIC value. In
this study, AIC is not only used in the comparison of the final candidate models, but also taken as a
prespecified criterion in the stepwise algorithms.

3.3.3. Leave-One-Out Cross Validation (LOOCV)

In supervised learning applications of statistical learning theory, the out-of-sample error or
generalized error is a measurement of how accurately a model is capable of predicting a response
value for previously unseen data [46]. It is noteworthy that stepwise regression encounters the issue of
overfitting because the algorithm will search a very large number of candidate models using brute
force. As for LOOCV conducted every time, only one sample is used as the test dataset and the other
samples are used as training dataset. If we have k samples, we will train k times and test k times.
Although this method demands frequent and complex computation, it has a high utilization rate of
samples and is especially suitable for small datasets.

3.4. Flood Risk Mapping

Given hazard-causing factors in other parts of the studied region, a regression model can be
used to predict the expected frequency of flood alarming events. The expected frequency obtained by
Poisson regression also represents the risk of flood alarming events in the format of frequency while
the probability output by the logistic regression indicates the flood risk in the format of probability [47].
After comparing the Poisson model, negative binomial model and ESFPS model, the best one will
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be selected to predict the expected frequency of flood alarming events throughout the central basin
of the Yangtze river. In the GIS system, the linear vector data of river network is firstly transferred
to point-shape vector that represents the range of the middle reaches of the Yangtze river. Secondly,
these points extract the corresponding value from the raster of factors that pass the significance test.
Thirdly, ESFPS transform these factors into a weighted score and output the expected frequency.
Finally, point-shape vector among the whole study area is converted back into the raster format
for visualization.

4. Results

4.1. Factor Selection

In multicollinearity diagnosis, the variance inflation factor and correlation coefficient matrix are
calculated, and the results are plotted respectively in Table 3 and Figure 17. The correlation coefficient
between slope (SLO) and elevation standard deviation (ESD) is 0. 97, close to 1 and VIF of slope and
elevation standard deviance is 10.994 and 10.460 therefore one of these two factors must be excluded.
The results of multicollinearity diagnosis of the remaining eight factors can be seen in Table 4 after
slope is excluded and the result shows that there is hardly strong multicollinearity in these remaining
eight factors.

Table 3. Variance inflation factor.

Factor ELE SLO ESD DEN RAIN EXE DIST ACC NDVI

VIF 1.299 10.944 10.460 1.783 2.678 6.095 1.156 5.339 1.090
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Table 4. Variance inflation factor after factor selection.

Factor ELE ESD DEN RAIN EXE DIST ACC NDVI

VIF 1.331 1.236 1.837 2.804 5.980 1.155 5.265 1.099
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4.2. Results of Model Coefficients

The maximum threshold of the p-value that passes significant tests is set to 0.05. As shown in
Table 5, the Poisson model considers seven factors including ELE, ESD, DIST, RAIN, EXE, ACC and
NDVI significant while the negative binomial model only accepts ELE, DIST, ACC as significant factors.
ESF-based Poisson regression model considers six factors including ELE, DEN, DIST, EXE, ACC and
NDVI significant. Among the eight factors, according to their estimated coefficients and significance in
Table 5, three models all shows that elevation, elevation standard deviation, distance to mainstream
and NDVI are negatively correlated with the frequency of flood alarming events while the frequency of
extreme rainfall is positively related to it. Moreover, annual mean rainfall cannot pass the significance
test of NB and ESFPS while river density cannot pass the test of PS and NB, and ACC, DIST and ELE
are all significant in three models.

Table 5. Results of the three regressions.

Model PS NB ESFPS

Factors Coefficient p-Value Coefficient p-Value Coefficient p-Value

ELE −1.58272 0 *** −0.9996 0.001683 ** −0.0066 0 ***
ESD −0.25210 0 *** −0.19299 0.368332 −0.0769 0.28752
DEN −0.06189 0.11095 0.07266 0.749230 0.0630 0.000915 **
DIST −0.56152 0 *** −0.79702 0.000618 *** −0.0187 0 ***
RAIN −0.11253 0.00136 ** −0.03248 0.897488 0.0006 0.5612
EXE 0.59830 0 *** 0.58400 0.053373 1.0334 0 ***
ACC 2.876 0 *** −0.70197 0.014845 * 5.6894 0 ***
NDVI −0.2313 0 *** −0.18582 0.252906 −2.3345 0 ***

Intercept 1.7188 0 *** 1.8193 0 *** 1.4003 0 ***

In Table 5, the signs of significance ***, **, * and · represent that the p-value is less than the
threshold of 0, 0.001 and 0.05, respectively.

Regression equation of the PS model is written as Equation (13):

µi = exp(−1.58272× ELEi + (−0.2521) × ESDi + (−0.56152) ×DISTi + (−0.11253) ×RAINi
+0.5983× EXEi + 2.876×ACCi + (−0.0312) ×NDVIi + 1.7188)

(13)

Regression equation of the NB model is written as Equation (14):

µi = exp((−0.996) × ELEi + (−0.79702) ×DISTi + (−0.70197) ×ACCi + 1.8193) (14)

Regression equation of the ESFPS model is written as Equation (15):

µi = exp((−0.0066) × ELEi + 0.063×DENi + (−0.0187) ×DISTi
+1.033× EXEi + 5.6894×ACCi + (−2.335) ×NDVIi + 4.193× EV1

+8.377× EV2 + (−4.048) × EV7 + 1.4003)
(15)

In the equations of the ESFPS model, EV1, EV2 and EV7 are the selected eigenvectors as seen in
Table 6.

Table 6. Eigenvectors selected by ESFPS.

Eigenvectors Coefficient p-Value

EV1 4.1934 0.039604 *
EV2 8.3770 0.000133 **
EV7 −4.0476 0.002899 ***

The signs of significance **, * and * represent that the p-value is less than the threshold of 0, 0.001 and 0.05, respectively.
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4.3. Model Assessment

The Poisson regression model, the negative binomial regression model and the eigenvector spatial
filtering Poisson regression fit the samples with the performance as shown in Table 7:

Table 7. Performances of three models.

Model AIC Pseudo R Squared LOOCV Moran’s I (Expectation)

PS 1979.4 0.56 817.9884 −0.01929 (−0.0097)
NB 944.86 0.47 608.1647 0.05737 (−0.0097)

ESFPS 1040.3 0.78 430.4137 0.01958 (−0.0097)

Moran’s I for the residuals of the predicted frequency of flood alarming events are all reduced to be
closer to the expected value (−0.0097), and the results shows that no spatial autocorrelation exists in the
residuals. While the pseudo R squared of PS (0.56) is greater than that of NB (0.47), the AIC of PS, 1979.4
is greater than that of NB, 944.86. ESFPS has the best fitness with the Pseudo R Squared, 0.78, which
obviously outperforms PS and NB. Generalized error of ESFPS, 430.4137, calculated by LOOCV is less
than that of NB, 608.1647 and both of them are less than generalized error of PS, 817.9884. Although
the AIC of ESFPS 1040.3 is 10.1% greater than that of NB, 944.86, ESFPS is much better than PS and NB
because ESFPS has better performance of fitness accuracy and generalized accuracy. ESFPS improves
pseudo R squared from 0.56 to 0.78, by 39.3% and reduces generalized error from 817.9884 to 430.4137.

4.4. Spatial Pattern of Flood Risk

After the ESFPS model with better accuracy is obtained, the expected frequency throughout the
basin can be calculated by the ESFPS model because the frequency of flood alarming events represents
the risk of flood occurrences at a hydrological station. More hydrological stations should be planned
and built in the place under high risk while obsolete stations have to be removed or repaired. As the
river network in the format of raster shows in Figure 18, the darker the color is, the higher the flood
risk of the river is. In the upper branch of the Hanjiang River, Poyang Lake District, Zuzhang River and
Dongting Lake District, the red pixels indicate high flood risk and yellow pixels indicate an ordinary
hazard level. Hydrology departments should pay attention to these sub-basins and strengthen their
hydrological infrastructure. In general, sub-basins with high river density and frequent extreme
consecutive rainfalls are susceptible to flood alarming events.

Water 2019, 11, x FOR PEER REVIEW 19 of 23 

Moran’s I for the residuals of the predicted frequency of flood alarming events are all reduced 

to be closer to the expected value (−0.0097), and the results shows that no spatial autocorrelation exists 

in the residuals. While the pseudo R squared of PS (0.56) is greater than that of NB (0.47), the AIC of 

PS, 1979.4 is greater than that of NB, 944.86. ESFPS has the best fitness with the Pseudo R Squared, 

0.78, which obviously outperforms PS and NB. Generalized error of ESFPS, 430.4137, calculated by 

LOOCV is less than that of NB, 608.1647 and both of them are less than generalized error of PS, 

817.9884. Although the AIC of ESFPS 1040.3 is 10.1% greater than that of NB, 944.86, ESFPS is much 

better than PS and NB because ESFPS has better performance of fitness accuracy and generalized 

accuracy. ESFPS improves pseudo R squared from 0.56 to 0.78, by 39.3% and reduces generalized 

error from 817.9884 to 430.4137.  

4.4. Spatial Pattern of Flood Risk 

After the ESFPS model with better accuracy is obtained, the expected frequency throughout the 

basin can be calculated by the ESFPS model because the frequency of flood alarming events 

represents the risk of flood occurrences at a hydrological station. More hydrological stations should 

be planned and built in the place under high risk while obsolete stations have to be removed or 

repaired. As the river network in the format of raster shows in Figure 18, the darker the color is, the 

higher the flood risk of the river is. In the upper branch of the Hanjiang River, Poyang Lake District, 

Zuzhang River and Dongting Lake District, the red pixels indicate high flood risk and yellow pixels 

indicate an ordinary hazard level. Hydrology departments should pay attention to these sub-basins 

and strengthen their hydrological infrastructure. In general, sub-basins with high river density and 

frequent extreme consecutive rainfalls are susceptible to flood alarming events. 

 

Figure 18. Predicted frequency of flood alarming risk. 

5. Discussion 

5.1. Improvement in the Accuracy of the Flood Risk EVALUATION Model 

Figure 18. Predicted frequency of flood alarming risk.



Water 2019, 11, 1969 20 of 23

5. Discussion

5.1. Improvement in the Accuracy of the Flood Risk EVALUATION Model

This study models the relationship between the frequency of flood alarming events observed
on hydrological stations and nine factors using the Poisson regression model. Inclusion of spatial
autocorrelation in the regression model increases the accuracy of fitting and prediction. The pseudo R
squared is improved by 39.3% from 0.56 to 0.78. Regarding the generalization performance of these
models, LOOCV of the ESFPS model is better than that of the Poisson model and negative binomial
model. Moran’s I of residuals for the ESFPS model is near to its expected value. In general, ESF-based
Poisson regression is better than other counterparts.

5.2. Determination of Significant Factors

Both the PS model and the ESFPS model consider elevation, frequency of extreme rainfall,
distance to mainstreams, NDVI and mean annual maximum of three-day accumulated precipitation as
significant factors. Among the eight factors, according to their estimated coefficients and significance,
elevation, elevation standard deviation, distance to the mainstream and NDVI are negatively correlated
with the frequency of flood alarming events while frequency extreme rainfall, elevation and river
density is positively related with it. Extreme rainfall events represented by frequency of extreme rainfall
and mean annual maximum of three-day accumulated precipitation together play a significant role
in flood events. These results are consistent with many previous researches and human experiences.
Six factors that pass significant test in the ESFPS model are ranked according to the absolute value of
weight coefficients in Table 8. Comparing their weights of these factors, accumulation and NDVI are
the two main impact factors, with the weights of (+5.6894) and (−2.3345). Hence, short-term heavy
rainfall is a leading trigger for the flood in the study area and vegetation has an important resistance
to flood.

Table 8. Rank of factors.

Factor Weight Rank

ACC 5.6894 1
NDVI −2.3345 2
EXE 1.0334 3
DIST −0.0187 4
DEN 0.063 5
ELE −0.0066 6

5.3. Limitations and Future Enhancements

The complexity of the ESFPS model is greater than that of the PS model because it requires more
time to select eigenvectors. In addition, The study only focuses on the factors on the earth surface
and trigger factors, and the type of soil and lithology is often considered as important factors in
the previous study [48]. Flood is also influenced by how much water can be stored in the soil from
previous flooding and local rainfall. Different types of soil and lithology have different water retention
capacities. The study initially oversees these two factors because it tries to map flood risk and the
flood-alarming events of the hydrological stations on the water instead of the whole regions spanned
by the middle Yangtze River. Social and economic factors such as land use and constructions of dikes
and drainage facilities should have been included in the model because the capacity of discharging
runoff swiftly are represented by these factors. Subsequent research should also consider social factors
such as the type of land use [49] and investment in hydrological infrastructures such as dikes and
pumping stations [21]. From the perspective of data, hydrological data that ranges from 2005 to 2012
lack timeliness and the flood risk map output by the model can function as an early warning system
if new recent data in larger size are used. Moreover, it is more reasonable for the conceptualization
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of neighborhood relationship for the spatial weight matrix to consider the topology of river network
because different segments belonging to the same river possibly share similar hydrological observations
and flood alarming events could be observed by hydrological stations in downstream segments and
upstream segments at the same time. Hence, soil type, density of dikes and pumping stations and new
neighborhood relationship will be considered in the further research.

6. Conclusions

The study proposes a Poisson regression based on eigenvector spatial filtering to model the flood
risk at hydrological stations using the frequency of flood alarming events. The frequency of flood
alarming events and eight factors including elevation, elevation standard deviation, river density,
annual mean rainfall, mean annual maximum of three-day accumulated precipitation, frequency of
extreme rainfall and NDVI are used to train the regression model. The PS, NB and ESFPS models reach
the conclusion that elevation, frequency of extreme rainfall, distance to rivers, NDVI and mean annual
accumulation of three-day accumulated precipitation are important factors leading to high flood risk.
In the study area, heavy consecutive rainfall is the chief culprit of the flood and vegetation can reduce
flood risk efficiently. Moreover, Inclusion of autocorrelation of the frequency of flood alarming events
into the model robustly improved the accuracy of fitness and prediction. Stepwise regression using the
AIC can efficiently select the eigenvectors that represent spatial distribution pattern of flood alarming
frequency. Eigenvectors with high eigenvalues and Moran’s I are accepted in the final ESFPS model.
The ESFPS model can be used to map flood risks throughout basins according to the expected value of
frequency that the model output after the data related to the eight factors are input into the model. In
the study, flood risk mapping output by ESFPS and new recent data can function as an early warning
system and help identify where hydrological stations should be built and strengthened for monitoring
of water level.
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