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Abstract: Hydroinformatics, as an interdisciplinary domain that blurs boundaries between water 
science, data science and computer science, is constantly evolving and reinventing itself. At the heart 
of this evolution, lies a continuous process of critical (self) appraisal of the discipline’s past, present 
and potential for further evolution, that creates a positive feedback loop between legacy, reality and 
aspirations. The power of this process is attested by the successful story of hydroinformatics thus 
far, which has arguably been able to mobilize wide ranging research and development and get the 
water sector more in tune with the digital revolution of the past 30 years. In this context, this paper 
attempts to trace the evolution of the discipline, from its computational hydraulics origins to its 
present focus on the complete socio-technical system, by providing at the same time, a functional 
framework to improve the understanding and highlight the links between different strands of the 
state-of-art hydroinformatic research and innovation. Building on this state-of-art landscape, the 
paper then attempts to provide an overview of key developments that are coming up, on the 
discipline’s horizon, focusing on developments relevant to urban water management, while at the 
same time, highlighting important legal, ethical and technical challenges that need to be addressed 
to ensure that the brightest aspects of this potential future are realized. Despite obvious limitations 
imposed by a single paper’s ability to report on such a diverse and dynamic field, it is hoped that 
this work contributes to a better understanding of both the current state of hydroinformatics and to 
a shared vision on the most exciting prospects for the future evolution of the discipline and the 
water sector it serves. 
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1. Introduction 

1.1. Hydroinformatics—An Evolving Story 

The water cycle is a system characterized by inherent complexity, variation, and uncertainty due 
to interlinked social, natural and engineered subsystems. Hydroinformatics, as a scientific study of 
this complex system takes a deliberately interdisciplinary, sociotechnical approach [1], blurring the 
boundaries between water science, data science and computer science. Despite having its origins in 
computational hydraulics [2], it, however, does not only concern itself with modelling and decision 
support, as is often incorrectly assumed. The modern field of hydroinformatics also embraces the 
social dimension of water cycle management, e.g., social needs, concerns and consequences 
(including equity, data privacy, ethics, legal issues, etc.). Therefore, hydroinformatics should be 
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viewed as having a horizontal role in integrating water sciences (i.e., hydrological, hydraulic and 
environmental), data sciences (statistics, stochastics, data driven analytics), computer science and 
information and communication technologies (ICT) and society [3]. This also positions 
hydroinformatics as a cross-cutting field of study that underpins the transition of water authorities 
and utilities from reactive to proactive by leveraging technological advances to achieve to the so-
called Water 4.0 state (also named Digital Water or Water Informatics) delivering sustainable and 
resilient water management.  

As a dynamic field of research, hydroinformatics has evolved from the days of 
hydraulic/hydrologic modelling to an academic discipline with a thriving community of scientists, 
engineers and practitioners (organized around two professional organizations—the International 
Association for Hydro-Environment Engineering and Research, IAHR, and the International Water 
Association, IWA), with its own Journal [4] , specialist groups and biannual international conferences. 
However, the discipline’s network is not restricted to these institutions. It has grown around the 
world building strong communities and high-profile scientific journals, such as the International 
Environmental Modelling and Software Society (iEMSs) and their Journal [5] as well as the 
Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) in the US and 
their Hydroinformatics Conferences. The discipline and its community run and contribute to 
educating new generations of hydroinformaticians through a number of professional and university 
degree courses offered all around the world.  

Although it is beyond the scope of this paper to delve into the depths of hydroinformatics 
philosophy and approaches, the discipline can be thought of as a continuous process of developing 
and using water data, models and tools, to understand the environment, to engage all stakeholders, 
and help make decisions that improve society. This is a highly iterative process (Figure 1), because, 
as also stated in Vojinović and Abbott [6], “hydroinformatics integrates knowledges from the social and 
technical domains to create so-called conjunctive knowledges, that are concerned with an understanding of how 
technical interventions have social consequences and how the resulting social changes in turn generate new 
technical developments”. This evolving nature of hydroinformatics can also be viewed through the lens 
of changing communities attending the biannual Hydroinformatics conferences and consequently 
the transformation in the research focus over a period of 25 years. While the early years attracted 
mostly practitioners from the mature fields of computational hydraulics and hydrology and those 
involved in early applications of artificial intelligence methods, the later years’ conferences can be 
viewed as a meeting place of a community of communities, encompassing various multi-disciplinary 
areas. This widening of disciplinary communities resulted in changes to the scope of the work 
presented at conferences, for example, from purely technical approaches to managing demand for 
water to socio-technical approaches where customer engagement is sought through, not only 
technical means, but also by combining behavioral and data science. Further examples of the changes 
include the proliferation of real-time modelling and decision methods due to increasing computing 
power and the availability of data through citizen science and ubiquities sensing. Together, with the 
drive to open science outputs to a wider audience (via open-source tools and data), to hybridize 
modelling systems (via integration of physical and data-driven models), and to better visualize data, 
processes and decisions (via serious gaming, virtual/augmented reality), the community is well-
positioned to help humanity address a range of high-impact future real-world water challenges. 

 
Figure 1. The circular nature of hydroinformatics. 
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1.2. Aim of This Paper 

Hydroinformatics has considerable advances to show across the entire water cycle, however it 
would be beyond the scope of this paper to include a review of all contributions in the field, thus the 
focus is limited to urban water issues and perspectives. This is because as urbanization continues to 
accelerate concentrating ever increasing demands for water services in cities and megacities around 
the world [7], and as urban water infrastructure is ageing and related investments are lagging behind 
[8], it is argued that the urban environment urgently needs smarter solutions based on 
hydroinformatics more than any other domain. 

The current state of the art in (urban) hydroinformatics is mapped, proposing a narrative that 
connects several elements and strands of work together into a coherent whole. This narrative 
necessarily leaves aspects of hydroinformatics out, and where applicable, references to additional 
review work is added to assist the reader. Specifically, the paper highlights three main pieces of the 
hydroinformatics puzzle: Data, analytics and decision support (the last one in both its formal 
planning/design and societal/communication/engagement sense) in an effort to suggest a way of 
thinking about the domain and to point towards a promising future.  

2. From Theory to Practice 

Water systems and services are highly complex [9] as they are tasked to balance water resources 
with demands through complex interconnected infrastructure. As such, decision making about these 
systems and services (at strategic, tactical and operational scales) need to be taken within a 
continuously changing landscape where water quality and quantity are uncertain [10]. These systems 
are also influenced by climatic changes and human practices water demand patterns are shifting as 
urbanization continues [11], influencing demands [12] as standards of living rise [13]. Lastly,, 
environmental legislation and customer expectations are also shifting and with them [14,15], the 
thresholds against which the water sector’s performance is measured also change. This dynamic 
decision landscape is further complicated by aging infrastructure [16] and the advent of new 
(disruptive) technologies and concepts. 

Figure 2 presents an overview of some of the main technologies and concepts that have emerged 
in the past few years and are influencing both research and practice in the urban water management 
field and hydroinformatics specifically. In this necessarily brief and elliptical sketch, new real-time 
information coming from smart sensors, including smart meters, also in the context of IoT 
developments, stored and managed through (often cloud-based) information platforms [17,18], allow 
for the remote monitoring and control of new more distributed interventions in the urban water cycle 
integrated into (and extending the useful life of) existing centralised systems and networks. This is 
possible due to, also, new analytics that are developed to exploit and extract value from this new 
information in view of design, tactical and operational decisions (from locating new technologies, to 
rehabilitating piped networks to understanding and managing water demands [19]). Part of the value 
in this improved understanding of subsystem functions is in being able to develop and calibrate 
whole cycle (socio-technical) system models. They are now increasingly being applied to improve the 
understanding of the interplays between centralised and decentralised systems as well as the 
interaction between infrastructure and the end users. These new, more inclusive modelling 
approaches underpin a more engaging approach to decision support in the form of serious games 
(SG), and augmented/virtual reality (AR/VR) environments, challenging and disrupting the very way 
decisions are made in the water sector [20]. The latest developments in artificial intelligence (AI) and 
machine learning (ML) have already shown that AI/ML enabled software systems can beat human 
players in complex games, such as chess or Go [21]. Through reinforcement learning, these systems 
can learn by playing games, which can be a guiding light to developing decision-support systems 
capable of assisting human water system operators in performing complex operational, tactical or 
strategic tasks. Similarly, robotic technologies and AI, which have been making great strides in the 
manufacturing and consumer industries, are starting to find their way to water management, e.g., 
underground asset inspection [22]. Lastly, the authors argue that with these data, tools and models 
at hand, the sector is now developing more sophisticated ways of stress-testing new and existing 
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infrastructure, developing new methodological approaches around resilience [23]. In the remaining 
part of this section, a brief overview of some key literature on the subjects highlighted above is 
provided and an outline of their current state of art is discussed. 

 

Figure 2. A shifting landscape for hydroinformatics research and practice. 

2.1. New Real Time Information 

The rapid developments in ICT, leveraged through advances in hydroinformatics, have created 
the basis for a phenomenal increase in the types and amounts of water-related data collected and 
analyzed, following the trend (and to some extent hype) of the so-called Big Data currently evident 
in numerous other fields and sectors [24]. Although the volume of water data currently collected by 
the sector is certainly unprecedented, attributed to an increasing deployment of dedicated sensors of 
various types, the data in the water sector cannot really be considered big, at least not yet. Water data 
are often structured data and do not usually include the main types of unstructured data (such audio, 
images, video, and unstructured text) that account for 95% of big data at the global scale [24]. A 
notable (and promising) exception is when crowdsourcing is also taken into account as a means of 
supplementing data obtained from more traditional sources [25]. The arrival of big data is also 
coinciding with a strong movement by individuals, learned societies and governments to open data 
for the benefit of individuals and society in general. The availability and use of open data—that 
anyone can access, use or share—can also increase opportunities for the collaboration and 
engagement of stakeholders, particularly in cities. The rise of the ‘Smart City’ concept, where ICT 
(and IoT) are used to enhance a city’s livability, workability and sustainability, is another factor that 
impacts on the use of big data in urban water management [26]. The developments in this (growing) 
nexus between water and ICT (often termed digital water, Water 4.0 or water informatics), allow 
water companies to now be able to monitor in (near) real time their entire supply and value chain, 
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from the sources to the consumers’ tap and then ‘downstream’ to the wastewater plant. Smart sensors 
and smart meters (e.g., [27]) are becoming ubiquitous allowing for a substantial increase in coverage 
(e.g., [28]), resolution (e.g., [29]) and diversity (e.g., [30]) of water-related information, including 
water quality [30–32], which has long been the most difficult water characteristic to reliably monitor 
remotely. Interestingly, new water related information is not only collected by smart sensors and 
devices. It is also increasingly collected by the citizens/water users themselves. For example, the 
paper-based water quality sensor and smartphone that was used in Sicard et al. [33], or work by 
Farnham et al. [34] on using citizen-based water quality monitoring for combined sewer overflows.  

2.2. New Distributed Infrastructure Deployment 

The increasing availability of information (and remote-control capability) allows the sector to 
seriously consider and gain confidence in re-engineering its water management practices [35]. This 
can be achieved also by deploying in large scales more promising, distributed alternatives to water 
service provision (from treatment to separation and from reuse to drainage, see for example Larsen 
et al. [36]) that have hitherto been reserved for research/pilot environments. Although a review of 
these technological developments falls outside the scope of this paper, it is argued that their advent 
is both enabled by new advances in hydroinformatics (in both the hardware and software sense) and 
enables interesting hydroinformatic developments in the analytics, modelling and decision contexts. 
An example of this interplay is evident, for example, in the case of distributed water reuse 
technologies termed sewer mining [37]. Here, novel treatment solutions emerged, that required 
advanced monitoring and control systems to become deployable in remote locations [38]. This in 
turn, led to a need for modelling and optimisation tools, able to support the optimal location of sewer 
mining units in large sewerage networks [39]. The availability of the sewer mining technology as an 
intervention option, then meant that integrated models had to include them as options for decision 
makers [37]. This positive feedback is typical of the way hydroinformatics evolves in a dialectic 
relationship between the discipline and the water sector.  

2.3. New Analytics 

To make sense of this increasing amount of information, research and practice have made 
significant progress towards better analytics, including but not limited to those: (i) Capable of 
extracting valuable information from the data (from smart alerts to customized advice for water 
users); (ii) performing better stochastic simulations to improve the ability to produce longer 
timeseries (based on observations) for long-term scenario development and stress-testing; (iii) 
performing advanced optimisation to identify better solutions in this information richer 
environment; and (iv) providing novel ways of visualizing and understanding the decision tradeoffs 
within complex decision spaces. Examples of these new analytics, include AI/ML analytics for 
proactive management of water distribution systems (including burst detection) demonstrated in UK 
case studies [40,41], asset deterioration assessment [42], as well as the use of deep learning techniques 
for defining novel control strategies that are more robust against cyber-attacks of water distribution 
systems [43]. Examples also include recent work on using smart meter readings to parametrise 
residential water demand models [44] as well as the methods and tools developed to investigate the 
properties of these timeseries at fine timescales [29]. Based on this growing body of work, we are now 
in a position to assess for the first time if smart meters are effective in water demand management 
(see for example the review by Sønderlund et al. [27] based on 21 relevant reports and publications) 
or at least pinpoint the additional information needed to make this transition, including the 
information content, granularity, frequency and method of delivery etc.  

However, getting better historical data is only part of the story. Additional work in stochastics 
is enabling hydroinformatics to develop simulated timeseries that explicitly represent each process 
of interest with any distribution model and hence conserve all of the characteristics of historical 
datasets (e.g., [45]). These longer timeseries can be used to drive hydroinformatic models of complex 
hydro-systems to better account for relevant uncertainties. However, this substantially increases the 
(time) burden for optimisation. Recent attention to ‘optimisation on a budget’ [46] shows how 
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surrogate strategies can be employed to allow for less evaluations of expensive objective functions in 
evolutionary optimisation. Other authors have also focused on the challenging problem of optimal 
design under uncertainty and developed optimisation algorithms that exploit the concept of ‘real 
options’ [47], thus introducing flexibility into the long-term design for water systems [48]. Although 
an overview of the developments in optimisation is outside the scope of this paper, this is one of the 
most prolific fields in hydroinformatics to date. The interested reader is pointed towards an overview 
of this dynamic field, with a focus on water distribution networks, included in Mala-Jetmarova et al. 
[49] and in Maier et al. [50] for a more general overview of optimisation in water resources in general. 
Lastly, it is worth pointing out that developing new algorithms does not necessarily lead to better 
understanding or decision making. Recent attention to analytics for advanced visualisation of 
decision spaces suggest that developing visual analytics to explore the decision space in multi-
objective (e.g., [51]) or in multi-stakeholder problems [52] is both important and necessary.  

2.4. New Whole Water Cycle Socio-Technical System Models 

The industry’s interest in exploring new options for infrastructure provision (incl. new more 
distributed options discussed above) is driven in part by the process of aging infrastructure and the 
resulting investment gap [16]. The interest has also prompted the development and application of 
whole (socio-technical) system models [53] that attempt a more direct investigation of the interplay 
between centralized and distributed infrastructure solutions. Furthermore, the focus is also shifting 
towards the (often ignored) interplay between infrastructure and users (as also argued persuasively 
in the context of socio-hydrology by Sivapalan [54]). This integration is currently being delivered 
(mostly) around three axes: 

 Integration between centralised and decentralised solutions and (often also) between water 
infrastructure and urban fabric growth in a common (whole system) modelling environment. 
Indicative work in this context includes the Aquacycle model [55], the Urban Water Optioneering 
Tool (UWOT, see Rozos and Makropoulos [56]), UVQ [57] as well as the Dance4Water model 
[58], to name but a few. For an overview of key models as well as a discussion on the degree of 
integration, the reader is referred to Bach et al. [59]. These more integrated models, sometimes 
termed metabolism models (e.g., [60]) are increasingly being used to evaluate alternative 
pathways for the evolution of water systems under uncertainty, opening up the possibility of 
looking at a much wider palette of options than was possible with more traditional hydraulic-
only models.  

 Integration between natural and engineered infrastructure systems and user interactions. This is 
a growing area of work, which also typically includes the explicit modelling of additional flows 
(e.g., the nexus between water, energy and material flows within an urban environment). 
Although approaches to this integration vary widely, these are based primarily on: (i) System 
dynamics (SD) and/or Bayesian belief networks (BBN); and (ii) agent-based models. Recent 
examples of the former types include Sahin et al. [61], Baki et al. [62] and Chhipi-Shrestha et al. 
[63]. In this context, Zomorodian et al. [64] provide an overview of SD applications for water 
management, while Sušnik et al. [65] provide a comparison between SD and BBN models for 
water management. Recent examples of the latter type include work by Kanta and Zechman [66], 
Berglund [67] and Koutiva and Makropoulos [68]. The power of these modelling approaches is 
that they enable the explicit integration of the socio-economic system into the modelling 
framework, which is especially important when looking into policy and end-user driven 
interventions, such as water demand management, water markets, innovation uptake etc. 

 Integration between the physical and cyber layer of water systems. This attempt on modelling 
integration represents a recent development, consistent with the move towards conceptualising 
water systems as a cyber-physical infrastructure. This conceptualisation, advocated already 10 
years ago by Edward A. Lee [69] for a range of infrastructures, is currently being operationalised 
in the form of integrated simulation environments for the cyber and physical layers of a water 
system and their interactions [70–72]. Although this work is still not rolled out in an operational 
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sense within water companies, it is argued that it will become more important in the next few 
years, as part of a risk management approach for both cyber and physical risks.  

It is important to note here that in support to these more integrative explorations, the 
hydroinformatics community has been developing and demonstrating: (a) Integrated modelling 
frameworks [73,74]; (b) models as services, often based on open source solutions [75]; and (c) cloud-
based modelling systems [76,77], sometimes coupling both local model components and remote web 
services [78] in an effort to reduce the overhead required to create an integrated model in the first 
place and make their explorative power more accessible to the water research and practitioner 
communities.  

2.5. New forms of Interactive and Immersive Decision Making 

The multi-faceted, multi-discipline and increasingly more inclusive multi-stakeholder nature of 
water management considerations (and environmental management in general [79]) have given rise 
to new ways of setting the questions, visualizing potential results and experiencing system 
performance under different stresses. These ways include Serious Games [80], augmented/virtual (or 
mixed) reality (AR, VR, MR) and their combinations that enable a different level of immersive, playful 
experience of problems, options and decisions that can be used in various contexts, including 
operational, strategic and stakeholder collaborative decision-making. The basic idea of these 
(relatively new) approaches is that practical water and environmental challenges (and options to 
address them) can be better understood through a more direct experiential approach. These game-
based learning approaches improve critical thinking, creative problem solving and teamwork [79]. 
They also allow stakeholders to experiment with decisions and outcomes in a safe and fun 
environment.  

Work by several authors is currently finding its way into practical applications, engaging water 
stakeholders in collaborative decision making for such diverse fields as urban flood management 
[52], water resources management [81,82] and integrated asset management [83]. At the same time, 
augmented reality applications (including applications in handheld devices and smartphones) have 
begun to be actively used in infrastructure inspection and rehabilitations (see for example the Vidente 
application reported in Schall et al. [84]). The significant potential for this technology is especially 
evident in cases where infrastructure is underground as in the case of water distribution and 
sewerage networks. These applications typically superimpose data from GIS systems (such asset 
databases) or even data from simulations on real world views. This linking of spatial/georeferenced 
information directly on the real-world entities that they characterize, greatly facilitates the use of 
relevant data during field work (e.g., asset rehabilitation, water quality monitoring). As such, it 
ensures increased efficiency in maintenance activities, as well as increased understanding and 
learning in educational field trips and field-oriented stakeholder engagement processes (e.g., 
stakeholder visits in innovation demonstration case studies). An example of the latter is students 
participating in the EcoMOBILE project [85], who used an augmented reality application, as part of 
a field trip to an ecologically important lake. The virtual information was overlaid on the physical 
lake including hotspots—guiding students in collecting water quality measurements—but also 
increasing their understanding of underlying processes. It could be argued that such an increased 
(and more importantly shared) understanding between stakeholders, makes for a good basis for more 
inclusive, consensus-driven decision making.  

2.6. New Design Concepts and Strategies 

The availability of new ubiquitous data, advanced analytics and more integrated modeling 
frameworks is allowing the sector to perform more realistic stress-tests of water infrastructure (in its 
physical and cyber-physical sense) to help improve its performance under uncertainty. This activity 
is currently pushing the discipline’s methodological boundaries into developing and applying novel 
design concepts driven to a large extent by cities worldwide demanding realistic risk management 
under uncertainty within a context of limited new investments (see for example the 100 Resilient 
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Cities network supported by the Rockefeller Foundation [86]). These efforts are, recently, centered 
mostly around the challenging concept of resilience and the development of methods, metrics and 
tools to assess the resilience of urban water systems. Notable examples include models and tools 
developed by Irwin et al. [87], Butler et al. [88], Klise et al. [89], Makropoulos et al. [8], Kong et al. [90] 
as well as Sweetapple et al. [91]). Although a discussion on resilience per se is outside the scope of 
this paper, we note that this growing body of work, focusing on the highly interdisciplinary and 
multi-stakeholder context of resilience [92] is an important manifestation of the sociotechnical nature 
of hydroinformatics. The need to understand resilience emphasizes the role of hydroinformatics as 
an interface between science and policy, between water systems and urban processes as well as 
between technology, society and the environment.  

3. Sky Is (Not) the Limit 

This overview of some of the most exciting developments in hydroinformatics today, may give 
the impression that most of the important tasks are behind us. This, however, could not be further 
from the truth. As the discipline is, by definition, linked to and influenced by developments in the 
dynamically evolving IT sector, with every new development come new challenges and also new 
opportunities. Although the details of what can happen next are by virtue of this dynamic evolution, 
hard to predict, some of the most important trends are already visible. In an effort to summarise these 
future trends, four activity lines towards a hydroinformatics roadmap have been proposed below:  

3.1. Tapping into the New Data Landscape  

The proliferation of smart systems (including developments in the smart city and more generally 
the IoT arena) mean that data become more ubiquitous—although work on novel water quality 
sensors is still needed (see ideas on using graphene for heavy metal detection [93]). However, as more 
data from different sources become available the issue of standardization becomes vital. This is 
because standardization allows the pulling together and combined exploitation of data coming from 
different sources and different data providers, both within a utility but also potentially across 
multiple utilities, reaching the critical mass of data required to categorize water data as big data and, 
in turn, unlock the true potential of big data analytics. As such, data standardization, in terms, for 
example, of metadata, standardized markup languages (like the Open Geospatial Consortium’s 
(OGC) WaterML [94], controlled vocabularies and ontologies [95–97] inevitably play a key role in 
bringing information and analytics together. Due to their importance in an IoT and related 
telecommunications contexts, the most successful of these standardization efforts will probably not 
be initiated within the water domain per se, but rather within smart city, smart home and smart 
industry contexts, growing towards water, energy and other utility sectors. A case in point is the 
work by the European Telecommunications Standards Institute (ETSI) and its Smart Appliance 
REFerence (SAREF) ontology [98], which is currently being expanded [99] towards energy and water, 
with obvious implications for smart water meters, smart(er) water consuming devices and domestic 
water demand forecasting and management. Another important development in this field, worth 
highlighting is FIWARE [100], a curated framework of open source platform components that aims 
to accelerate the development of smart solutions, including transport, energy, as well as more 
integrative smart city solutions. FIWARE has already been used to develop interesting examples of 
interoperability for smart agricultural water management [101] and is now expanding [102] also 
towards urban water management at different scales. Data quality control and validation (potentially 
in a distributed way, closer to the data collection itself, see for example developments in edge 
analytics [103]) and improvement of data access (including data sharing and open data [104]) is also 
expected to be at the heart of the next steps in hydroinformatics.  

With this critical milestone completed, the industry may be able to exploit new developments 
that allow the industry to get new insights out of large, heterogeneous databases and leverage 
progress on AI, such as deep learning [105], from the ICT sector, to extract information, develop more 
accurate forecasts and offer customized services to end users. New opportunities afforded by 
leveraging the power of AI on larger (and more real time) water datasets, include discovering new 
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causal relationships from data already collected to improve predictive ability, e.g., in infrastructure 
maintenance, water demand management or emergency response. It may also allow for progress into 
data assimilation techniques that couple models to field data in real time. Field data from different 
sources and with different uncertainties is expected to be used in combination with models, thus 
greatly increasing current abilities for pro-active management of water systems. This new data may 
also increasingly come from the customer/citizen side, where data crowd-sourcing tools will play an 
increasing role in collecting real time information [25] as well as in gauging public opinion towards 
water relevant issues (e.g., water reuse attitudes mined from micro-blogs [106]). These (significantly 
increased) data streams may range from data collected by smartphone embedded sensors, to 
information posted on social media, to data collected by, soon to be available, autonomous vehicles 
—cross referenced and linked to open environmental data, utility sensors and remote sensed 
information from new satellite networks (like NASA’s Surface Water and Ocean Topography 
(SWOT) mission scheduled to start by 2021 [107]. 

3.2. Getting More Out of Existing Models 

This activity line, is expected to provide the sector with more advanced optimization (including 
smart model calibration under uncertainty and noise), new ways of model integration (with 
databases and other models) as well as with real time data (including IoT sensors) to form digital 
twins of utilities. The concept of digital twins, where the data from the IoT sensors are seamlessly 
linked with asset management information and both support and are supported by models of the 
system’s operations, recalibrated and updated in real time, across the complete value chain from 
water resources to customers, is expected to become possible in the near future. This ambition, of a 
complete integrated digital picture of a water utility may appear far-fetched at this time, but is a 
future in the making, judging from the interest and investment already underway in forward looking 
cities, such as Amsterdam [108] and its water utility (Waternet). Necessarily, this process shifts online 
much of the computing infrastructure for water utilities, with cloud computing for water services 
and software-as-service becoming the norm. This trend, however, is not without its challenges as is 
discussed in the following sections.  

3.3. Planning for More Resilient (Cyber-Physical) Systems and Services 

Armed with new data and models, the sector may also work more on model integration and 
higher abstraction level modelling/model coupling, where whole system strategic models—
potentially linked to digital twins—can be used as real-time control, forecasting and scenario 
planning tools in a collaborative and inclusive way.  

This direct coupling between the physical system and related infrastructure and the controlling 
cyber layer (from sensors to models to actuators) is expected to afford new opportunities for 
increased efficiency of water infrastructures throughout their lifetime, from design to building to 
operating. It would allow, for example, their real time control, with data from multiple sensors being 
continuously integrated within living models of the physical environment and the infrastructure. 
Furthermore, it would enable moving significant parts of these calculations to the edge [103], 
enabling precise and pro-active actuation of pumps, valves, sluice gates, for applications, such as 
flood forecasting and control [109,110], managing combined sewer overflows [111] and urban water 
management in general [112].  

In this context of ever increasing integration between the physical and the cyber sides of water 
infrastructure, a growing focus on cyber-physical systems risk assessment and threat modelling (e.g., 
[71,72]), is expected to become more central in water company preoccupations. Cyber-physical 
modelling can help the sector manage emerging cyber-physical risks, especially in the context of 
digital twins. In the same vein, it is suggested that work on modelling cascading effects between 
water systems and other infrastructures may also move from the research environment [113] to the 
operational environment of the sector. The move may also involve other water and crisis 
management stakeholders at national and international levels.  
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3.4. Training, Engaging and Communicating 

Lastly, significant advances in rethinking the way decisions are made (from the strategic to the 
operational) are expected. These changes in decision-making will be catalyzed through technologies 
that allow for more immersive and playful experiences of the decision landscape, such as Serious 
Games coupled with AR and VR (or mixed reality) applications and environments. The disruptive 
potential of such a technology shift cannot be overstated, potentially influencing everything, from 
immersive scenarios planning, including crisis management training, to pipe rehabilitation, 
innovation uptake and water education. This last point brings us, however, face to face with an 
important challenge: What is the form of education and indeed the skillsets required by new 
hydroinformaticians to be able to benefit from, engage with and ultimately help evolve this dynamic 
field? Popescu et al. [114] have already correctly identified this challenge some time ago, when they 
suggested that hydroinformaticians need to master a subject matter that is “increasing far more rapidly 
than the ability of engineering curricula to cover it”. Indeed, as if water science was not demanding 
enough, the domain experts also need to be fluent in data science (from statistics to machine learning) 
and computer science (from information theory to hands-on software development and user 
interfaces design). They also need to engage with topics ranging from decision theory to social science 
to ethics and philosophy of science. Popescu et al. [114] argued that flexibility is key here, delivered 
through modular design and blended forms of learning with face to face courses supplemented with 
online courses allowing participants to invest in deepening their knowledge in diverse areas in a 
more customized pace. Clearly these requirements point towards hydroinformatics as a postgraduate 
rather than an undergraduate course. Actually, Abbott et al., [115] used the term participant rather 
than student explicitly to highlight a prerequisite of solid undergraduate education in relevant fields 
and indeed hands-on experience before embarking in such a multi-disciplinary course. They also 
persuasively argued that the educational challenge posed even after this prerequisite is met, suggests 
another important subject for future hydroinformatics research, that is, research into the educational 
and training aspects of the domain. In that context, hydroinformatics may benefit from the emergence 
of the more immersive and playful approaches and technologies discussed above, not the least due 
to the active (experiential) engagement (in view, for example, of rapid developments of natural user 
interfaces [116]) and hazard-free, learning by doing aspects that these approaches afford. This 
promise, however, implies an important, additional and often neglected prerequisite: As Richert et 
al. [117] would argue tomorrow’s hydroinformatics academics need themselves the technological 
competencies to allow them to both design and create these immersive environments and the training 
in digital coaching and joint problem solving in virtual worlds to be able to use them in meaningful 
and educationally productive ways. It is suggested that this prerequisite can only be delivered 
through new multidisciplinary forms of collaboration around education per se, both within 
universities and between universities and research centres and technology providers for an 
interesting example of emerging forms of multi disciplinarity in education see for example: [118].  

4. Some Words of Caution 

Although these developments can have enormous societal and technological benefits, they also 
raise security, privacy, legal, and ethical concerns [25].  

The increased dependency of water utilities on ICT to carry out their mission and functions, as 
well as the tendency to provide interoperability and connect these traditionally closed systems to the 
Internet, opens them up to, as yet unheard of, cyber threats. A case in point is Maroochy Water 
Services in Australia, probably the most well-known cyber-attack in the water sector, where over a 
three-month period in 2000 a disgruntled former contractor took control of over 150 sewage pumping 
stations and released one million litres of untreated sewage into the environment [119]. Furthermore, 
the prospect of a large number of smart water meters being installed at customer homes, thus 
connecting them to the utility ICT systems, raises also a possibility of the wider water infrastructure 
becoming vulnerable to scalable network-borne attacks.  

By the very nature of smart systems, customers adopting them share detailed information about 
their water usage with the utility, which is then used to better assess the demand and manage the 
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entire system. This information sharing potentially exposes customers to privacy invasions with the 
main concern being the limited control over personal data by an individual, which can result in a 
range of negative or unintended consequences. Legal considerations relating to privacy and data 
protection with respect to services or applications created using customer water usage data 
(particularly valuable when combined with personal data), has been given insufficient attention in 
the literature [120]. It is, therefore, positive that the new EU General Data Protection Regulation 
(GDPR) [121] provides a framework for data protection and privacy for citizens. The regulation deals 
with the risks of accidental or unlawful destruction, loss, alteration, unauthorized disclosure of, or 
access to, personal data transmitted, stored or otherwise processed. The regulation’s application will 
inevitably open up new questions and challenges which will need to be addressed, but it is important 
that this conversation is progressing. 

Last, but certainly not least, smart systems as surveillance-enabled technologies as well as AI-
based decision making, raise issues of privacy, fundamental rights, ethics and responsibility in 
technological innovation [122]. The need for rethinking, spelling out and agreeing upon the ethical 
principles on which these technologies is expected to be based [123] has never been more pressing. 
This is a challenge, not only for technology (and the safeguards it needs to put in place) but perhaps 
more importantly for ethics and the humanities that need to pick up the challenge and update their 
theories, methods, vocabulary and technology to make sense of and proactively manage the potential 
implications to society from a pace of technological development never seen before. 

5. Conclusions: A Bright Future with Some Caveats 

This study has presented a summary of the dynamic evolution of hydroinformatics, as a 
discipline at the interface between water science, data science, computer science and technology on 
the one hand and society on the other. In so doing, the authors have highlighted exciting advances in 
new real-time information; new analytics developed to extract value from this new information; 
novel whole cycle (socio-technical) system models that are calibrated on these new datasets; new 
more immersive approaches to decision support; more sophisticated ways of stress-testing new and 
existing cyber-physical infrastructure to improve its resilience. Four activity lines of research have 
also been proposed, coming up on the horizon (tapping into the new data landscape; getting more 
out of existing models; planning for more resilient systems and services; training, engaging and 
communicating). The authors suggest that these activity lines support a virtuous cycle towards more 
resilient water systems and services. It is further argued that their confluence can drastically change 
both the form and function of water services and the infrastructure that provide these services in the 
not too distant future—for the better—provided that important challenges around privacy, 
fundamental rights, ethics and responsibility in technological innovation are seriously and urgently 
addressed. 
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