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Abstract: Water–rock interactions can alter rock properties through chemical reactions during subsurface
transport processes like geological CO2 sequestration (GCS), matrix acidizing, and waterflooding
in carbonate formations. Dynamic changes in rock properties cause a failure of waterflooding and
GCS and could also dramatically affect the efficiency of the acidizing. Efficient numerical simulations
are thus essential to the optimized design of those subsurface processes. In this paper, we develop
a three-dimensional (3D) numerical model for simulating the coupled processes of fluid flow and chemical
reactions in fractured carbonate formations. In the proposed model, we employ the Stokes–Brinkman
equation for momentum balance, which is a single-domain formulation for modeling fluid flow in
fractured porous media. We then couple the Stokes–Brinkman equation with reactive-transport equations.
The model can be formulated to describe linear as well as radial flow. We employ a decoupling procedure
that sequentially solves the Stokes–Brinkman equation and the reactive transport equations. Numerical
experiments show that the proposed method can model the coupled processes of fluid flow, solute
transport, chemical reactions, and alterations of rock properties in both linear and radial flow scenarios.
The rock heterogeneity and the mineral volume fractions are two important factors that significantly
affect the structure of conductive channels.

Keywords: reactive-transport; fracture evolution; mineral dissolution; fractured carbonate formations

1. Introduction

Subsurface water–rock interactions involve the coupled phenomena of chemical reactions and fluid
transport, in which the chemical reactions between minerals and water can cause mineral dissolution
and precipitation. Mineral dissolution is a process in which the chemical elements in the solid phase
transform into ions in the aqueous phase through various chemical reactions, and consequently lead to
a decrease in mineral mass and volume. In contrast, mineral precipitation occurs when aqueous species
transform to solid phases, resulting in an increase of mass and volume in solid phases. In carbonate
rocks, the carbonate minerals calcite and dolomite can react with acid fluids, leading to carbonate rock
dissolution and precipitation [1]. The couplings of fluid flow and mineral dissolution/precipitation may
significantly change rock properties in carbonate formations. Mineral dissolution/precipitation can
occur in many subsurface processes in carbonate formations, for example in waterflooding processes

Water 2019, 11, 1957; doi:10.3390/w11101957 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-7362-1850
http://dx.doi.org/10.3390/w11101957
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/11/10/1957?type=check_update&version=2


Water 2019, 11, 1957 2 of 18

for improving oil recovery [2], geological CO2 sequestration (GCS) for reducing CO2 emissions [3,4],
and matrix acidizing for improving oil production by changing the permeability near wellbores [5,6].

In waterflooding processes in carbonate formations, the chemical reactions between hydrogen ions
in water phase and carbonate minerals can cause mineral dissolution. The mineral dissolution process
may be enhanced by coupling with fluid flow to form large-scale conductive channels from both natural
and factitious fractures [2]. Such conductive channels can cause early water breakthrough and limited
hydrocarbon production, resulting in the failure of the waterflooding program. In a GCS process,
the dissolved CO2 in situ brine, via various geochemical reactions, can form a carbonate acid that may
then dissolve carbonate rocks [7,8]. Such CO2–rock–brine interactions cause mineral dissolutions that
could enhance the existing fracture system and form highly conductive or leakage pathways, which
may present environmental risks [9–11]. In a matrix acidizing treatment, the rock–fluid interaction
creates highly conductive pathways, the so-called wormholes, around well-bores for enhancing
hydrocarbon flow into wells [12–15]. It is thus vitally important to well understand the underlying
mineral dissolution/precipitation processes happened in the above-mentioned subsurface processes
for the successful implementations.

Mathematical modeling of the coupled physical processes of fluid flow, solute transport, and
underline chemical reactions is vital for successful implementation of those subsurface processes, and
also is challenging as rock porosity and permeability change due to fluid–rock interactions. The key
challenges are the modeling of fluid flow in the free-flow regions that are dynamically changing due to
the coupling effect of mineral dissolution and fluid transport. Over the last few decades, extensive
studies have been performed on the coupled processes of fluid flow and mineral dissolution using
the coupled reactive-transport models [16–23]. These mathematical models include conservations of
momentum and solute mass [22], which developed from early studies on one-dimensional models for
a single chemical reaction system [24,25] to the later studies on multi-component multi-dimensional
reactive-transport systems [23,26]. The Navier–Stokes equation or the Stokes equation has been
employed as a momentum equation to describe fluid flow in pore space for numerical modeling at
pore-scale in which the characterization of changing mineral surface is critical in binary domains
(solid and pore space) [19,22,27]. Molins [27] employed the embedded boundary and the level set
methods to obtain an accurate representation of the calcite surface on the Cartesian grid. The lattice
Boltzmann approach has also been used to study the reactive transport process and fracture evolution
at the pore scale [28,29]. At the continuum scale and field scale, Darcy’s equation has usually been
applied as a momentum equation [30–32]. Darcy’s equation can be inaccurate for modeling fluid flow
in carbonate formation due to its large-scale void space features that can also be enhanced dynamically
due to dissolution processes. To address such issues, Yuan et al. [33,34] presented a mathematical
model that couples the Stokes–Brinkman equation and reactive-transport equations to describe calcite
dissolution in both single and multiple mineral systems at the continuum scale. This model is capable
of describing the fracture evolution as well due to the advantage of the Stokes–Brinkman formulation
for modeling flow in fractured porous media.

The Stokes–Brinkman model uses a single set of equations in the entire domain (porous media and
free-flow regions) for fluid flow [35–37] and can be considered as a modified Darcy’s law by adding the
viscous shear stress term to account for the effect of shear stress near the boundary layer [38–40]. In the
Stokes–Brinkman equation, the effective viscosity of the fluid work as a parameter for matching the
shear stress interface condition between porous media and free-flow regions [33], which can be regarded
as the fluid viscosity throughout the physical domain [33,34,36,37,41]. Applying the Stokes–Brinkman
equation in reactive transport process offers several advantages. First, this equation can be reduced
to the Stokes or Darcy equations by choosing appropriate coefficients. In such a way, a no interface
condition, for example, the Beavers–Joseph condition [42], is needed between the porous media and
free-flow regions. In addition, it can model the transitional flow pattern from a Darcy-dominated
region to a Stokes-dominated region, a feature that allows us to efficiently model the alterations of the
rock porosity and permeability caused by the mineral dissolution.
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The existing mathematical models in the previous studies [33,34] focused on the 2-D case studies
in the Cartesian coordinate system only, which limits their applications in modeling the real-world
scenarios. For example, the actual matrix acidizing treatments are performed by acidic fluid injection
through a wellbore, the fluid flows into porous media is radial, and the velocity decreases rapidly
away from the wellbore. Therefore, a 3D mathematical model on both Cartesian coordinate and
cylindrical coordinate systems is desirable for simulating the mineral dissolution process in the
subsurface as well as the acidizing process at exact downhole environments. In this paper, we develop
a 3D numerical simulator for modeling the coupling processes of fluid flow and mineral dissolution
during the reactive transport processes. The proposed numerical model includes the Stokes–Brinkman
equation for fluid flow, reactive-transport equations for solute transport and chemical reactions, and
a rock property model for alterations of rock properties, which can be applied to simulate mineral
dissolution under both linear flow and radial flow. The mathematical model is discretized and solved
on both Cartesian coordinate and cylindrical coordinate systems sequentially. In the numerical solution
procedure, the Stokes–Brinkman equation is solved by the staggered grid finite difference method,
which was proposed by Harlow and Welsh [43] and was widely applied for solving the Navier–Stokes
equation [44,45]. The reactive-transport equations are solved by the control volume finite difference
method [23].

Effective linear solvers play a key role in scientific computing and many different types of numerical
algorithms have been developed for solving linear systems. In this paper, we employ the Fast Auxiliary
Space Preconditioning (FASP) package [46], which includes several efficient iterative solvers for solving
linear systems of equations. In our proposed sequentially numerical procedure, we employ two linear
algebraic preconditioning strategies from the FASP package for the Stokes–Brinkman and reactive
transport equations, respectively. These methods are accelerated by a Krylov subspace method,
the Variable-Restarting Flexible Generalized Minimal Residual (GMRES) method [47]. The numerical
model for radial flow is validated using a 3D radial core-flooding experiment from the existing
publication [48]. Two 3D synthetic case studies in both linear and radial core flooding are performed
to investigate the alterations of rock properties and dissolution patterns. The first case study is
for linear core flooding in a multi-mineral system, which is consist of calcite, quartz, and clay, and
the second case study is for radial core flooding in a single calcite system. The numerical results
demonstrate that the proposed numerical model is capable of modeling the coupled processes under
investigation. And the rock heterogeneity and the mineral volume fractions affect the structure of
conductive channels significantly.

The rest of this paper is organized as follows. First, the mathematical model is briefly presented. Second,
the numerical solution methods and linear algebraic solvers are discussed. The numerical experiments of
synthetic core-flooding case studies are then presented. We close with the concluding remarks.

2. The Mathematical Models

In our previous studies [33,34], we have developed a similar 2D mathematical model for the
geochemical coupling of fluid flow in fractured reservoirs. In this paper, we focus on the 3D
multicomponent flow in fractured carbonate formations on both Cartesian coordinate and cylindrical
coordinate systems. In this section, we briefly present the coupled mathematical model. The readers
are referred to Yuan et al. [33,34] for discussions on the coupled model and involved chemical reactions.

2.1. The Stokes–Brinkman Model

The Stokes–Brinkman equation has been widely applied to model fluid flow in fractured porous
media [33,34,36,37,41], as it employs a single set of equations for simulating fluid flow in the entire
domain. The general formulations of the Stokes–Brinkman equation for incompressible single-phase
fluid are expressed as follows [33,34,36–38,41]:

µKperm
−1v +∇p− µ∗∆v = f in Ω, (1)
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∇ · v = 0 in Ω, (2)

where Ω denotes the entire computational domain, v is the physical velocity of the fluid in free-flow
regions and the Darcy velocity in porous media, p is pressure, Kperm is a permeability tensor, and f is
the body force, which is ignored in this study for simplicity of presentation. µ is the fluid viscosity,
and µ∗ is the so-called effective viscosity, which is the critical parameter for matching the shear stress
at the interface between porous media and free-flow regions [49]. The effective viscosity µ∗ is set to the
fluid viscosity, µ∗ = µ in most applications [33,34,36,37,41]. The readers are referred to Yuan et al. [33]
for more details of the Stokes–Brinkman equation.

2.2. The Reactive-Transport Model

We use the reactive-transport equations to describe solute transport coupled with geochemical
reactions in the geological subsurface. In our model, the aqueous species are classified into primary
and secondary species [23]. The general mass conservation equations for the primary species α read
as follows:

∂(φCTα)

∂t
+∇ · (vCTα −D∇CTα) = Rmin

α , (α = 1, · · · , Np). (3)

In Equation (3), v is the fluid velocity defined in Equation (1), D is the dispersion/diffusion
coefficient, and φ is the porosity. Np is the number of primary species. Rmin

α is the kinetic reaction rate
of primary species α for mineral–water reactions. CTα represents the total concentrations of primary
species. Rmin

α and CTα are nonlinear functions of the concentrations of primary species. For more
details, the reader is referred to [26,33].

Equation (3) presents a general reactive transport model to describe solute transport and chemical
reactions. In our previous studies, the reactive transport model has been applied to describe mineral
dissolution processes in both a single mineral (calcite) system [33] and a multi-mineral (calcite, quartz,
and clay) system [34]. In this study, we consider both scenarios in 3D. The detailed chemical reactions
and related parameters can be found in [1,33,34].

2.3. The Rock Property Models

The porosity of porous media can be obtained by:

φ = 1−
Nm∑

m=1

φm. (4)

The change in the individual mineral volume fraction ∅m can be calculated from [23,26]:

dφm

dt
= Vmrm, (5)

where Vm is the molar volume of the mineral.
The prediction of the absolute rock permeability is another challenge because of the difficulties

in measuring it directly. As an alternative method to direct measurement, empirical models can be
applied to predict the absolute rock permeability from the porosity [50–54]. Among these models,
the most widely used one is the so-called Kozeny–Carman equation [31,32,55–62], which is written as
per [51]:

Kperm =
d2

m
180

φ3

(1−φ)2 , (6)

where dm denotes the grain size. If we ignore changes in grain size, the permeability can then be
given as:

Kperm = Kperm0(
1−φ0

1−φ
)

2

(
φ

φ0
)

3

, (7)
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where Kperm0 and ∅0 are the initial permeability and porosity, respectively.

3. Numerical Solution Strategies

In this paper, the proposed 3D numerical model is solved numerically using a decoupled approach
by the finite difference method. Within each time step, our numerical method contains four main steps:

(1) Firstly, the Stokes–Brinkman equation (Equation (1)) and the continuity equation (Equation (2))
are solved by a staggered grid finite difference method for velocities and pressure.

(2) Secondly, the velocities at grid-cell centers are calculated by averaging the velocities of grid faces
obtained from the solution of the Stokes–Brinkman equation.

(3) Thirdly, based on the calculated velocities at cell centers, the concentrations of primary species
are determined by solving the reactive-transport equations using an implicit control-volume
upwinding finite difference scheme.

(4) The last step is then to update the rock porosities and absolute permeabilities based on the
concentrations of primary species.

For more details on the numerical solution procedure of the sequential method, the readers are
referred to [33]. Note that the above scheme can be embedded in a nonlinear iteration until the desired
accuracy. For simplicity, we do not use such nonlinear iterations in our current study. The numerical
discretization and solutions for the Stokes–Brinkman equation and reactive transport equations in
the 3D Cartesian coordinates are discussed as follows. The numerical discretization and solutions of
Stokes–Brinkman equation in the 3D cylindrical coordinates are discussed in Appendix A.

3.1. Numerical Solution of the Stokes–Brinkman Model

The Stokes–Brinkman equation and the continuity equation are discretized using the staggered
grid method, also known as the Marker-and-Cell (MAC) scheme. In Cartesian coordinates, the idea of
MAC is to place the unknowns of vx, vy, vz, and p in different locations. More specifically, the pressure
p is located at the center of each cell (i, j, k), and velocities are located at the center of grid faces as
indicated by the subscripts i± 1/2, j± 1/2, and k± 1/2 (see Figure 1).
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Figure 1. Definition of pressure, velocities, and concentrations on a grid with indices i, j, k.

With the definitions of the pressure and velocities in Figure 1, the finite difference approximations
of Equations (1) and (2) in the 3D Cartesian coordinates system are given as:

(µKperm,x
−1)i+1/2, j,kvx,i+1/2, j,k +

pi+1, j,k−pi, j,k
∆x − [

(vx,i+3/2, j,k−2vx,i+1/2, j,k+vx,i−1/2, j,k)

∆x2

+
vx,i+1/2, j+1,k−2vx,i+1/2, j,k+vx,i+1/2, j−1,k

∆y2 +
vx,i+1/2, j,k+1−2vx,i+1/2, j,k+vx,i+1/2, j,k−1

∆z2 ] = 0,
(8)
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(µKperm,y
−1)i, j+1/2,kvy,i, j+1/2,k +

pi, j+1,k−pi, j,k
∆y − [

(vy,i+1, j+1/2,k−2vy,i, j+1/2,k+vy,i−1, j+1/2,k)

∆x2

+
vy,i, j+3/2,k−2vy,i, j+1/2,k+vy,i, j−1/2,k

∆y2 +
vy,i, j+1/2,k+1−2vy,i, j+1/2,k+vy,i, j+1/2,k−1

∆z2 ] = 0,
(9)

(µKperm,z
−1)i, j,k+1/2vz,i, j,k+1/2 +

pi, j,k+1−pi, j,k
∆z − [

(vz,i+1, j,k+1/2−2vz,i, j,k+1/2+vz,i−1, j,k+1/2)

∆x2

+
vz,i, j+1,k+1/2−2vz,i, j,k+1/2+vz,i, j−1,k+1/2

∆y2 +
vz,i, j,k+3/2−2vz,i, j,k+1/2+vz,i, j,k−1/2

∆z2 ] = 0,
(10)

vx,i+1/2, j,k − vx,i−1/2, j,k

∆x
+

vy,i, j+1/2,k − vy,i, j−1/2,k

∆y
+

vz,i, j,k+1/2 − vz,i, j,k−1/2

∆z
= 0, (11)

where the permeability at the interface is calculated as the harmonic average of the permeability values
of the two neighboring blocks.

In this paper, we set constant velocity on the inlet boundary, constant pressure, and free-flows at
the outlet boundary, and no-slip boundary condition on the other boundaries. The boundary conditions
in the Cartesian system are expressed as:

vx = vin at x = 0, (12)

p = pout at x = L, (13)

∂v
∂n

= 0 at x = L, (14)

v = 0 at y = 0, and y = W, (15)

v = 0 at z = 0, and z = H, (16)

where vin is the injected velocity at the inlet, pout is the outlet pressure, n is the unit normal vector on
the boundary, L is the length of the domain in the flow direction, W is the width of the domain, and H
is the depth of the domain.

The simplest way of treating the boundary is to use the reflection technique. In Figure 2, Γx and Γz

denote the inlet and bottom boundaries, respectively. The two dashed lines are the ghost boundaries
out of the domain. On the bottom boundary Γz, the boundary condition vx = 0 is imposed exactly at
the “N” point: vx,Γ = 0. Using the reflection technique, the value of vx at the “O” point on the dash line
can be determined approximately: vx,0 = −vx,1. On the inlet boundary Γr, the boundary condition is
imposed exactly at the “N” point: vz = vz,Γ. Similarly, we have vz,0 = 2vz,Γ − vz,1.

In the Cartesian coordinates, when the entire domain is divided into Nx, Ny, and Nz grid blocks
in the corresponding directions, respectively, the total numbers of p, vx, vy, and vz are Nx ×Ny ×Nz,
(Nx + 1)×Ny ×Nz, Nx × (Ny + 1)×Nz, and Nx ×Ny × (Nz + 1), respectively. By imposing the defined
boundary conditions, we have (Nx − 1) ×Ny ×Nz + (Nx − 1) ×Ny ×Nz + Nx × (Ny − 1) ×Nz + Nx ×

Ny × (Nz − 1) unknown variables and the same number of discretized equations, which can be written
as a block linear system: 

B1x 0 0 B1p
0 B2y 0 B2p

0 0 B3z B3p

B4x B4y B4z 0




vx

vy

vz

p

 =


gx
gy
gz
gp

, (17)

where vx, vy, vz, and p are unknown vectors, and all of them go through the indices i, j, k in the
same order. B1x and B1p are the submatrices resulting from the terms of vx and p in the Equation (8),
respectively. B2y and B2p are the submatrices resulting from the terms of vy and p in the Equation (9),
respectively. B3z and B3p are the submatrices resulting from the terms of vz and p in the Equation (10),
respectively. B4x, B4y, and B4z are the submatrices resulting from the terms of vx, vy, and vz in the
Equation (11), respectively. gx, gy, gz, and gp are the right-hand side vectors resulting from the defined
boundary conditions.
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Therefore, the velocity and pressure can be approximated simultaneously by solving the linear
systems (Equations (17) and (A9) in Appendix A) for the finite difference approximations of the
Stokes–Brinkman equation and continuity equation in Cartesian and cylindrical coordinates systems,
respectively. The saddle-point systems from the MAC discretization of the Stokes–Brinkman equation
are usually large-scale, ill-conditioned, and symmetric. Efficient preconditioning methods for such
problems include the geometric multigrid schemes with the distributed Gauss–Seidel smoother [63]
and the block preconditioners [64]. In this study, we employ the block lower triangular preconditioner
in the following form: 

B1x 0 0 0
0 B2y 0 0
0 0 B3z 0

B4x B4y B4z S


−1

, (18)

where S = B4xB−1
1x B1p + B4yB−1

2y B2p + B4zB−1
3z B3p.

In our simulations, the inverses of B1x, B2y, and B3z are obtained by a few fixed steps of classical
algebraic multigrid (AMG) methods as they behave like the Poisson’s equation. Furthermore, the
Schur complement can be replaced by

S ≈ B4xdiag(B1x)
−1 B1p + B4ydiag(B2y

)−1
B2p + B4zdiag(B3z

)−1
B3p, (19)

or a better approximation (see for example [65]).

3.2. Numerical Solution of the Reactive Transport Model

We followed our previous numerical method to solve the reactive-transport equations [33].
The advective mass flux term of Equation (3) is discretized using a first-order upwinding method.
The nonlinear terms CTα and Rmin

α are linearized using the classical Newton–Raphson method. A fully
implicit finite difference scheme is employed for the reactive-transport equations. For more details on
numerical solving reactive-transport equations, the readers are referred to see Yuan et al. [33].

The reactive transport equations give rise to nonsymmetric linear equations upon discretization.
When the advection term is relatively small, the equations are Poisson-type diffusion-dominated equations.
Hence, we can apply classical AMG as a preconditioner to solve such problems. The multilevel hierarchy
in AMG is constructed based on the coefficient matrix only and can be applied to general meshes.
The original AMG idea was developed under the assumption that the coefficient matrix being a symmetric
M-matrix; see the recent review paper [66]. When the advection term dominates the equations, we apply
the Incomplete LU factorization ILU(k) method as a preconditioner [67].
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4. Numerical Experiments

The numerical solution method of the coupled model in a 2D Cartesian system has been extensively
tested and validated in the previous studies [33,34]. In this paper, we present numerical experiments
to validate the proposed numerical method in 3D.

4.1. Model Validation

In this numerical experiment, we compare our numerical results with the published experimental
results by Tardy et al. [48]. The 15% HCL solution is injected into an Indiana Limestone core through
the central borehole at an injection rate of 12 mL/min. The core has an average porosity of 0.11 and
an average permeability of 19.6 mD, with dimensions of 2.77 in (0.07 m) in the outer radius, 0.125
in (0.0032 m) in the inner radius, and 2.25 in (0.057 m) in height, as indicated in [48]. The domain is
partitioned into a mesh of 100 × 100 × 100 in the cylindrical coordinate system. The initial porosity
values at grid nodes are uniformly distributed in the interval of [0.01, 0.21] with a mean value of 0.11 as
indicated in [68]. The initial permeability is calculated from the initial porosity via the Kozeny–Carman
equation (Equation (6)). Figure 3 shows the transient variations of the pressure at the inlet during acid
injection, and the simulation result shows good agreement with the experimental results.
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4.2. Numerical Studies

Now we present two 3D synthetic core flooding case studies to investigate alterations of rock
properties and dissolution patterns with different heterogeneities, volume fractions, and flow conditions.
In the first case, the proposed numerical model is applied for 3D linear core flooding in a multi-mineral
system, which is consist of calcite, quartz, and clay [34]. In order to examine the effects of heterogeneity
of porous media and mineral volume fractions on the alterations of rock properties and dissolution
patterns, sensitivity studies have been performed. In the second case study, the proposed numerical
model is applied for 3D radial core flooding in a single calcite system, which can be applied to simulate
the matrix acidizing process at exact downhole environments.

Case Study 1: 3D linear flow core flooding. In this case, we use a 3D synthetic core sample,
which is 10-cm long, 5-cm wide, and 5-cm tall, as shown in Figure 4. The minerals are assumed to
be homogeneously distributed, which indicates the initial mineral volume fractions are the same
throughout the entire sample. As indicated in [30], the initial porosity values at grid nodes in the porous
media are defined as: φ = φ0 + f , where φ0 = 0.2 is the mean value of porosity, the fluctuations f are
uniformly distributed in the interval [−∆φ0, ∆φ0], and the magnitude of heterogeneity a is defined as
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a =
∆φ0
φ0

. We consider three scenarios with the different magnitudes of heterogeneity in the porous
media. In this case study, three disconnected fractures representing natural fractures are embedded in
the porous media. We set φ = 1 and choose large Kperm values in fractures. Acidic fluid with a pH
value of 3 is injected from the inlet boundary at 25 ◦C at a constant rate. The outlet pressure is fixed at
100 kPa. The initial and injected values of primary species concentrations are given in Table 1.Water 2019, 11, 1957 10 of 20 
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Table 1. Initial and injected concentrations of aqueous species.

Ca2+(a) Na+(a) Al3+(a) SiO(a)
2 pH

Initial Condition (mol/L) 6.05× 10−4 1.38× 10−4 2.93× 10−6 7.38× 10−5 7

Injected CO2-saturated brine (mol/L) 1.57× 10−2 1.03 4.08× 10−7 1.21× 10−6 3

Note: (a) represents aqueous species.

Heterogeneity of the porous media is an important factor that affects structures of the flow
channel during reactive transport processes. In a realistic case, natural heterogeneities could trigger
very complicated flow paths, which in turn causes complex structures in the transport of acid fluid.
The various flow paths lead to different dissolution patterns. The initial mineral volume fraction is
another important parameter that can affect alterations of rock properties significantly due to the
different chemical reactivity with acidic fluid among the minerals.

4.2.1. The Effect of Heterogeneity

In this section, we have three different intervals of fluctuations f of [−0.05, 0.05], [−0.10, 0.10],
and [−0.15, 0.15], respectively, to investigate the effects of heterogeneity on dissolution patterns and
variations of rock properties. The corresponding magnitudes of heterogeneity are chosen to be 0.25,
0.5, and 0.75, respectively. The initial mineral volume fractions of 90% calcite, 5% quartz, and 5% clay
is fixed. The other initial conditions and boundary conditions are the same as shown in Table 1.

We consider three disconnected fractures with the same aperture of 1 mm as shown in Figures 5a,
6a and 7a. The computational domain is meshed using a 100 × 100 × 50 Cartesian grid system.
Figures 5–7 illustrate the initial porosity distributions and wormhole structures at the breakthrough.
The definition of a breakthrough is the situation when the ratio of the pressure drop to the initial
pressure drop decreases to 1% [18,30,33,34]. Figures 5b, 6b and 7b demonstrate that the heterogeneity
of porous media has significant effects on the structure of the conductive pathways in the fractured
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porous media. Without heterogeneity, the dissolution front should propagate uniformly. In Figure 5b
with a lower magnitude of heterogeneity, the wormhole structures tend to be more straight and
smooth at breakthrough, because the permeability is almost uniform throughout the core and the flow
direction of injected acidic fluid remains almost the same. As the magnitude of heterogeneity increases,
the dominant wormholes become highly branched and irregular, as shown in Figure 7b.Water 2019, 11, 1957 11 of 20 
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4.2.2. The Effect of the Mineral Volume Fraction

In this section, the mineral volume fractions are initially set to 80% calcite, 15% quartz, and
5% clay, and 70% calcite, 25% quartz, and 5% clay, respectively. The fluctuations f are fixed in the
interval [−0.15, 0.15], and the corresponding magnitude of heterogeneity α is 0.75. Other initial and
boundary conditions are the same among these three scenarios. The changes in average porosity are
compared to investigate the effects of the mineral composition on the alterations of rock properties
(Figure 8). Figure 8 illustrates a comparison of the average porosity of the fracture porous media from
the beginning to the breakthrough among these three scenarios. The calcite has the highest chemical
reactivity with the hydrogen ion among calcite, quartz, and clay, which consequently cause the highest
chemical reaction rate. Therefore, an increased volume fraction of calcite at the beginning can lead to
an expanded volume of dissolved calcite and can augment the mineral dissolution rate. As a result,
a larger average porosity and an earlier breakthrough can be obtained, as shown in Figure 8.
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Case Study 2: 3D radial flow core flooding. In this case, we present the synthetic 3D radial
flow core flooding case studies to simulate a matrix acidizing process. A 3D synthetic core sample
has a dimension of 2 cm in inner diameter, 20 cm in outer diameter, and 10 cm in height. Several
disconnected fractures with a uniform aperture of 2 mm are randomly distributed inside of the porous
media, as shown in the low two figures of Figure 9. The initial porosity in the porous media is uniformly
distributed in the interval of [0.05, 0.35] with a mean value of 0.2. The acidic fluid with a pH value of 1
is injected into the porous media through the central borehole at a constant rate. The pressure at the
outer boundary is fixed at 10 Mpa. The core sample contains only one mineral, calcite, with a specific
surface area of 0.039

(
m2/g

)
[69], and the reaction rate constant krm was adjusted to 10−3.73 mol/(m2s)

based on the results of model validation.
Figures 10 and 11 represent the porosity profiles at different times with 3 and 6 originally

disconnected fractures under the radial flooding condition, respectively. During the flooding process,
the injected acid fluid flows preferentially through the fractures due to the good fluid conductivity.
Chemical reactions which occur at the mineral surface under the action of the acidic fluid then leads to
the dissolution of the mineral rock. As a consequence, the conductive pathways are formed nearby
the initial fractures (Figures 10b–d and 11b–d). Comparing Figures 10 and 11, the more initially
disconnected fractures are embedded into the porous media, the greater the number of ramified
structures will be, and the formation of conductive pathways will be obtained more quickly.
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5. Conclusions

In this study, we developed a 3D mathematical model that couples the Stokes–Brinkman,
reactive-transport, and rock properties equations to simulate fluid flow, solute transport, chemical
reactions, and alterations of porosity and permeability in a fractured porous media. The coupled model
can be applied to simulate the mineral dissolution processes in both linear and radial flow. We have
developed and implemented a sequential numerical solution procedure to solve this coupled model.
We applied the newly developed numerical simulator for three dimensional simulation study on the
coupled processes of fluid transport and mineral dissolution both on Cartesian and cylindrical grids.
The preliminary simulation results can be highlighted as follows:

• Firstly, the proposed numerical model is applied for 3D linear core flooding in a multi-mineral
system, which consists of calcite, quartz, and clay. Sensitivity studies clearly show the effects of
heterogeneity of porous media and mineral volume fractions on the rock properties and dissolution
patterns. The numerical results demonstrate that the magnitude of heterogeneity has a significant
impact on the structure of the dominant wormholes: Without heterogeneity, the dissolution front
propagates uniformly. The higher initial calcite content has a significant impact on porosity and
fracture evolution via an increase in the reactive surface area and the subsequent augmentation of
the chemical reaction rate.

• In the second case study, the proposed numerical model is applied for 3D radial core flooding in
a single calcite system. Several disconnected fractures are randomly distributed inside of porous
media. During the flooding process, the fractures propagate radially within the porous media and
eventually form the conductive channels, wormholes. Therefore, the proposed numerical model
can be applied to simulate the matrix acidizing process in fractured carbonate formations at exact
downhole environments.

However, it should be noted that the model developed in this work is mainly focused on the
reactive transport processes at the core scale. Challenges arise when simulating this process at the
field scale due to the treatment of fractures in this model. More efficient numerical models for field
applications will be developed in the future.
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Appendix A

In this paper, the unknowns of vr, vθ, vz, and p in 3-D cylindrical coordinates are defined in
Figure A1. The pressure p is located in the center of each cell (i, j, k), and velocities are located in the
center of grid faces as indicated by the subscripts i± 1/2, j± 1/2, and k± 1/2.
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Figure A1. Definition of pressure, velocities, and concentrations on a grid with indices i, j, k.

With the definitions of the pressure and velocities in Figure A1, the finite difference approximations
of Equations (1) and (2) in the 3D cylindrical coordinate system are given as:

(µKperm,r
−1)i+1/2, j,kvr,i+1/2, j,k +

pi+1, j,k−pi, j,k
∆r − [ 1

ri+1/2

ri+1(vr,i+3/2, j,k−vr,i+1/2, j,k)−ri(vr,i+1/2, j,k−vr,i−1/2, j,k)

∆r2

−
v2

r,i+1/2, j,k

r2
i+1/2

+ 1
r2

i+1/2

vr,i+1/2, j+1,k−2vr,i+1/2, j,k+vr,i+1/2, j−1,k

∆θ2 +
vr,i+1/2, j,k+1−2vr,i+1/2, j,k+vr,i+1/2, j,k−1

∆z2

−
2

r2
i+1/2

vθ,i, j+1/2,k−vθ,i, j−1/2,k
∆θ ] = 0,

(A1)
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1
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2
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where the permeability at the cell interface is calculated as the harmonic average of the permeabilities
of the two neighboring cells.

In this paper, we set constant velocity at the inlet boundary, constant pressure and free-flows at
the outlet boundary, and no-slip boundary condition at the other boundaries. The boundary conditions
in the cylindrical system are expressed as:

vr = vin at r = rw, (A5)

p = pout at r = re, (A6)

∂v
∂n

= 0 at r = re, (A7)

v = 0 at z = 0, and z = H, (A8)

where rw denotes the wellbore radius, re denotes the radius of the outer boundary, vin is the injected
velocity at the wellbore, pout is the outlet pressure, n is the unit normal vector on the boundary, and H
is the depth of the domain.

In the cylindrical coordinates system, when the entire domain is divided into Nr, Nθ, and Nz grid
blocks in the corresponding directions, respectively, the total number of p, vr, vθ, and vz is Nr ×Nθ ×Nz,
(Nr + 1) ×Nθ ×Nz, Nr ×Nθ ×Nz, and Nr ×Nθ × (Nz + 1), respectively. By imposing the defined
boundary conditions, we have (Nr − 1) ×Nθ ×Nz + (Nr − 1) ×Nθ ×Nz + Nr ×Nθ ×Nz + Nr ×Nθ ×

(Nz − 1) unknown variables and the same number of discretized equations, which can be expressed as
a system of linear equations: 

B1r B1θ 0 B1p
B2r B2θ 0 B2p

0 0 B3z B3p

B4r B4θ B4z 0




vr

vθ

vz

p

 =


gr
gθ
gz
gp

, (A9)

where vr, vθ, vz, and p are unknown vectors, and all of them go through the indices i, j, k in the
same order. B1r, B1θ, and B1p are the submatrices resulting from the terms of vr, vθ, and p in the
Equation (A1), respectively. B2r, B2θ, and B2p are the submatrices resulting from the terms of vr, vθ,
and p in the Equation (A2), respectively. B3z and B3p are the submatrices resulting from the terms of vz

and p in the Equation (A3), respectively. B4r, B4θ, and B4z are the submatrices resulting from the terms
of vr, vθ, and vz in the Equation (A4), respectively. gr, gθ, gz, and gp are the right-hand side vectors
resulting from the defined boundary conditions.
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