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Abstract: Stepped spillways are commonly used under relatively low unit discharge, where cavitation
pitting can be avoided by self-aerated flow. However, there are several dams in China with stepped
spillways in combination with X-shaped flaring gate piers with unit design discharge considerably
larger than specified in the available guidelines. Consequently, air–water two-phase flow on stepped
spillway behind X-shaped flaring gate piers under very high unit discharge was investigated using
Computational Fluid Dynamics (CFD) simulations. The 3-D Reynolds-averaged Navier–Stokes
equations were solved, including sub-grid models for air entrainment, density evaluation, and
drift-flux, to capture self-aerated free-surface flow over the spillway. The pressure on the vertical step
faces was compared with laboratory data. In addition, the air–water two-phase flow characteristics
and prototype step failure of the simulated prototype spillway were analyzed based on the numerical
results of velocity, pressure, and air concentration. Moreover, an optimized bottom-aeration was
further studied. The results reveal that the involved models can predict the air concentration near
the steps. The cavitation index at the stepped surface is below the threshold value, and the air
concentration is insufficient under high unit discharges. Moreover, with the proposed optimization
of the aerator air entrainment can be improved and thereby cavitation erosion risk can be reduced.

Keywords: stepped spillway; X-shaped flaring gate piers; self-aerated free-surface flow; cavitation
erosion; CFD

1. Introduction

Stepped spillways are commonly used hydraulic structures owing to their construction
convenience and excellent energy dissipation performance [1] below the critical unit discharge
of roughly 25 m2

·s−1 [2]. Their hydraulic characteristics have been widely and deeply investigated
in the past several decades [3,4]. Sánchez-Juny et al. [5] measured the pressures on the step surfaces
for skimming flow and found that pressures on the horizontal faces of the steps are always positive,
while on the vertical faces, maximum pressure occurs in the vicinity of the internal edges, and the
minimum values are often negative, appearing slightly below the step tips. Ohtsu and Yasuda [6],
Li [7], and Zhang et al. [8] also determined a similar pressure distribution in their experiments. Frizell
and Renna [9] used a specialized low-ambient pressure chamber (LAPC) to produce cavitation, and
conducted a detailed investigation on the critical cavitation index and the shear strain rate close to the
steps. They discovered that the cavitation inception was due to negative pressures, and was located at
the highly intense shear layer slightly above the step tips. In terms of the absolute threshold value
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for the cavitation index, [9] proposed a value about four times the friction factor, i.e., about 0.5 for
typical stepped spillways [10], while the critical inception index was acknowledged to be 0.20 to 0.25
for smooth spillways [11].

Despite negative pressures and consequently an increased cavitation potential induced by steps,
stepped spillways are less prone to cavitation erosion than smooth spillways [11]. This relies on
the self-aeration of the flow and subsequent air bubble downward transport, which supply air to
the stepped surface and thereby efficiently prevent or at least reduce cavitation pitting. However,
this process may be extenuated with increasing flow depth above the steps and decreasing flow
aeration. The latter is mainly controlled by the boundary layer’s development [12], which can be
mathematically translated to a threshold unit discharge. Boes and Hager [2] recommended the
threshold unit discharge, qmax, to be approximately 25 m2

·s−1, whereas Pfister et al. [13] reported
qmax = 30 m2

·s−1, and Liang et al. [14] reported qmax = 40 m2
·s−1. Boes [10] provided a graph and a

table to determine the threshold unit discharge for several typical chute slopes and step heights based
on a critical cavitation index of 0.5. For higher unit discharge, bottom aerators must be arranged
upstream to supply additional air [15]. As an alternative to unit discharge, critical velocities are
provided in [2,16,17], which are around 15 to 20 m/s.

As far as we know, the design, construction, and operation of stepped spillways for unit discharge
above the aforementioned critical values only exist in China, where these spillways are always
combined with flaring gate piers (FGPs) to achieve efficient aeration (Figure 1) [18,19]. The unit design
discharge of these spillways is usually around 200 m2

·s−1, i.e., 5 to 8 times larger than the critical unit
discharge for common stepped spillways. The FGP concept was put forward in China in 1978 to allow
for an energy dissipator at Ankang dam, where bedrock and river dynamics conditions would have
required the construction of a large-sized stilling basin. Fortunately, the laboratory model test showed
that the FGP concept allowed for a reduction of the stilling basin length at Ankang dam by 1/3 to
1/2 [18]. Subsequently, the FGP concept became popular at many Chinese dams. For example, FGP
was combined with a flip bucket in 1980 at Panjiakou dam, enabling a reduction of the depth of the
downstream plunge pool by roughly 14% and relocation of the scouring region approximately 20 to
30 m downstream. Then, in 1993, the FGP concept was used combined with a bucket type stilling
basin at Yantan dam, where the bucket region velocity and downstream scouring could be significantly
reduced [18]. Simultaneously, the FGP concept was again used with stepped spillways (hereafter
termed FGP-SS) and a bucket type stilling basin to save construction time and project investment
at Shuidong dam, where slight damages were observed along the first steps behind the FGP after a
flood in May 1994, with an unit discharge of around 90 m2

·s−1 [19,20]. Several model tests in Chinese
laboratories showed that FGP can horizontally squeeze and vertically stretch the nappe, inducing
larger air contact areas, intensive impact between the jet and downstream water, and significant
three-dimensional momentum exchange in the stilling basin, thereby dissipating large amounts of
kinetic energy [18,21,22].
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Figure 1. Schematic of the general flow pattern and aeration mechanism of the stepped spillway 

combined with X-shaped FGP: (a) 3D air-side view and (b) side view. 
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not squeezed. Moreover, it can also reduce the impact pressure on the stepped surface caused by the 

vertically stretched flow [23]. The term X-shaped stems from the side-view of the pier structure (see 

Figure 2). To the authors’ knowledge, there are 12 large dams in China that have simultaneously 

adopted the FGP and stepped spillway, whereof 8 have X-FGPs. As shown in Figure 1, both surface 

and bottom aeration can be achieved on FGP-SS. Surface aeration is enhanced compared to non-FGP 

spillways because the nappe is squeezed and expanded by the piers, leading to an increased surface 

area that evidently entrains more air. Moreover, bottom aeration can be improved by means of the 

cavity under the nappe, which is formed by an offset-like heightened first step and a deflector-like 

slope difference between the straight section of the weir’s downstream surface and the steps. 

Furthermore, ambient air can be supplied without obstruction to the cavity from the air-sided area 

behind the piers (see Figure 1). Despite these enhanced flow aeration structures, a failure of the steps 
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tests with a 1/50 scale model of a stepped spillway with a 1:0.75 slope, 1.2 m step height, and 180 m2·s-
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FGP was 10% to 15%, and 3% to 5% for X-shaped FGP. The reference case without FGP featured an 

air concentration of 1%, and prototype air concentrations at Dachaoshan dam under identical 

hydraulic conditions were approximately two times the scale model values. Wang et al. [24] provided 

a relationship considering the first step height and the stepped spillway slope to estimate the cavity 
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particular air entrainment model and bubble transport model, and presented general distributions of 

the velocity and pressure on the steps below FGP. Li et al. [26] simulated skimming flow over a 

pooled stepped spillway with four types of pool weirs, but no air entrainment was considered. Koh 
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and obtained consistent velocity and dissolved oxygen distributions, in agreement with experimental 

Figure 1. Schematic of the general flow pattern and aeration mechanism of the stepped spillway
combined with X-shaped FGP: (a) 3D air-side view and (b) side view.

The X-shaped FGP (X-FGP) was put forward in 2003 for Suofengying dam to improve energy
dissipation by the spillway steps under low discharges, since the flow at the bottom of the X-FGP
is not squeezed. Moreover, it can also reduce the impact pressure on the stepped surface caused by
the vertically stretched flow [23]. The term X-shaped stems from the side-view of the pier structure
(see Figure 2). To the authors’ knowledge, there are 12 large dams in China that have simultaneously
adopted the FGP and stepped spillway, whereof 8 have X-FGPs. As shown in Figure 1, both surface
and bottom aeration can be achieved on FGP-SS. Surface aeration is enhanced compared to non-FGP
spillways because the nappe is squeezed and expanded by the piers, leading to an increased surface
area that evidently entrains more air. Moreover, bottom aeration can be improved by means of the
cavity under the nappe, which is formed by an offset-like heightened first step and a deflector-like slope
difference between the straight section of the weir’s downstream surface and the steps. Furthermore,
ambient air can be supplied without obstruction to the cavity from the air-sided area behind the piers
(see Figure 1). Despite these enhanced flow aeration structures, a failure of the steps at Shuidong
dam [19] and Ludila dam (see Figure 3) took place. Limited studies on X-shaped FGP-SS can be found
in publications, most of which are in Chinese. Liang et al. [14] carried out laboratory tests with a 1/50
scale model of a stepped spillway with a 1:0.75 slope, 1.2 m step height, and 180 m2

·s−1 unit design
discharge. They revealed that the air concentration on the stepped surface for Y-shaped FGP was 10%
to 15%, and 3% to 5% for X-shaped FGP. The reference case without FGP featured an air concentration
of 1%, and prototype air concentrations at Dachaoshan dam under identical hydraulic conditions were
approximately two times the scale model values. Wang et al. [24] provided a relationship considering
the first step height and the stepped spillway slope to estimate the cavity size at the steps below
X-shaped flaring gate piers. Zhang et al. [25] simulated the two-phase flows along the stepped spillway
below X-shaped FGP under a unit discharge of 195 m2

·s−1, without any particular air entrainment
model and bubble transport model, and presented general distributions of the velocity and pressure
on the steps below FGP. Li et al. [26] simulated skimming flow over a pooled stepped spillway with
four types of pool weirs, but no air entrainment was considered. Koh et al. [27] adopted the two-phase
consistent particle method (CPM) for the simulation of a large dam break, where a thermodynamically
consistent compressible solver was used by employing the ideal gas law for the compressible air phase.
They successfully reproduced the air pocket trapped by overturning water and its cushion effect,
obtaining better agreement with the experimental data than the single-phase simulations (both CPM
and smoothed particle hydrodynamics-SPH). Wan et al. [28] numerically studied the hydrodynamics
and aeration on a stepped spillway using the SPH method and obtained consistent velocity and
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dissolved oxygen distributions, in agreement with experimental data. Zhang et al. [29] simulated
high turbulent air–water two-phase flows in a drop shaft using an air entrainment model, resulting
in wall air concentrations that slightly deviated from the experimental data. Chen [30] successfully
simulated the flow over typical stepped spillways using a k-ε turbulence model and the volume of
fluid (VOF) method. However, investigations on the two-phase flows for FGP-SS remain insufficient
for practical design and operation, especially in view of large-scale effects between the laboratory
model and prototype, particularly for air concentration [31–33]. Therefore, numerical simulation could
be an alternative to tackle this problem.

In this paper, the air–water two-phase flow on a stepped spillway below X-shaped FGP under
very high unit discharges was studied using the commercial software FLOW-3D®, which incorporates
the 3-D Reynolds-averaged Navier–Stokes (RANS) equations, including the RNG k-ε turbulence
model, VOF method, and sub-grid models for air entrainment, density evaluation, and drift-flux. The
results were compared with the experimental data from scale model tests obtained in the laboratory.
Furthermore, the step failure at Ludila dam was analyzed in prototype scale based on the numerical
results and an optimization of the corresponding bottom aeration was further studied.

2. Prototype Site and Investigated Sub-Model

The Ludila dam (see Figure 3a) is located in Yunan Province, China. In its flood-release dam
section, there are five 15 m wide surface outlets equipped with X-shaped FGPs and connected to the
following stepped spillway and bucket type stilling basin. The elevation of the weir crest is 1204 m
a.s.l. The upstream weir curve is a standard three circular arc curve (Hd = 18.2 m) according to the US
Army Corps of Engineers’ Hydraulic Design Criteria, followed by a power curve (y = 0.0425x1.85) and
a linear slope of 1:0.854, ending at 1179.00 m a.s.l. The stepped spillway consists of 50 steps that are
0.9 m wide and 1.2 m high, except for the first step, which is 2.22 m high. The end of the spillway is
connected to a bucket (1114 m a.s.l.) followed by the stilling basin (1115 m a.s.l.). A continuous tail sill
is located 145.24 m downstream of the dam axis. More details can be found in the longitudinal profile
as shown in Figure 2.
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Figure 2. Longitudinal section of Ludila dam and details of X-shaped FGP.

Moreover, the Ludila dam spillway underwent a failure of some steps in the summer flood in
2015. The prototype damage shown in Figure 3 was taken in the aftermath analysis.
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Figure 3. (a) Photo of damaged steps and (b) measured destruction width after the 2015 flood at the
Ludila dam spillway.

A 1/40 scaled physical model of Ludila dam spillway was erected at the State Key Laboratory of
Water Resources and Hydropower Engineering Science of Wuhan University. The model consisted of
all the five surface holes in the lateral direction and covered the reservoir, stepped spillway, and bucket
type stilling basin longitudinally. The stepped spillway and sidewalls were made of plexiglass with
negligible roughness to provide a transparent view of the flow pattern. With the limitations imposed
by the experimental equipment and step size (2.25 cm wide and 3 cm high), measurements of fluid
velocity and air entrainment close to the stepped surface were unachievable. In the experiment, the
pressure at the step surface was measured with both a rubber piezometric pipe and a high-speed
pressure transmitter (the acquisition frequency and duration were 50 Hz and 180 s, respectively) at
the middle of the corresponding step’s vertical face. Flow rates were measured with a permanent
magnetic flow meter (±0.002 m3/s).

In the simulation, a sub-model of the Ludila dam was considered, including a 15 m wide weir field
with FGPs, the downstream 40 m wide stepped spillway (see Figure 5), and the bucket type stilling
basin. The inlet and outlet were set 100 and 227 m away from the dam axis (see Figure 2), respectively.

3. Mathematical Models and Simulation Setup

The commercial CFD code FLOW-3D® [34] was used to numerically solve the 3D
Reynolds-averaged Navier–Stokes (RANS) equations for one fluid, including the RNG k-ε turbulence
model [35] and the TurVOF method [36] for interface tracking. Sediment transport and cavitation
processes were not considered in the current study.

3.1. Mass Continuity Equation

For incompressible two-phase flow, the continuity equation is given in the form of the
volume-weighted average density and velocity of two phases as follows:

∂ρm

∂t
+∇× (ρmum) −∇× (ϑ∇ρm) = 0 (1)

where ρm and um are the volume-weighted average density and velocity, respectively. The third term
on the left side is the turbulent diffusion term, which only makes sense for turbulence mixing processes
in fluids with a non-uniform density. ϑ is equal to Scµm/ρm, where Sc is a constant and equals the
reciprocal of the turbulent Schmidt number, and µm is the volume-weighted average dynamic viscosity.
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3.2. Momentum Equation

Conservation of momentum for the fluid mixture is described by:

∂(ρmum)

∂t
+∇× (ρmumum) = −∇P + ρmg +∇× τ (2)

where P is pressure, τ is the Reynolds stress tensor, and g is the gravitational acceleration. τ can be
calculated by the effective kinematic viscosity, ϑe f f , the turbulent kinetic energy, k, and the identity
matrix, I, using the Boussinesq hypothesis:

τ = −ϑe f f

(
∇um +∇uT

m −
2
3

I∇um

)
+

2
3

Ik. (3)

3.3. RNG k-ε Turbulence Model

In this work, turbulence was modelled using the RNG k-εmodel, which is capable of accounting
for the effects of smaller scales of motion. The RNG k-εmodel is appropriate for flow with complex
geometries and with strong shear effects. The governing equations for the turbulence model are:

D
Dt

(ρmk) = ∇× (ρmDk∇k) + Pk − ρmε (4)

D
Dt

(ρmε) = ∇× (ρmDε∇ε) +
C1Pkε

k
−

C∗2ρmε2

k
(5)

where Dk and Dε represent the effective diffusivity of k and ε. Pk is the generation of k due to the mean
velocity gradients. The model parameter, C1, is 1.42, and C∗2 can be calculated from C2 = 1.68, k, and Pk.
More details about the RNG k-ε turbulence model can be found in the user manual of the software [34].

3.4. VOF Model

Flow-3D uses a so-called TruVOF technique, which tracks the interface of two immiscible fluids
by an indicator scalar, f, ranging from 0 to 1, representing the fractional volume of the main fluid
(i.e., water in our study) in all cells. Besides, the TruVOF is also capable of applying suitable boundary
conditions at the interface, thereby avoiding having to solve the equations for the air phase, which
significantly speeds up the simulation. The transport equation for f is:

∂ f
∂t

+ um ×∇ f −∇× (ϑ∇ f ) = 0 (6)

Similar to Equation (1), the third term on the left side stands for turbulent diffusion.

3.5. Air Entrainment Model

The air entrainment model [37,38] in FLOW-3D® is based on the assumption that air entrainment
at the free surface will occur when instabilities due to turbulence (expressed by force Pt in Equation (8))
overcome the stabilizing forces, Pd, originating from gravity and surface tension. Consequently, air
with volume, δV, may be entrained into the fluid, which can be described by the governing equations
as follows:

LT =
CNU

3
4 k

3
2

εT
(7)

Pt = ρwk; Pd = ρwgnLT +
σsur

LT
(8)

δV =

kairAs

[
2(Pt−Pd)

ρw

]1/2
i f Pt > Pd

0 i f Pt < Pd

(9)
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where LT is the turbulence length scale, CNU is a constant with a value of 0.09, and kT and εT are
the turbulent kinetic energy and turbulent dissipation, respectively. ρw is the water density, gn is the
component of gravity normal to the water surface, σsur is the coefficient of surface tension, δV is the
volume of air entrained per unit time, kair is a coefficient of proportionality, and is the surface area. In
FLOW-3D®, the air entrainment is combined with a mixture model for the single-phase fluid, where
air is added to the fluid as passive tracer, i.e., without directly affecting the fluid flow (e.g., no voids
due to bubbles, no momentum transfer) but changes the density of the fluid depending on the air
concentration. This approach is reliable only if the entrained air concentration in the computational
cells is less than 10% [37]. To consider additional physical processes of air transport in the water,
bulking and buoyancy effects were taken into account. These can be implemented by using the density
evaluation and drift-flux models introduced hereafter.

3.6. Density Evaluation Model

The density evaluation model aims to account for the non-uniform fluid density resulting from
the entrained air, thus the mixture density can be computed as:

ρm = (1−Ca)ρw + Caρa (10)

where ρm and ρa are the mixture density and air density, respectively, and Ca represents the
air concentration.

3.7. Drift-Flux Model

The buoyancy and phase drag, as well as the bubble particle interaction, can be modelled by the
drift-flux model [39]. In this model, the relative velocity between dispersed air bubbles and continuous
water is considered steady, and thus the air transport equation becomes:(

1
ρw
−

1
ρa

)
∇P =

(
fρw + (1− f )ρa

f (1− f )ρwρa

)
Kur (11)

In Equation (5), f is the volume fraction of water, K is the cell drag coefficient, and ur represents
the relative/slip velocity. K can be calculated from the single particle drag coefficient, Kp:

Kp =
1
2

Apρw

(
CdUr +

12µw

ρwRp

)
(12)

K =
(1− f )

VP
KP (13)

where Ap is the cross-sectional area of the air bubble, Ur is the magnitude of ur, Cd is a user-defined
drag coefficient, µw is the dynamic viscosity of water, and Rp denotes the bubble radius, which is
controlled by the critical Weber and capillary number.

The bubble diameters were dynamically computed by the dynamic droplet size sub-model [40],
which accounts for bubble breakup using the critical Weber and capillary numbers. In high-velocity
spillway flows, shear stress and surface tension (i.e., Weber number, We) dominate the bubble breakup
process and herein the critical We was chosen as the default value of 1.6, which was calculated
as follows:

We =
ρmU2

r dp

8σsur
(14)

where ρm is the volume-averaged density, and dp is the bubble diameter. Moreover, the initial bubble
diameter was set as 1 mm and a simple collision model [40] was used to account for bubble coalescence.
For the drag force and bubble interaction, default numbers of 0.5 and 1 were used as the drag coefficient
and Richardson–Zaki coefficient multiplier (introduced hereafter), respectively. The minimum and
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maximum volume fraction of water were set to 0.1 and 1, respectively, with gas escape considered.
This means the two-phase flow surface is indicated by an iso-surface with an air concentration of 90%
as usually defined in experimental investigations. The density and viscosity of air were set to 1.225 and
1.7·10−5 kg m−1 s−1 since the operating temperature was considered to be 15 ◦C. Finally, the critical air
volume fraction that controls the air turning from dispersed to continuous was defined as 1, which
means water will always be in the continuous phase as suggested by FLOW-3D. More details about the
drift-flux and dynamic bubble size sub-model can be found in [39,40].

Bubble coalescence will form larger bubbles and thus higher air fractions, which can significantly
affect the drag force and bubble transportation. FLOW-3D adopted the approach of Richardson and
Zaki [41], who modified the relative velocity to account for the effect of relatively high air fractions.
The modified relative velocity was calculated by:

ue f f
r = ur ×max(0.5, f )kRZξ0 (15)

where kRZ is the Richardson–Zaki coefficient multiplier, which was kept as the default value of 1, and
ξ0 is the Richardson–Zaki coefficient, which depends on the bubble Reynolds number, Reb = dpur/vw

(where vw represents the kinematic viscosity of water), with ξ0 = 4.45/Re0.1
b for 1 < Reb ≤ 500, and

ξ0 = 2.39 for Reb > 500.

3.8. Simulation Setup

Two numerical models with identical geometries but at different scales, i.e., one at the prototype
scale and the other at the physical model scale, were used for the simulations. The cell size thus had
a scale of 1:40. Velocity, pressure, and air concentration were acquired at specific locations. For the
numerical prototype model, pressure and velocity on the one hand, and air concentration on the other
hand were determined at each step at characteristic locations. The air concentration values were taken
at the center of the pseudo-bottom, whereas pressure and velocity were taken close to the position
of maximum negative pressure, i.e., 0.3 m below the step tip (Figure 4). These flow parameters were
collected in the last 10 s of the simulation when the flow reached a steady state. The simulations were
considered to converge and reach a steady state when the relative variation of the total volume of
fluid 1 in the domain was within 0.5%. The convergence for simulation case 3 is exemplarily shown in
Figure A1. By considering that the geometry of the numerical model is slightly different from that of
the prototype (Figure 4) due to the applied grid generation technique (FAVOR [42,43]), the locations of
the pressure values were arranged 0.1 m away from the vertical step tread.
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At the upstream and downstream boundaries, hydrostatic pressure boundaries based on the
specified water elevation were set. At the top boundary, atmospheric pressure was specified. The left,
right, and bottom boundaries were set as a solid non-slip wall. The standard wall function was used
as commonly done in single-phase simulation, which implicitly indicates that the air phase effect on
the near-wall flow characteristics was neglected. This is acceptable since the mesh Reynolds numbers
adjacent to the step surface were as high as 1.7 × 106 to 3 × 106 (calculated by the velocity varying
between 10 and 15m/s and mesh scale at 0.17 to 0.2 m) and therefore the air phase effect only occurs
within a very small region near the wall and has an insignificant effect on the main flow. Three mesh
blocks were used, namely a containing mesh block and two nested blocks, as shown in Figure 5. Two
nested mesh blocks were arranged for the steps and the radial gate to resolve the geometry in the
model. The size of the containing block (mesh block 1) was 1.2 × 1.2 × 1.2 m, and the size of the nested
mesh blocks 2 and 3 were 0.3 × 0.67 × 0.4 m and 0.1 × 0.1 × 0.1 m, respectively, with respect to the
x-y-z coordinate system, as shown in Figure 5.
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Figure 5. Geometry and mesh blocks considered for the numerical simulations, including details of the
grid resolution at the radial gate lip and spillway steps.

For the investigated situation, the reservoir level at the upstream boundary was considered as
1223 m a.s.l., corresponding to the mean operation level, and the corresponding downstream water
elevation was considered at a constant value of 1135 ± 2 m a.s.l. for the sake of simplicity. The opening
of gate 3 was set to 4.75, 9.5, and 19 m (full-gate opening). The #2 and #4 outlets were blocked by sluice
gates. These load cases are detailed in Table 1.

Table 1. Simulated cases.

Load Case No. e (m) q (m2 s−1)

1 4.75 80

2 9.5 120

3 19 166
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4. Calculation Results and Discussion

The numerical results discussed hereafter all refer to the longitudinal section in the axis of the
computational domain, i.e., at y = 0 (see Figure 5).

4.1. Mesh Sensitivity Analysis and Model Validation

A mesh sensitivity analysis was carried out for mesh block 2 by using a finer mesh of 0.15 × 0.33
× 0.2 m, i.e., for half the values of the standard cell size. For the finer mesh, only 3% of the discharge
difference was found and an identical cavity length (expressed by the number of steps it covered) was
obtained. The velocity magnitude (U) and turbulent kinetic energy (k) profiles perpendicular to the
pseudo-bottom at the 30th step are presented in Figure 6 for the two meshes, showing only small
differences. The larger differences of the near-wall k values result from the FAVOR treatment and wall
functions, affecting a flow depth up to about 3 m from the pseudo-bottom, while the effect on the main
flow is insignificant. Consequently, the standard mesh was selected for the further simulations due to
a significantly less computational cost at high velocity (roughly 40 m/s) two-phase flow.
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Figure 6. Velocity magnitude (U) and turbulent kinetic energy (k) profiles perpendicular to the
pseudo-bottom at step 30 in the axis of the longitudinal section.

Load case 3 (see Table 1) was simulated with the numerical model to validate the involved
sub-models. The numerical results and experimental measurements of the step surface pressure are
shown in Figure 7. It can be seen that the distribution of the pressure, which was obtained by numerical
simulation, was similar to that obtained in the lab experiment. The overall difference is around 150 Pa,
which corresponds to the range of measuring and numerical errors. The rapid increase of the pressure
after step 36 results from the downstream backwater (see Figure 2), whose elevation is approximately
1135m ± 2 m, i.e., at step 35 to 37.
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of dissipator and for a similar unit discharge (8% larger than in our current case). They validated their 

results by corresponding physical model experiments. 

Figure 7. Comparison of experimental and numerical step surface pressure at the middle of the
corresponding steps’ vertical faces. Experimental 1 data was measured by rubber piezometric pipe
while Experimental 2 data was obtained from a high-speed pressure transmitter.

Furthermore, the computed time-averaged discharge is in good agreement with the measurement
data (+4.3%), and the size of the aeration cavity (around seven steps) is similar to that observed in the
lab experiment. Accordingly, the overall accuracy of the adopted numerical model is good. This is
also confirmed by a similar validation of the involved sub-models carried out by Khosro et al. [44]
by simulating flow over flat and pooled stepped spillways, where only about a 5% average relative
difference of air concentration was found, although no details about the drift-flux model were given.

4.2. Pressure Distribution

The pressure distribution above the steps is illustrated in Figure 8. The pressure close to the first
13 steps and the steps 20 to 22 were depicted in detail using different adapted color scales to illustrate
positive and negative pressure values. It is revealed in Figure 8a that there is a negative pressure zone
at the top of the first step, where the flow detaches from the spillway surface. Upon recontact on the
spillway on the eighth step, a large impact pressure is seen. Zhang et al. [25] also found such negative
pressure by numerical simulation of the spillway at Suofengying dam with the same type of dissipator
and for a similar unit discharge (8% larger than in our current case). They validated their results by
corresponding physical model experiments.
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without much variation, indicating that the pressure plays a more important role in affecting the 
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Figure 8. Pressure distribution for case 3 at (a) the 1st to 13th steps and (b) 20th to 22nd steps.

In Figure 8b, the negative pressure region in the vicinity of each step tip is clearly visible. Similar
pressure was observed by Sánchez-Juny et al.’s and Frizell and Renna’s experimental measurement [5,9].
Because negative pressure on steps may result in cavitation, the cavitation potential will be analyzed
in Section 4.4 based on the cavitation index.

4.3. Velocity Magnitude

The velocity distribution at the axial longitudinal section is shown in Figure 9, where the main
flow is approximately parallel to the steps, with a velocity magnitude of some 40 m/s. It can be seen in
the enlarged picture (35th to 36th steps) in Figure 9 that in the step niches, the flow velocity is roughly
5 to 20 m/s, and above the pseudo-bottom, the velocity increases rapidly from 20 to 35 m/s within a
distance of approximately three step heights. The step surface velocity is about 10 to 15 m/s without
much variation, indicating that the pressure plays a more important role in affecting the cavitation
index values and thus the cavitation potential.
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Figure 9. Velocity distribution above steps at the axial longitudinal section for load case 3 with details
of steps 35 and 36.

4.4. Step Surface Cavitation Index

In the presence of negative pressure, high velocity (around 15 m/s), and reduced ambient pressure
at the dam site (around 1180 m.a.s.l.), the steps are under high cavitation erosion risk. According to
Frizell and Renna’s experimental study [9], the critical cavitation index, σ, for stepped spillways with
an inclination angle of 21.9◦ and 68.1◦ is about 0.4 and 0.64, respectively. They used the widely known
formula as shown in Equation (16) to calculate this cavitation index:

σ =
P + Pamb − Pvp

ρwv2

2

(16)

where σ is the cavitation index, P is the time-averaged gauge pressure, Pamb is the ambient pressure
and was selected as 87,932 Pa herein, Pvp denotes the vapour pressure (set as 2340 Pa), and ρw and v
are the water density and velocity, respectively. Herein, for a slope of 53◦, the critical cavitation index
was considered as 0.6. It worth emphasizing that this critical cavitation stands for where the rate of
counts of acoustic emissions suddenly changes with decreasing σ, and inception cavitation is expected
to occur for our present steps at σ = 1 as summarized in [10].

The damaged region after the 2015 flood at Ludila dam spillway is mainly concentrated at the
axial longitudinal section of each surface outlet (see Figure 3a), mostly along steps 30 to 45 (Figure 10),
which is called the main damage region hereafter.
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Figure 10. Air concentration at step surface and corresponding cavitation index along steps 21 to
50 for three load cases: the main damage region between steps 30 and 45 is colored grey and the
slash line region stands for cavitation index and air concentration below threshold values of 0.6 and
7%, respectively.

Figure 10 presents the cavitation index and air concentration near each step. The cavitation index
shows the same trend for the three different load cases: The σ values are almost constant for steps 21 to
35 with values of around 0.3 to 0.5, then they increase until step 45, and finally rise up rapidly from the
45th step to the 50th step. As the flow velocity near the step surface has almost the same value of 10 to
15 m/s in the skimming flow regime [45,46] (as can be seen in Figure 9), the variation of σ is mainly
caused by the local pressure changes. The increase of σ after step 35 is likely due to the fact that the
step surface pressure becomes larger because of downstream backwater. Note that the discharge only
affects the cavitation index within a range of 0.2 to 0.3, and a small gate opening results in relatively
small σ values and high cavitation potential. Based on the critical σ value of 0.6, it can be concluded
that cavitation damage is likely to occur upstream of the 40th step for all of the three cases.

4.5. Air Concentration

Aeration is a common, efficient, and economical measure to avoid or at least reduce cavitation
erosion. The stability of stepped spillways for such high unit discharge relies on the delicate design
of the FGP, the bottom aeration at the first step, and the slope break, inducing jet deflection and
air entrainment. For the situation at Ludila dam, both self-aeration and bottom aeration exist. The
simulated air concentration in the axial longitudinal section is shown in Figure 11, while the air
concentration along the steps together with the σ values is presented in Figure 10. According to
Peterka [47], air concentration of 5% to 8% is considered sufficient for cavitation erosion prevention.
A critical value of 7% was considered herein.



Water 2019, 11, 1956 15 of 21Water 2019, 11, 1956 15 of 21 

 

 

Figure 11. Air concentration distribution (a) at the axial longitudinal section and (b) at the stepped 

surface for load case 3. 

From Figure 10, for load cases 2 and 3, the air concentration near the steps decreases first and 

then starts to increase in the flow direction, whereas for load case 1, the air concentration increases 

continuously along the steps, i.e., the air concentration decreases with increasing gate opening and 

thus unit discharge. That is because a larger opening and the resulting larger nappe depth makes it 

more difficult for the top surface entrained air to reach the steps. The first damaged step is roughly 

located at where the step surface air concentration falls below the critical value of 7%. As can be seen 

in Figure 11 (a), for case 3, self-aeration occurs already after the FGP, but a sufficient amount of 
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FGP as it was originally designed for enhancing flow turbulence and thus surface aeration while 

finally it also reduced the steps’ surface air concentration because it significantly thickened the nappe 

in the middle longitudinal section. On the other hand, a certain amount of air is entrained due to the 

bottom cavity and then it rises and escapes from the step surface quickly in the following 15 steps. 

Under the combined effect of these two processes, the air concentration at steps 30 to 45 is not 
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responsible for the damage, as normally the main contribution of the so-called cavitation erosion is 
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pitting, as deemed by Peterka [45].  

4.6. Aerator Optimization 
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stepped surface is locally below the critical air concentration of 7% for the highest discharge, so that 

cavitation erosion may occur. To improve the current design, a further heightening of the first step 

was considered to be an economic and efficient measure to entrain more air and thereby maintain 

more air on the stepped surface. With regard to the slope break between the straight section of the 

weir and the stepped spillway, a 0.146 m higher first step could be easily gained if the weir crest is 

Figure 11. Air concentration distribution (a) at the axial longitudinal section and (b) at the stepped
surface for load case 3.

From Figure 10, for load cases 2 and 3, the air concentration near the steps decreases first and
then starts to increase in the flow direction, whereas for load case 1, the air concentration increases
continuously along the steps, i.e., the air concentration decreases with increasing gate opening and
thus unit discharge. That is because a larger opening and the resulting larger nappe depth makes it
more difficult for the top surface entrained air to reach the steps. The first damaged step is roughly
located at where the step surface air concentration falls below the critical value of 7%. As can be seen
in Figure 11a, for case 3, self-aeration occurs already after the FGP, but a sufficient amount of entrained
air fails to reach the step surface before approximately the 45th step since the horizontally squeezed
nappe is too thick. This may evoke a deeper investigation of the aeration performance of FGP as
it was originally designed for enhancing flow turbulence and thus surface aeration while finally it
also reduced the steps’ surface air concentration because it significantly thickened the nappe in the
middle longitudinal section. On the other hand, a certain amount of air is entrained due to the bottom
cavity and then it rises and escapes from the step surface quickly in the following 15 steps. Under the
combined effect of these two processes, the air concentration at steps 30 to 45 is not sufficient (i.e., under
7%). This is also shown in Figure 11b by the narrow region in the lower part of the spillway, where the
air concentration is lower than the threshold value of 7%. Although this low air concentration region is
much narrower than the damaged region, this insufficiency remains responsible for the damage, as
normally the main contribution of the so-called cavitation erosion is the consequential vibration of the
reinforcement and elutriations induced by the initial real cavitation pitting, as deemed by Peterka [45].

4.6. Aerator Optimization

As mentioned above and depicted in Figures 10 and 11, the air concentration on the stepped
surface is locally below the critical air concentration of 7% for the highest discharge, so that cavitation
erosion may occur. To improve the current design, a further heightening of the first step was considered
to be an economic and efficient measure to entrain more air and thereby maintain more air on the
stepped surface. With regard to the slope break between the straight section of the weir and the stepped
spillway, a 0.146 m higher first step could be easily gained if the weir crest is extended by one step
further downstream (∆h = 0.9 × (1/0.75 − 1/0.854) = 0.146 m). The extension of the weir crest by one
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step (0.9 m) results in a step height of 2.37 m (hereinafter M1) and for two steps (1.8 m) in 2.512 m
(hereinafter M2), respectively (see Figure 12).
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Figure 13 shows the air concentration distribution at the axial longitudinal section for the original
design and the optimized structures M1 and M2. In addition, the air concentrations from the numerical
simulations at the axial longitudinal section along the steps for the three above-mentioned designs
are shown in Figure 14. It can be seen from Figure 13 that the cavity lengths in M1 and M2 were
increased by one step. Consequently, with a higher first step and larger cavity, the step surface air
concentration value increases significantly, especially at the upstream region above the 35th step. The
lowest air concentration was increased from the original value of 6.1% to 6.7% and 7.7% for M1 and
M2, respectively. The results show that heightening the first step is an efficient way for entraining
more air and maintaining more air on the stepped surface.
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5. Conclusions

The air–water two-phase flow on stepped spillways behind X-shaped flaring gate piers under very
high discharge was numerically simulated using the commercial CFD code FLOW-3D®. In doing so,
the 3-D Reynolds-averaged Navier–Stokes equations were solved, including the RNG k-ε turbulence
model and a VOF method, to capture the free surface. A sub-grid air entrainment model was used in
combination with a density evaluation model and drift-flux model to reproduce air entrainment and
transport in water flow. The resulting pressure, velocity, and especially air concentration data above
the steps were used for further data analysis and validation with data from laboratory experiments. As
a case study, the stepped spillway at Ludila dam in southwest China was considered, which underwent
damage to the steps in 2015. Finally, the effect of the height of the first step of the spillway on the air
concentration along the stepped surface was addressed. The findings of the present research can be
concluded as follows:

1. The reliability of the involved models is considered satisfying, as the results are in good agreement
with laboratory data.

2. The velocity close to the step tips was about 15 m/s, indicating potential cavitation occurrence for
all investigated discharges. The negative pressure close to the step tips is a key factor that may
cause cavitation erosion, since both analytical evidence of a low cavitation index and practical
real-world step failure were discovered.

3. The calculated air concentration data is rather reliable, considering the air concentration on
the stepped surface behind the X-shaped FGP of roughly 5% to 6% and the reported scaled
physical model value of 3% to 5% in [14]. In addition, the simulated air concentration and derived
cavitation potential are plausible with regard to the prototype step failure. It was found that for
a high unit discharge of 166 m2/s and flow depths up to 30 m (25 times the step height), free
surface self-entrained air fails to reach the stepped surface before step 45. A bottom-aeration
thus becomes very important but insufficient if a threshold of 7% for the air concentration is
considered necessary for cavitation erosion avoidance.

4. The height of the first step of the spillway may affect the air concentration on the stepped surface
to some degree. An increased air concentration along the steps for a larger first step height was
found in the case study of Ludia dam spillway, especially upstream of step 35. Therefore, for
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aerator optimization of built projects, heightening the first step could be an economic and efficient
measure to prevent cavitation erosion.

However, the present study has some limitations. Air concentration data was not available from
the physical model, which would have allowed for further calibration or fine-tuning of the numerical
model, especially with regard to the parameters of sub-grid scale models for air-entrainment and
transport. Furthermore, fluctuations of pressure and air concentration are also very important, but
these remain impossible or at least extremely expensive to acquire for high-velocity two-phase flows.
Nonetheless, the findings from the study are encouraging for the use of advanced numerical modelling
techniques as used herein for the assessment of the cavitation potential and to propose mitigation
measures based on design optimization. This could be of special interest for the operators of more
than 10 dam spillways in China featuring a combination of FGPs and stepped spillways, to ensure safe
operation and reduce maintenance costs.

Author Contributions: The conceptualization of this research was directed by G.T. and the experimental data
was from J.W.; the numerical modelling was performed by Z.D. under the supervision of J.W. and D.F.V.; the
manuscript was mainly finished by Z.D., D.F.V. and R.M.B.
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resources and financial support and the China Scholarship Council for the funding of living abroad as an
academic guest.
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Notation

Ap cross sectional area of air bubble (m2)
As area of surface disturbance (m2)
Cair air concentration (–)
Cd user-defined drag coefficient (–)
CNU coefficient equal to 0.09 (–)
dp bubble diameter (m)
Dk effective diffusivity of k (kg m−1 s−1)
Dε effective diffusivity of ε (kg m−1 s−1)
e opening of radial gate (m)
f water volume fraction (–)
gn component of gravity normal to the free surface (m s−2)
Hd design head of weir (m)
I identity matrix
K drag coefficient (kg m−3 s−1)
Kp drag coefficient for single particle (kg s−1)
kair coefficient of proportionality (–)
k turbulent kinetic energy (m2 s−2)
kRZ Richardson–Zaki coefficient multiplier (-)
LT turbulent length (m)
P gauge pressure in flow field (Pa)
Pamb ambient pressure (Pa)
Pk generation of k due to mean velocity gradient (kg m−1 s−3)
Pvp vapor pressure (Pa)
Pd disturbance energy per unit volume (N m−2)
Pt destabilization force per unit volume (N m−2)
q unit width discharge (m2 s−1)
Rp bubble radius (m)
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um mixture velocity (m s−1)
ur relative/slip velocity (m s−1)

ueff
r effective relative velocity (m s−1)

Ur magnitude of ur (m s−1)
ϑ kinematic viscosity related to the turbulence Schmidt number (m2 s−1)
ϑe f f effective kinematic viscosity (m2 s−1)
We Weber number (–)
Zup upstream water elevation (m)
Zdown downstream water elevation (m)
δV volume of air entrained to the flow (m3)
∆h Heightened height when extend curve end 0.9 m downstream (m)
ε dissipation rate of k (m2 s−3)
µa dynamic viscosity of air (Pa s−1)
ξ0 Richardson–Zaki coefficient (–)
ρa density of air, 1.225 kg m−3

ρm macroscopic mixture density (kg m−3)
ρw density of water, 1000 kg m−3

σsur coefficient of surface tension (N m−1)
τ Reynolds stress tensor (kg m−1 s−2)

Appendix A
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