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Abstract: Changes in extreme precipitation are critical to assess the potential impacts of climate
change on human and natural systems. This paper provides a comprehensive investigation on the
multi-scale temporal variability of extreme precipitation in the Source Region of the Yellow River
(SRYR). The statistical analysis explores multi-scale extreme precipitation variability ranging from
short to long term, including seasonal, annual, and inter-annual variations at different locations in
the SRYR. The results suggest that seasonal patterns of extreme precipitation do not always follow
the seasonal pattern of total precipitation. Heavy precipitation mostly happens during the period
from May and October with July as the peak, while dry conditions are mostly seen in winter seasons.
However, there are no significant annual trends for most indices at most locations. The extreme heavy
precipitation presents an increasing trend at high elevation and decreasing trend at low elevation. The
extreme dry condition presents more consistently decreasing trends at nearly all locations. Long-term
analyses indicate that most of the selected indices except average daily intensity display multi-year
bands ranging from 2 to 8 years which is probably due to the effects of El Niño–Southern Oscillation
(ENSO). A further evaluation on how the ENSO events would impact extreme precipitation shows
that eastern Pacific warming (EPW) and central Pacific warming (CPW) would bring less extreme
heavy precipitation compared to normal years. These results can provide a beneficial reference to
understand the temporal variability of extreme precipitation in the SRYR.

Keywords: multi-scale; temporal variability; extreme precipitation; ENSO; Source Region of
Yellow River

1. Introduction

Extreme climate events have received increasing attention from public, government and academic
communities due to their catastrophic effects on agriculture, ecology and life [1–4]. Changes in climate
directly enhance precipitation extremes as global warming induces a large increase in atmospheric
water vapor content which accelerates the hydrologic cycle [5–7]. As a result, changes in extreme
precipitation tend to be larger than changes in mean precipitation totals either at the global scale or
region scale [8,9]. Moreover, the changes in precipitation extremes are projected to continue into the
future [10,11].

Previous studies indicate that both human-induced global warming and natural variability
contribute to the recent extreme precipitation [12–15]. An increasing trend in the precipitation
extremes has been observed over the US during the past few decades due to human-induced global
warming [16]. In addition, the variation of large-scale ocean-atmospheric circulation patterns makes a
non-negligible contribution to the recent high extreme precipitation values [13]. Cayan et al. [17] and
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Meehl et al. [18] suggested that ENSO helps to explain the occurrence of heavy winter precipitation at
inter-annual temporal scales in the western United States. Jiang et al. [14] indicated that Pacific Decadal
Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO) are also found to be associated with
heavy precipitation by the modulation of PDO and the AMO cycle on the ENSO-precipitation signal.
As a result, extreme precipitation may exhibit a multi-scale temporal variability due to the combined
influences of human-induced warming and large-scale ocean circulations.

The source region of the Yellow River (SRYR) was selected as the study region. The SRYR
contributes about 35% of the Yellow River Basin’s total streamflow, which is a significant contribution
to downstream water resource requirements [19–21]. However, decreasing precipitation during the
monsoon period has led to a streamflow decrease and may cause further water shortage problems in
the downstream area. In addition, changes in the temporal distribution of precipitation, especially
precipitation extremes, may placemore pressure on water resource management than changes in
average precipitation totals [22–24]. As a result, it is critical to fully understand the temporal variability
of extreme precipitation in the SRYR. Previous studies have mostly focused on the changes in the
mean values of climatic variables at various temporal scales. Assessments of extreme precipitation are
very limited and mainly investigate its annual trend. Few studies have been conducted to examine
the multi-scale temporal variability of extreme precipitation in the study area. Trend and variability
analyses have been applied frequently in hydro-climatic studies to investigate the impact of climate
change on the selected variables. These statistical methods include the Cumulative Anomaly Curve
Method [25], Mann-Kendall (MK) Nonparametric test [26], Linear/Nonlinear regression analysis,
T test, and etc. [27,28]. Besides these technologies, wavelet analysis has received increasing attention
and has been widely applied to many fields of hydrology to elucidate localized characteristic of
non-stationary time series both in temporal and frequency domains. For instance, Goyal [29] and
He and Guan [30] applied wavelet analysis to obtain the frequency bands of interest and then to
forecast the evolution of rainfall and streamflow based on the statistical conclusions. Huang et al. [31],
Rashid et al. [32], and Asong et al. [33] used wavelet analysis to assess the relationship between
droughts and large-scale ocean oscillations with the concept of wavelet coherence [34], which reveals
local similarities between two time series and could be regarded as a local correlation coefficient in the
time–frequencyplane. It is one of the popular and powerful methods which can detect the long- and
short-term time intervals for low- and high-frequency signals, respectively [35].

In this paper, we strive to offer a comprehensive analysis of multi-scale temporal variability
of extreme precipitation in the SRYR. We seek here to: (1) explore the multi-scale variability of
extreme precipitation, ranging from short to long term, including seasonal, annual, inter-annual, and
decadal variabilities; (2) investigate how ENSO events impact extreme precipitation; and (3) explore
possible extreme precipitation scenarios for the upcoming decade based on the projected conditions of
large-scale oceanic oscillations.

2. Study Area and Method

2.1. Study Area

The source region of the Yellow River is located in the northeastern Qinghai-Tibetan Plateau
(Figure 1). It has a total area of 121,972 km2, which covers about 15% of the Yellow River Basin.
The SRYR is a mountainous region with a large elevation difference which ranges from 2670 m in the
east to 6253 m in the west. The study area is dominated by a typical Qinghai-Tibetan Plateau climate
system and presents a cold, semi-humid climate. Precipitation exhibits strong seasonal variability:
More than 70% of the annual precipitation falls during the wet summer period (June–September) as
the southwestern Asian monsoon from Bay of Bengal in the Indian Ocean brings rich moisture
to the SRYR [20]. In the winter, precipitation is mainly controlled by the high pressure of the
Qinghai-Tibetan Plateau; more than 78% of precipitation falls in the form of snow. However, due to the
small portion of winter precipitation relative to the annual precipitation totals, snowfall accounts for
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less than 10% of the annual precipitation [19,36]. Precipitation in this region presents a low intensity
(<50 mm/d), long duration (1–30 days) pattern, and covers a large area (>100,000 km2). The mean
annual precipitation displays a strong spatial variability, ranging from 800 mm/a in the southeast to
200 mm/a in the northwest.
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2.2. Data and Method

Precipitation data were obtained from a dataset of daily precipitation observations from the China
Meteorological Administration (CMA). This dataset is available for 743 Chinese stations covering the
period from 1951–2015 and was quality checked by the National Meteorological Information Center
(NMIC) of the CMA. Ten meteorological stations were selected in this study which cover the upper,
middle, and lower regions of the SRYR (Figure 1). Our analysis was limited to the period from 1961
to 2015 (expect Tongde and Zeku, for which data cover the period from 1961 to 2010) to avoid biases
introduced by missing data. The daily precipitation data during the selected period have less than
1% missing values for all selected stations. The missing data were filled by bilinear interpolation
of Tropical Rainfall Measuring Mission (TRMM) data. For the period when TRMM data were not
available, ordinary kriging was chosen tointerpolate nearby station data to the target station with
missing values.

Six indices (Table 1) were selected for the analysis of multi-scale variability of extreme precipitation.
These indices represent changes in the intensity, frequency, and duration of precipitation events. R95
is a percentile-based index for the measurement of heavy precipitation that exceeds 95 percentile
thresholds. It covers, but is not limited to, most extreme precipitation events in a year [37]. R20 is a
threshold index defined as the number of days when daily precipitation exceeds 20mm during the
specific period. R5D belongs to absolute indices representing maximum or minimum values within
a specific period. R95, R20, and R5D are regarded as heavy precipitation, which capture the tail of
the distribution. SDII is an intensity index. Rather than capturing the tail of the distribution, it is
more likely to show the middle of the distribution [14]. CDD belongs to duration indices representing
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periods of excessive warmth, cold, wetness, or dryness. It describes the length of the longest dry
period in a year and is used for the evaluation of droughts.

Table 1. Six indices of precipitation extremes as described by Frich et al. [38] 1.

Index Definitions Units

R20 Total count of days when RR ≥ 20 mm days
CDD Maximum number of consecutive dry days with RR < 1 mm days
R5D Maximum 5-day precipitation total mm
SDII Total precipitation divided by the number of wet days mm/day
R95 Total precipitation when RR > 95th percentile mm

PRCPTOT Total precipitation of wet days mm
1 Abbreviations are as follows: RR, daily precipitation. A wet day is defined when RR ≥ 1 mm, and a dry day is
defined when RR < 1 mm.

For the analysis of seasonal variability of extreme precipitation, the selected indices were
calculated at a monthly scale. Long-term monthly average were obtained for the study period.
CDD usually covers a period longer than a month; as a result, CDD was calculated annually with the
start date and end date indicated in the figure.

For the analysis of the annual trend of extreme precipitation, annual extreme precipitation indices
were calculated and examined by the linear regression method and the non-parametric Mann-Kendall
test, which is independent of the statistical distribution of the data. Statistical significance of the trend
was tested at the 0.05 level.

To explore the inter-annual and decadal extreme precipitation variability, we applied wavelet
transform to examine the dominant frequency modes and the manner in which these frequency modes
change over time. Wavelet analysis is generally based on one mother wavelet and can be classified as
two types: discrete and continuous wavelet analysis. In this study, the continuous wavelet transform
via translation and dilation of the Morlet wavelet across extreme precipitation time series was used for
trend and variability analyses. Continuous wavelet transform is the convolution of the discrete series
with a scaled and translated version of a wavelet Ψ0(η):

Wn(s) =
N−1

∑
n′=0

xn′Ψ
∗
[
(n′ − n)δt

s

]
(1)

xn: discrete sequence, δt: time spacing, s: wavelet scale, and n: localized time index.
The wavelet power spectrum of the time series is defined as:

Pw(Γ) =
{
|Wn(s)|2 : s ∈ Γ

}
(2)

Γ: a set of scales
The Morlet wavelet is selected as the mother wavelet:

Ψ0(η) = π−1/4eiω0ηe−η
2/2 (3)

Additionally, we classified three types of ENSO (Table 2) using the definition proposed by
Kim et al. [39]. These events were classified by the de-trended sea surface temperature (SST) anomaly
index for August to October [40]. EPW is generally considered as conventional El Niño warming in
the eastern Pacific region, which is defined as Niño 3 (SST region: 5◦ N–5◦ S, 150◦ W–90◦ W) warming
greater than 1 standard deviation (SD). CPW refers to episodes of warming in the central Pacific region,
which is defined as Niño 4 (SST region: 5◦ N–5◦ S, 160◦ E–150◦ W) warming greater than 1 SD, while
Niño 3 stays below this range. East Pacific cooling (EPC) is regarded as episodes of cooling in the
eastern Pacific region, which is defined as Niño 3 or Niño 3.4 (SST region: 5◦ N–5◦ S, 170◦ W–120◦ W)
cooler than 1 SD. The averages of monthly extreme precipitation in the ENSO year and the year after
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the ENSO year were computed and compared with the average of monthly extreme precipitation in
and after the normal year. Percentages of annual extreme precipitation anomalies were calculated to
examine the impacts of different ENSO events on annual extreme precipitation [41].

Table 2. Years of EPW, CPW and EPC.

ENSO Event Years

EPW 1963, 1965, 1972, 1976, 1982, 1987, 1997
CPW 1969, 1991, 1994, 2002, 2004, 2009
EPC 1964, 1970, 1971, 1973, 1975, 1985, 1988, 1995, 1998, 1999, 2007, 2010, 2011

3. Results and Discussion

3.1. Seasonal Variability of Extreme Precipitation

Extreme heavy precipitation (represented by R95, R5D, and R20) shows a similar seasonal pattern
as total precipitation at most locations (Figure 2). Extreme heavy precipitation events mostly happen
between May and October with July as the peak value month at most locations. Exceptions are seen at
Dari and Hongyuan, where the peak value appears in June for R5D. The ranks of the magnitude of
R95 and R5D are consistent with those of monthly total precipitation regarding the locations. However,
R20 displays different consistency: R20 at Ruoergai has the highest value while the total precipitation
ranks 3rd among the 10 locations, which indicates that precipitation at Ruoergai exhibits a higher
intensity and lower duration pattern compared with precipitation at other locations. SDII shows a
similar spatial pattern with R20. However, SDII at Ruoergai, Hongyuan, Zeku, Xinghai, and Maduo
present different seasonal patterns from total precipitation. In other words, the peak average daily
intensity at these locations happens in the month (August) when the total precipitation is not the
highest, which may due to fewer rainy days in August at these locations.Water 2019, 11, x FOR PEER REVIEW 6 of 16 
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The extreme dry conditions (represented by CDD) mostly happen in the winter season (Figure 3).
December and January are the two months with the highest frequency for consecutive dry days.
Xinghai has the longest average dry period, with 220 consecutive dry days in the historic records
(Figure 4). Although the average monthly total precipitation of Maduo is the lowest, the average CDD
of Maduo is much lower than that of Xinghai (ranking 4th among the 10 locations). In other words,
low precipitation does not necessarily mean extreme dry conditions. An integrated analysis of extreme
precipitation indices provides a more complete picture of extreme conditions.Water 2019, 11, x FOR PEER REVIEW 7 of 16 
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Figure 4. Boxplot of CDD at selected locations during the study period.

3.2. Annual Trend of the Extreme Precipitation

The linear trends for the extreme precipitation indices were quantified using the Mann-Kendall test
(Table 3). There are no significant trends for the extreme precipitation indices at most locations except
Zeku and Jiuzhi. Zeku shows a significant decreasing trend in annual total precipitation, accompanied
by significantly decreasing trends in average daily intensity and extreme heavy precipitation, and a
non-significantly decreasing trend in the extreme dry period. Jiuzhi exhibits significantly decreasing
trends in all indices except R20, which shows a non-significantly decreasing trend. The only two
significant increasing trends are seen in SDII in the Xinghai location and CDD in Tongde. SDII, R20,
R95, R5D present consistent trends with PRCPTOT, which means that the extreme heavy precipitation
and average daily intensity follow the trends of total precipitation. However, CDD shows more
consistent decreasing trends at all locations irrespective of the total precipitation increase or decrease,
which indicates that the length of the dry period becomes shorter during the study period even when
the total precipitation decreases. The exception is seen in Tongde, where CDD shows a significantly
increasing trend while the other extreme precipitation indices show no obvious trends. This means
that the decreasing total precipitation is due to the longer dry period.

Table 3. Linear trends for the extreme precipitation at selected locations 1.

Location
Extreme Precipitation Indices

SDII
(mm/d/y)

R20
(d/y)

R95
(mm/y)

R5D
(mm/y)

CDD
(d/y)

PRCPTOT
(mm/y)

Dari 0.004 0.002 0.57 0.05 −0.09 0.34
Zeku −0.037 −0.034 −1 −0.3 −0.18 −3.32

Tongde −0.01 −0.01 −0.9 −0.23 0.55 −1.77
Ruoergai −0.001 −0.007 −0.14 0.01 −0.2 −1.13

Maqu 0.009 0.015 0.58 0.13 −0.18 0.67
Maduo 0.003 0.007 0.17 0.03 −0.84 1.17
Jiuzhi −0.017 −0.028 −1.33 −0.5 −0.37 −1.34

Hongyuan 0.001 −0.025 −0.71 −0.02 −0.08 −1.01
Henan 0.002 0.005 0.05 −0.1 −0.17 −1.48
Xinghai 0.018 0.016 0.65 0.17 −0.49 1.13

1 Bold numbers indicate the line trend is statistically significant at the 0.05 level.
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3.3. Inter-Annual and Decadal Variation of the Extreme Precipitation

Figure 5 shows local and global wavelet spectra for annual regional average CDD time series.
There is a strong 2–8 year band, which is possible evidence of the ENSO signals. R20 and R5D
(Figures A2 and A3) also show a 15-year band, which may be caused by PDO modulation of ENSO
signals [42,43]. SDII does not present significant 2–8 year bands (Figure A5), indicating that ENSO may
have little effects on variability of SDII. The same conclusion was also found in the western United
States [15].
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In order to investigate how ENSO events impact precipitation extremes, the averages of monthly
extreme precipitation in an ENSO year and the year after the ENSO year were computed and compared
with the average of monthly extreme precipitation in and after the normal year (Figure 6). CDD
was calculated at a yearly scale; as a result, it was not included in this section. For SDII, there is
no significant variation among different ENSO years and normal years, which is consistent with
wavelet analysis results that ENSO may have little effects on average daily intensity in the study area.
The total average precipitation is below normal during El Niño years (both EPW and CPW) especially
in July, August, and September, which is consistent with the previous studies on the relationship
between ENSO and average precipitation in China [44,45]. However, it is worth noting here that the
abnormality of July-September precipitation during CPW is more significant than that during EPW
years. The most significant differences between EPW and CPW are their different time evolution
patterns and structure [46]. The CPW shifts the anomalous convection westward and causes relatively
less strong westerly and southwesterly winds, thus bringingless than normal moisture to the SRYR.
The seasonal pattern and the magnitude of average precipitation in EPC years are very similar to
those in normal years. In the EPW year, the peak of R20 and R5D happened in August, while the peak
of PRCPTOT and R95 happened in July. The peak value in the EPW year is smaller than in normal
years except for R5D. In the EPC year, the peak of all selected indices happened in July and the peak
values are close to the peak values in normal years. In the CPW year, the peak timing varies among
different indices. The peak of R5D appears in July while the peak of R95 appears in June. R20 has
two peaks, with the larger peak in June and smaller peak in August. The peak value of all indices
except SDII is significantly smaller than that in normal years. The impacts of ENSO events on heavy
precipitation are much larger than those on total precipitation and precipitation intensity. The peaks
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of heavy precipitation indices (R20, R95, and R5D) after EPW and CPW significantly increase while
EPC has a relatively small impact on the peaks of heavy precipitation indices in a year after EPC.
The seasonal variability of precipitation is controlled by two major moisture source: the southern
moisture which is transported by the mid-latitude westerly and the southern moisture which is related
to the Indian summer monsoon [47,48]. Cao et al. [45] suggested that the strengthening of westerly
and southwesterly winds in the decaying year of CPW will bring more moisture to China, compared
to a developing CPW. This may explain the enhanced precipitation and heavy precipitation in a year
after CPW. The decaying EPW will experience a stronger westerly and southwesterly wind but a
weakened anti-cyclone compared to the developing phase. Despite the reduced moisture caused by the
weakened anti-cyclone [49], there are more heavy precipitation events in the phase of the decaying EPW
compared to the developing EPW. In other words, the Indian monsoon plays a more dominant role in
the heavy precipitation events during EPW compared to the atmospheric circulation. Jin, et al. [50]
and Timmermann, et al. [51] suggested an increased El Niño frequency in the future, especially the
increasing frequency of CPW events due to various reasons such as the shoaling of the thermocline in
the central Pacific region that enhances vertical exchange processes [52] and the effect on the surface
layer heat balance in the northeastern subtropics caused by wind-driven advection and surface heat
fluxes [53]. The heavy precipitation events may decrease from the aspect of oceanic circulation.
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4. Conclusions

In this study, we have investigated the multi-scale variability of extreme precipitation including
heavy precipitation indices (R20, R5D, and R95), drought indices (CDD), intensity indices (SDII), and
total precipitation (PRCPTOT) in the SRYR. We base our analyses on different temporal scales ranging
from short-term to long-term (seasonal, annual, and inter-annual) variations. Our analysis indicates
that the magnitude of heavy precipitation varies among locations, and the spatial variation of heavy
precipitation generally follows the spatial variation of total precipitation. However, it is worth noting
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that a higher precipitation amount does not always mean a higher intensity event. Ruoergai has
higher average daily intensity and more days with precipitation higher than 20mm while its total
precipitation is not the highest among the selected locations. Heavy precipitation mostly happens
during the period from May and October with July as the peak at most locations. Dry conditions
are mostly seen in winter seasons. There are no significant annual trends for the selected heavy
precipitation indices at most locations except Zeku and Jiuzhi, where significant negative trends are
observed. Extreme dry conditions show negative trends at most locations except Tongde. The annual
trends of intensity indices and heavy precipitation indices are mostly positive a thigher elevations
and negative at lower elevations. For the long-term variations, the selected indices excluding SDII are
impacted by ENSO. The impacts of ENSO events on heavy precipitation are much larger than those
on total precipitation and precipitation intensity. During EPW and CPW years, the extreme heavy
precipitation is significantly less than normal and in the year after the EPW and CPW year. Based on
the projected increasing El Niño frequency, extreme heavy precipitation may decrease from the aspect
of oceanic circulation.
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