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Abstract: Operation rule plays an important role in the scientific management of hydropower 
reservoirs, because a scientifically sound operating rule can help operators make an approximately 
optimal decision with limited runoff prediction information. In past decades, various effective 
methods have been developed by researchers all the over world, but there are few publications 
evaluating the performances of different methods in deriving the hydropower reservoir operation 
rule. To achieve satisfying scheduling process triggered by limited streamflow data, four methods 
are used to derive the operation rule of hydropower reservoirs, including multiple linear 
regression (MLR), artificial neural network (ANN), extreme learning machine (ELM), and support 
vector machine (SVM). Then, the data from 1952 to 2015 in Hongjiadu reservoir of China are 
chosen as the survey case, and several quantitative statistical indexes are adopted to evaluate the 
performances of different models. The radial basis function is chosen as the kernel function of 
SVM, while the sigmoid function is used in the hidden layer of ELM and ANN. The simulations 
show that three artificial intelligence algorithms (ANN, SVM, and ELM) are able to provide better 
performances than the conventional MLR and scheduling graph method. Hence, for scholars in 
the hydropower operation field, the applications of artificial intelligence algorithms in deriving 
the operation rule of hydropower reservoir might be a challenge, but represents valuable research 
work for the future. 

Keywords: hydropower reservoir; operation rule derivation; multiple linear regression; artificial 
neural network; extreme learning machine; support vector machine; dynamic programming 

 

1. Introduction 

As a classical tool for adjusting natural runoff, reservoirs play an increasingly important role in 
the human society [1]. In practice, reservoirs need to satisfy a variety of practical requirements from 
various administrative departments, such as flood control, power generation, agricultural irrigation, 
water supply, and ecological protection [2]. In addition, booming socio-economic development has 
caused an unprecedented imbalance between water supply and water demand [3], and it is of great 
necessity to make the utmost of the regulation abilities of all the reservoirs [4]. As a result, the 
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reservoir operation optimization has become one of the most significant tasks in water resources and 
power system over past decades [5]. In general, when the inflow per scheduling period is known, the 
global optimal solution for the reservoir operation problem can be easily obtained using the 
dynamic programming or other optimization methods [6]. Traditionally, this dispatching pattern is 
identified as the deterministic optimization and the corresponding scheduling result denotes the 
best solution found in this scenario [7]. Nevertheless, it is difficult to capture the perfect future 
runoff information because of the limitation of existing runoff forecasting technology. That is to say, 
the deterministic optimization is just a potential reflection for the fixed runoff case, but is not 
suitable for uncertain environments. In recent years, the fast-growing computer technology has 
markedly promoted the collection, processing, and storage of multi-source heterogeneous data 
produced in the entire life-cycle of a hydropower reservoir, which indicates that abundant data 
information is available to provide potential technical support for operators. Hence, a natural idea 
for handling the above issue is to examine the reservoir operation rule with actual data and planning 
data [8]. 

Implicit stochastic optimization (ISO) is a tool developed to achieve this goal. The key idea 
hidden in the ISO method is to derive the near-optimal reservoir operation rule from the long-term 
historical data [9]. Since its origin, ISO has attracted intensive attention from researchers all over the 
world and many effective methods have been developed to enhance the practicality of ISO [10]. 
Thus far, all of the existing methods can be roughly divided into two different groups [11]: the first 
includes traditional techniques like scheduling graph method (SGM) and multiple linear regressions 
(MLR); and the other is artificial intelligence (AI) approaches represented by artificial neural 
network (ANN), extreme learning machine (ELM), and support vector machine (SVM). The former 
involves classical methods, but they often fail to consider the latest operation data and deal with the 
complex nonlinearity between dependent variable and independent variables [12], while the latter 
can not only effectively alleviate the above defects, but also scientifically analyze large-scale dataset 
[13]. Over the past few decades, extensive applications of the AI-based methods have been 
published, because the AI-based methods can produce accurate results for a variety of engineering 
problems. 

ANN is inspired by the working mechanism of the human brain and nervous system and has 
been widely applied to solve a variety of practical engineering problems. ANN can be treated as a 
special signal processing system with numerous interconnected layers linked by weight vectors 
between two neighboring layers. For instance, the authors of [14] used a particle swarm optimization 
model to train the parameters of ANN in stage prediction of Shing Mun River; the authors of [15] 
verified the feasibilities of support vector regression and ANN in river stage prediction; the authors 
of [16] developed a hybrid ANN method based on quantum-behaved particle swarm optimization 
for the daily runoff forecasting; the authors of [17] used ANN to forecast the ice conditions of the 
Yellow River in the inner Mongolia reach; the authors of [18] compared the performances of several 
AI-based methods (like ANN, and SVM) in monthly discharge predication; the authors of [19] made 
full use of ANN to forecast concurrent flows in a river system; and, based on ANN and SVM, the 
authors of [20] developed a hybrid forecasting method to effectively improve the forecast accuracy 
of monthly streamflow. Therefore, the above literatures indicate that ANN can provide reasonable 
results in water resources problems. 

ELM is a novel training method for single-hidden layer feed-forward neural networks. After 
randomly determining the input-hidden weights and hidden biases, ELM can directly obtain the 
hidden-output weights by calculating the Moore–Penrose generalized inverse of the hidden output 
matrix. ELM has better generalization ability and a faster learning rate than the gradient-based 
method, promoting its widespread application in practice. For instance, the authors of [21] used 
wavelet neural networks and ELM to forecast monthly discharge; the authors of [22] used ELM and 
quantum-behaved particle swarm optimization to predict daily runoff; the author of [23] proposed a 
robust ELM method and then verified its feasibility in indoor positioning; the authors of [24] 
developed a weighted ELM for imbalance learning; the authors of [25] used a base-flow separation, 
binary-coded swarm optimization, and ELM for neural network river forecasting; the authors of [26] 
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used binary-coded particle swarm optimization and ELM to develop a data-driven input variable 
selection method for rainfall-runoff modeling; and the authors of [27] developed a hybrid ELM 
model for multi-step short-term wind speed forecasting. Thus, existing simulations have fully 
demonstrated that ELM is a promising tool to address complicated regression and classification 
problems. 

SVM is a supervised machine learning method based on the Vapnik–Chervonenkis dimension 
theory and structural risk minimization principle. It was proven in theory that SVM is able to 
guarantee global optimization for regression or classification problems. Recently, growing attention 
has been paid to the SVM method because it can produce satisfactory results in many engineering 
problems. For instance, the authors of [28] verified the predictability of monthly streamflow using 
SVM coupled with discrete wavelet transform and empirical mode decomposition; the authors of 
[29] used support vector machines for long-term discharge prediction; the authors of [30] developed 
a multi-objective ecological reservoir operation model based on an improved SVM model in which 
meteorological and hydrological data are used as the input information; the authors of [31] 
proposed an artificial bee colony method optimized SVM for system reliability analysis of slopes; 
and the authors of [32] used a modified SVM model based on the ensemble empirical mode 
decomposition to forecast the annual rainfall-runoff. Thus, various reports have fully proven 
feasibility of SVM in solving engineering problems. 

Although a variety of reports on reservoir operation rule derivation has been published has 
been published over the past few decades, there are few publications evaluating the performances of 
different methods in deriving the hydropower reservoir operation rule thus far. Hence, in order to 
fill this gap, the primary goal of this paper is to compare the performances of several famous 
methods in deriving the reservoir operation rule, including the conventional scheduling graph 
method (SGM), MLR, ANN, ELM, and SVM. The Hongjiadu reservoir located in southwest China is 
chosen as the study area, and the effectiveness of five methods with different indexes is compared. 
The simulations show that three artificial intelligence methods (ANN, ELM, and SVM) are 
promising tools in deriving the reservoir operation rule when compared with SGM and MLR. 

This rest of this paper is organized as follows. The deterministic hydropower reservoir 
operation is given in Section 2. Section 3 briefly presents the theories of several methods adopted in 
this study. The quantitative indexes, experimental results, and discussions are presented in Section 
4, and the conclusions are given in Section 5. 

2. Deterministic Hydropower Reservoir Operation to Produce Dataset 

2.1. Objective Function 

The scheduling process obtained from the deterministic optimization model is used to evaluate 
the performance of the derived reservoir operation rule. Considering that power generation is an 
important indicator to compare the management levels of different hydropower enterprises in a 
market environment, the objective function is often chosen to maximize of the multi-year average 
electric energy production in the target hydropower reservoir [33], which can be expressed as 
follows: 

( ), , ,
1 1

max
N M

i j i j i j
i j

E P t g P
= =

= −  (1) 

where E  is the value of the objective function; N  is the number of years; M  is the number of 
periods per year (month here, i.e., =12M ); ,i jP  is the reservoir’s power output at the jth period of 

the ith year; ,i jt  is the total hours at the jth period of the ith year; and ( ),i jg P  denotes the penalty 

function, which can be described as below: 



Water 2019, 11, 88 4 of 17 

 

( ) ( )min min
, , , ,

,
if

0 otherwise
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i j i j i j i j
i j

a P P P Pg P
  − <  = 


 (2) 

where min
,i jP  is the preset minimum power output, and a  and b  are two positive coefficients. 

2.2. Operation Constraints 

To ensure that all the variables vary in the feasible zones, the following equality or inequality 
constraints are considered in the modeling process [34–36], including the water balance equation, 
storage volume limits, water spillage limits, turbine discharge, and power output limits. 

( ) [ ] [ ], , -1 , , , , ; 1, , 1,i j i j i j i j i j i jV V I q s t i N j M = + − + ⋅ ∈ ∈ 
 (3) 

[ ] [ ]min max
, , , ; 1, , 1,i j i j i jV V V i N j M≤ ≤ ∈ ∈  (4) 

[ ] [ ]min max
, , , ; 1, , 1,i j i j i jq q q i N j M≤ ≤ ∈ ∈  (5) 

[ ] [ ]min max
, , , ; 1, , 1,i j i j i js s s i N j M≤ ≤ ∈ ∈  (6) 

[ ] [ ]min max
, , , ; 1, , 1,i j i j i jP P P i N j M≤ ≤ ∈ ∈  (7) 

where ,i jV , ,i jI , ,i jq , and ,i js  are the storage volume, local inflow, turbine discharge, and 

abandoned spillage at the jth period of the ith year, respectively. max
,i jV  and min

,i jV  are the maximum 

and minimum storage volume at the jth period of the ith year, respectively. max
,i jq  and min

,i jq  are the 

maximum and minimum turbine discharge at the jth period of the ith year, respectively. max
,i js  and 

min
,i js  are the maximum and minimum water spillage at the jth period of the ith year, respectively. 
max
,i jP  and min

,i jP  are the maximum and minimum power output at the jth period of the ith year, 

respectively. 

2.3. Optimization Methods 

When the long-term inflow series, initial storage, and terminal storage are known, the above 
optimization model will become a deterministic operation problem that can be easily resolved by the 
famous dynamic programming method [37,38]. Then, the corresponding dynamic programming 
recursive equation is given as below: 

( ) ( ) ( ){ }, , , , , 1 , 1 , 1max ,i j i j i j i j i j i j i jE V e V V E V∗ ∗
− − −= +  (8) 

where ( ), , , 1,i j i j i je V V −  is the objective function value at the jth period of the ith year and ( ), ,i j i jE V∗  

denotes the optimal cumulative return from the jth period of the ith year to the first period. 

3. Brief Introductions of the Adopted Methods 

Brief information of the four adopted methods is given in this section, including multiple 
linear regress (MLR), artificial neural network (ANN), extreme learning machine (ELM), and 
support vector machine (SVM). Because of its simple principle and easy implementation, MLR is 
seen as one of the most classical method in the reservoir operation rule field; with strong 
generalization and self-learning abilities, ANN is chosen as to derive reservoir operation rule; with 
faster training rate and better regression ability, ELM is also used for reservoir operation rule 
derivation; because of the merits of less computation parameters and theoretical completeness, 
SVM is also an alternative tool in deriving the reservoir operation rule. Besides, numerous mature 
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software packages have been developed to achieve those methods, which can make an obvious 
improvement in the workload and execution efficiency. 

3.1. Multiple Linear Regression (MLR) 

Multiple linear regression (MLR) is a classical statistical tool develop to formulate the complex 
input–output relationship [39]. The key goal of MLR is to find out an approximation linear function 
between a set of independent variables and the dependent variable. Without loss of generality, the 
regression line in MLR can be expressed as follows: 

0 1 1 i i k ky x x xβ β β β ε= + + + + + +   (9) 

where y  is the dependent variable, ix  is the ith independent variable, iβ  is the polynomial 

coefficients of ix , k  is the number of independent variables, and ε  is the possible variation form. 
Then, the above equation for a set of samples can be rewritten in a compact matrix form, which 

can be described as below: 

= +Y Xβ ε  (10) 
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X  (11) 

where n  is the number of samples, ,m ix  is the value of the ith independent variable in the mth 

sample, and iε  is the ith residual error in the mth sample. 
Based on the classical matrix operation theory, the standard least-square method can be used to 

calculate the coefficient vector β  associated in the MLR model, which is described as below: 

( ) 1T T−
= X X X Yβ  (12) 

In such a way, the coefficient vector β  is known and the obtained MLR model can be adopted 
to predict the possible dependent variable related with the newly input vector. 

3.2. Artificial Neural Network (ANN) 

ANNs have been widely used to alleviate the shortcomings of the conventional algorithms to 
deal with complex problems. Without knowing the accurate mathematical description about the 
underlying process to be addressed, ANNs can learn hidden knowledge from the assigned data 
samples via establishing an input–output mapping for simulations. By far, there are many different 
types of ANN variants in previous literatures [40]. Here, the feed-forward network based on the 
back propagation training method is the choice of this paper. The sketch map of the feed-forward 
ANN model is drawn in Figure 1. In the feed-forward ANN, there are often three kinds of layers that 
are composed of multiple interconnected neurons, including the input layer receiving the external 
signal, the hidden layer or layers processing data in an order way, and the output layer exporting the 
predictive result. 

Two key procedures are involved in the training process of the feed-forward ANN: The first is 
the feed-forward procedure in which the information is delivered from the input layer to the output 
layer via all the hidden layers, and the other is the reverse procedure in which the overall derivatives 
of the objective function in terms of weights are scattered among all the nodes of the neural network, 
which means that the weights and biases of all the nodes are dynamically adjusted based on the 
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error between the simulated values of the network and the target outputs. For any one node per 
layer, the transfer function is adopted to obtain the accumulated result by calculating the inner 
product of the input vector and the weight vector, which can be expressed in Equation (13). Then, 
the accumulated result is directly delivered to the next layer. In addition, the neurons in the previous 
layer are often linked with all the neurons in the next layer, whereas the connections for any two 
neurons in the same layer do not exist. 

{ }y f b= ⋅ +w x  (13) 

where y  is the output of the node; f  is the transfer function of the node; b  is the bias value of 
the node; and w  and x  denote the input vector and weight vector of the node, respectively. 

…
…

…

x

β

… O

 
Figure 1. The sketch map of the artificial neural network (ANN) model. 

3.3. Extreme Learning Machine (ELM) 

Extreme learning machine (ELM) is an emerging optimization technique developed to train the 
single-hidden layer feed-forward neural networks (SLFNs) [41]. In ELM, after randomly generating 
the input weights and hidden biases in the preset range, the hidden-output weights can be obtained 
via the matrix multiplication of the generalized inverse of hidden output matrix and the targeted 
output matrix. For a set of training samples ( ){ }, , , , 1,2, ,n m

t t t t t N∈ ∈ = x y x R y R , the hidden 

outputs of the ELM model can be expressed as below: 

( )
1

, 1,2, ,
L

t i i t i t
i

f g b t N
=

= ⋅ + = = x oβ α  (14) 

where n
i ∈Rα  is the weight vector linking the input layer and the ith hidden node, m

i ∈ Rβ  is 

the weight vector linking the ith hidden node and the output layer, ib ∈R  is the bias value of the 

ith hidden node, ( )g ⋅  is the nonlinear activation function of the hidden node, L is the number of 

neurons in the hidden layer, and m
t ∈Rο  is the simulated output vector of the neural network. 

Then, the above equation can be rewritten as follows: 

= TΗβ  (15) 

where 



Water 2019, 11, 88 7 of 17 

 

( )

( )

( ) ( )

( ) ( )

1 1 1 1 1

1 1

L L

N N L N L N L

g b g b

g b g b
×

⋅ + ⋅ +   
   = =   
   ⋅ + ⋅ +   



   



h x a x a x

h x a x a x
Η  (16) 

T
1

T
L L m×

 
 =  
  



β
β

β
 and 

T
1

T
L N m×

 
 =  
  



y

y
Τ  (17) 

where Η  denotes the output matrix of the hidden layer. 

The optimization objective of ELM is to find appropriate parameters making 
1

0
N

t t
t=

− = yο  

hold. Then, the coefficient matrix β  can be obtained by analytically determining the least-squared 

solution of the above-mentioned linear system min −T
β

Ηβ , and then the special solution can be 

expressed as follows: 
†= Tβ Η  (18) 

where †Η  denotes the Moore–Penrose generalized inverse of the hidden layer output matrix. 
Then, the learning procedures for the ELM method are summarized as below: 

Step 1: Define the amount of hidden neurons and the activation function of each neuron. 
Step 2: Produce the input-hidden weights as well as the hidden biases. 
Step 3: Use all the data samples to obtain the output matrix of the hidden layer. 
Step 4: Choose the suitable method to calculate the hidden-output weights. 
Step 5: Use the optimized ELM network to produce the simulated output for new samples. 

3.4. Support Vector Machine (SVM) 

As a famous technology based on statistical learning theory, the support vector machine (SVM) 
makes full use of the principle of structural risk minimization, rather than the classical empirical risk 
minimization in conventional methods, to guarantee the generalization capability of the regression 
model [42]. Figure 2 shows he sketch map of the SVM model. Supposing that the ith sample has a 
D-dimensional input vector D

i ∈x R  and a scalar output iy ∈ R , then the following regression 
function can be employed to express the nonlinear input–output relationship in the SVM model: 

( ) ( )T , 1,2, ,i if b i lϕ= + = x w x  (19) 

where ( )if x  denotes the predicated value of the SVM model, ( )iϕ x  is the nonlinear mapping 

function, and w  and b  are the parameters of the SVM model to be optimized. 
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Figure 2. The sketch map of the support vector machine (SVM) model. 

For the training dataset with l samples, the v-SVM optimization model for can be expressed as 
follows: 
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where C  is the parameter used to balance the empirical risk and model complexity term 
2w , and 

iξ∗  is the slack variable to denote the distance of the ith sample outside of the ε -tube. 
As a standard nonlinear constrained optimization problem, the above problem can be resolved 

by constructing the dual optimization problem based on the Lagrange multipliers technique: 

( ) ( ) ( )( ) ( )
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=
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− =

 ≤ ≤


≤ ⋅


 





x x

 (21) 

where ( ),i jK x x  is the kernel function satisfying the Mercer’s condition; and ia  and *
ia  are the 

nonnegative Lagrange multipliers, respectively. 
After obtaining the best solution for the dual optimization problem, the parameters of the SVM 

model are known and the regression form for an unknown input vector x  is expressed as follows: 

( ) ( ) ( )
1

,
l

i i i
i

f a a K b∗

=

= − +x x x  (22) 

4. Experimental Results 

4.1. Study Area and Dataset 
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Here, the Hongjiadu reservoir located on the mainstream of Wu River in southwest China is 
chosen as the study site. This reservoir has a total drainage area of 9900 km2 and an average annual 
runoff of 4.89 billion m3. The dead water level is 1076 m and the dead storage is 1.14 billion m3; the 
normal water level is 1140 m and the corresponding storage volume is 4.5 billion m3. In Hongjiadu, 
the flood control level is 1138 m from 1 June to 1 September, while its regulation storage is about 3.4 
billion m3. Obviously, the active-storage volume of the Hongjiadu reservoir is rather large in 
comparison with its annual inflow volume, meaning it plays a large role in determining the 
efficiencies to be achieved by any operation rules. Besides, the Hongjiadu reservoir has three 
mixed-flow turbine generating units with 200 MW per unit and its total installed capacity is 600 
MW. Under normal circumstances, almost all of the flow of Hongjiadu is through the hydropower 
turbines. As a leading carry-over storage reservoir on the trunk stream of Wu River, the Hongjiadu 
reservoir begins to provide comprehensive benefits to promote the healthy and orderly 
development of Guizhou Province since being put into operation, like power generation, ecological 
protection, water supply, flood control, and environment governance. In practice, various 
scheduling purposes can be well addressed in the derived operating rule by setting the necessary 
constraints on some variables, like water levels, power outputs, or discharge rates [43–46]. 

The actual monthly streamflow data from January 1952 and December 2015 are collected from 
the watershed management organization of Wu River. Then, dynamic programing is employed to 
calculate the deterministic optimization results for Hongjiadu reservoir, and the minimum power 
output is defined as 150 MW. The optimal results (water level, inflow, and outflow) are drawn in 
Figure 3. For the optimized scheduling results, the first 50 years’ data are used to train the model, 
while those of the last 13 years are employed for testing. In addition, for the artificial intelligence 
algorithms (like ANN, ELM, and SVM), the numerical problem is often unavoidable if the smaller 
attribute values are dominated by the large ones. In order to effectively avoid the numerical 
difficulties in the modeling process, the normalization process in Equation (23) is adopted to make 
all the attribute values scale to the range of 0 and 1. All the results are obtained on a desktop 
computer with the Windows 7 operating system, Intel-core i7-3770 processor, and 4GB random 
access memory (RAM). 

{ }
{ } { }

1

11

min

max min
i ii n

i
i ii ni n

x x
x

x x
≤ ≤

≤ ≤≤ ≤

−
=

−
  (23) 

where ix  and ix  denote the original and normalized value of the target factor, respectively. 
To be mentioned, the actual, rather than runoff-prediction, data are used by reservoir 

operators in deriving the candidate operation rules, in which the actual monthly inflow is an 
important input component and the monthly outflow is the key decision variable. When the 
obtained operation rule is used for production guidance, the future monthly runoff obtained by the 
real-time inflow rates available on a daily basis for the past months are used to determine the flows 
through the turbines and the abandoned flows through the spillway. 

 
Figure 3. Deterministic optimization results by dynamic programing for Hongjiadu reservoir in 
different periods (month). 
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4.2. Performance Criterion 

Here, two quantitative indicators are used to test the feasibility of different methods, including 
average power generation (APG) and generation guarantee rate (GGR). APG shows the simulated 
generation benefit of the target method in the long run, while GGR measures the assurance degree of 
the simulated power output larger than the preset minimum. Generally, the method with a larger 
value of the two indexes has better performance. The definitions of the two indexes are given as 
below: 

, ,
1 1

1=
N M

i j i j
i j

APG P t
N = =
   (24) 

( )min
, ,

, ,
1 1

1 if1= ,
0 otherwise

N M
i j i j

i j i j
i j

P P
GGR c c

N M = =

 ≥= × 



 (25) 

where ,i jP  is the simulated power output of the target method at the jth period of the ith year, and 

,i jc  is the intermediate variable. 

4.3. Model Development 

4.3.1. MLR Model Development 

Because of its simplicity and easy implementation, the linear operation rule is used for the 
purpose of comparison. The total discharge is chosen as the dependent variable, while the initial 
water level and inflow per period are chosen as two independent variables that are related to the 
dependent variable. The linear operation rule for Hongjiadu reservoir per month is expressed in 
Equation (26). Then, the parameters involved in the linear operation rule of Hongjiadu reservoir are 
obtained by the MLR method mentioned in the Section 3.1. Table 1 shows the obtained coefficients 
for the linear operation rule per month. It can be observed that three coefficients in 12 months are 
totally different from each other, demonstrating the complexity of reservoir operation. 

1 , 1,2, ,12t t tO a b Z c I t−= + × + × =   (26) 

where tO  is the total discharge at the tth month; tI  is the total inflow at the tth month; 1tZ −  is the 
initial water level at the tth month; and a , b , and c  are three different parameters. 

Table 1. Some parameters involved in the linear operation rule of Hongjiadu reservoir. 

Coefficient 
Month 

1 3 5 7 9 11 
a 740.9 966.6 −205.9 −7001.2 2698.6 6297.8 
b −0.54 −0.73 0.30 6.30 −2.34 −5.49 
c −0.04 0.02 0.58 0.50 0.73 0.84 

4.3.2. ANN Model Development 

Here, the three-layer ANN model based on the back-propagation training method is used to 
derive the operation rule of Hongjiadu reservoir. All the hidden nodes use the sigmoid activation 
function, while the linear function is used in the output layer. Given that the number of nodes in the 
hidden layer has an important effect on the performance of the ANN model, the trial and error 
strategy is used to choose the best network structure. The training process will be terminated when 
the root-mean-square error (RMSE) of all the testing samples reaches the minimum. Figure 4 shows 
the performances of the testing dataset with the change of hidden nodes from 3 to 18. It can be found 
that the model performance is affected by the hidden neurons. When there are seven nodes in the 
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hidden layer, the best performance in the testing dataset will be achieved. Thus, the number of 
hidden nodes is set as seven for Hongjiadu reservoir. 

 
Figure 4. Sensitivity of the number of hidden nodes in the ANN method for Hongjiadu reservoir. 
RMSE—root-mean-square error. 

4.3.3. ELM Model Development 

Similar to the above ANN model, the sigmoid and linear activation functions are adopted in the 
hidden layer and output layer of the ELM model, respectively. The amount of hidden nodes is two 
times of the number of input layers, while the quantum-behaved particle swarm optimization 
(QPSO) [16,22] is employed to search for the appropriate network parameters (including the 
input-hidden weights and hidden bias). The number of individuals and iterations in QPSO is set as 
100, while the RMSE value is chosen as the indicator to compare the model parameters. Figure 5 
illustrates the simulation results of the ELM model for Hongjiadu reservoir in 10 runs. It can be 
found that the ELM model in the fourth run has the optimal performance in both generation 
guarantee rate and average power generation. Thus, the corresponding model is chosen to derive the 
operation rule of Hongjiadu reservoir. 

 
Figure 5. Simulation results of the extreme learning machine (ELM) model for Hongjiadu reservoir 
in 10 runs. GGR—generation guarantee rate; APG—average power generation. 

4.3.4. SVM Model Development 

In general, the kernel function plays an important role in enhancing the SVM performance. 
Based on the previous publications, the radial basis function is seen as one of the most commonly 
used kernel functions because it has better generalization ability compared with other kernel 
functions. Hence, the radial basis function (RBF) in Equation (27) is chosen as the Kernel function. 
Obviously, there are three parameters ( , ,C γ ε ) in the RBF function, as used in the SVM model. In 
order to obtain satisfying performance, the above-mentioned QPSO method is used to optimize 
those parameters. Based on the simulation results, the optimal parameter combination in the SVM 
model is set as (10.768, 0.456, 0.784) for operation rule derivation in Hongjiadu reservoir. 
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( ) ( )2
, expi j i jK γ= − −x x x x

 
(27) 

where γ  is the kernel parameter to be optimized. 

4.4. Comparison and Discussion 

For the purpose of comparison, the traditional scheduling graph method (SGM) was chosen as 
the benchmark yardstick. Table 2 and Figure 6 show the detailed results of different approaches in 
Hongjiadu reservoir. It can be clearly observed that the dynamic programing method can obtain the 
best scheduling results in the deterministic case; four simulation-based methods (MLR, ANN, ELM, 
and SVM) are able to provide suboptimal results when compared with the dynamic programing 
method, but outperform SGM with respect to two statistical measures. On the other hand, as 
compared with SGM, MLR, ANN, and SVM, the ELM method can generate the best solution with 
approximately 9.00%, 7.57%, 3.03%, and 1.73% improvements in APG, respectively, while the 
generation assurance rate is improved by about 8.01%, 4.80%, 1.87%, and 0.27%, respectively. Hence, 
it can be concluded that the three AI-based methods can provide better results than the traditional 
SGM and MLR methods, and the operation rule derived by ELM has the best performance in the 
long-term simulations. 

Table 2. Comparison of different methods in Hongjiadu reservoir. DP—dynamic programming; 
MLR—multiple linear regression; ANN—artificial neural network; ELM—extreme learning 
machine; SVM—support vector machine; SGM—scheduling graph method; GGR—generation 
guarantee rate; APG—average power generation. 

Method DP SGM MLR ANN ELM SVM 
APG (108 kWh) 23.38 21.03 21.36 22.41 23.11 22.71 

Gap (%) - −10.05 −8.64 −4.15 −1.15 −2.87 
GGR (%) 98.18 89.84 92.97 95.83 97.66 97.40 
Gap (%) - −8.49 −5.31 −2.39 −0.53 −0.79 

Note: Gap = (Method − DP)/DP × 100%; Gap denotes the gap between method and DP. 

 
Figure 6. Comparison of different methods for Hongjiadu reservoir. DP—dynamic programming; 
MLR—multiple linear regression; SGM—scheduling graph method. 

Figure 7 shows the average power output obtained by different methods for Hongjiadu 
reservoir. Figure 8 shows the water level of different methods for Hongjiadu reservoir in the testing 
samples. It can be found that the dynamic programming (DP) method can provide the most power 
generation in wet season but the least power generation in the dry season. This case indicates that in 
the ideal scheduling process, Hongjiadu reservoir can reduce the power generation in the dry 
season, and then use the abundant runoff to keep the reservoir operating at a high level, enhancing 
the operation efficiency of hydroelectric generators in the long run. Besides, the SGM method tends 
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to smooth the power output in the long run because it fails to raise the water level in the wet season; 
the ELM method has a stronger capability than MLR, ANN, and SVM in mimicking the optimal 
scheduling process. Thus, the feasibilities of the solutions obtained by several methods are fully 
proven in this case. 

 
Figure 7. Average power output obtained by different methods for Hongjiadu reservoir. 

 
Figure 8. Water level of different methods for Hongjiadu reservoir. 

Figure 9 draws the graphic models (outflow–inflow–water level) of four algorithms for 
Hongjiadu reservoir in August. The following conclusions for four methods can be deduced: when 
the water level is fixed, there is a positive relationship between power output and inflow; when the 
inflow is fixed, the reservoir tends to increase the power output with the increase of water level. On 
the other hand, there are obvious differences in the graphic models, while the gap among the 
average annual power generation of four methods is relatively small, demonstrating the equivalence 
for different combinations of parameters in the hydropower reservoir operation rule. Thus, 
operators should take the actual working condition of the hydropower reservoir into consideration 
when making the scheduling plan for production guidance. 
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(c) (d) 

Figure 9. Graphic models (outflow–inflow–water level) for Hongjiadu reservoir in August: (a) DP; 
(b) SVM; (c) ELM; (d) ANN. 

From the above analysis, it can be clearly observed that the dynamic programming has the best 
performance, while the three artificial intelligence algorithms (ANN, ELM, and SVM) can provide 
better simulation results than SGM and MLR. The dynamic programing method divides the 
complicated multistage reservoir operation optimization problem into a series of relatively simple 
subproblems to be solved sequentially, and then seeks for the global optimal solution in the discrete 
state space, providing the best scheduling results for simulation [47–49]. In general, for the reservoir 
operation rule per month, there is often a strong nonlinearity between the independent variables 
(like water level and inflow) and dependent variables (like outflow). The conventional MLR 
method based on the simulation and optimization strategy can only handle conventional linearity, 
rather than the inherent nonlinear relationship in this problem, leading to lower generation benefit 
of the hydropower reservoir. The SGM approach based on the historical data and engineering 
experience cannot well consider the dynamic variation of reservoir runoff caused by climate change 
and human activities, reducing the overall operational efficiency of Hongjiadu reservoir. Three 
artificial intelligence algorithms get the utmost out of the mapping functions to map the training 
samples into the high-dimensional feature space, and then carefully choose the appropriate 
optimization strategies to find the solution that minimizes the total training error. As a result, three 
artificial intelligence algorithms have some unique merits in comparison with the SGM and MLR 
methods, including self-learning ability (training network parameters to simulate the complex 
nonlinear input–output relationship), generalization ability (possessing satisfying performance for 
new data samples), and fault-tolerant ability (behaving well for the partially damaged system), 
producing better performances than the two traditional methods. On the other hand, it seems that 
the ELM method is capable of obtaining the best performance among all the methods used to derive 
the reservoir operation rule. The difference in the adopted optimization principle per method is the 
key point leading to the fact that the performance of ELM is superior to both SVM and ANN. 
Specifically speaking, with a strong generalized ability for a variety of feature mappings, ELM is 
able to approximate any continuous functions by determining the global optima of the training 
samples [50], while the QPSO optimizer can effectively enhance the network compactness by 
carefully choosing the necessary parameters [51]; the traditional gradient-based ANN training 
method tends to fail into local optima with a relatively long learning time; and the SVM method can 
only provide the suboptimal solution with a higher computational complexity and more compact 
constraints. In addition, it should be pointed out that the performances of the three artificial 
intelligence methods may be different along with the change in the problem characteristics or 
research objects. To sum up, it can be concluded that in the reservoir operation rule derivation field, 
future research efforts can be directed to those artificial intelligence methods with promising 
simulation ability. 

5. Conclusions 
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This study investigates the performances of four effective methods in deriving the operation 
rule of a hydropower reservoir, including MLR, ANN, ELM, and SVM. For the purpose of 
comparison, the conventional SGM approach was chosen as the benchmark yardstick. The historical 
streamflow data of Hongjiadu reservoir optimized by the dynamic programming method are 
adopted to develop those models. Two indexes are adopted to evaluate the performance of different 
methods, including average power generation and generation guarantee rate. The results indicate 
that three artificial intelligence algorithms (ANN, ELM, and SVM) provide better simulation 
performances than SGM and MLR. Therefore, the results show that the artificial intelligence 
methods are promising tools in deriving the operation rule of a hydropower reservoir. To be 
mentioned, the performances of ANN, ELM, and SVM vary with the change of parameter 
combination, and it is of great importance to develop effective tools to choose appropriate model 
parameters. 

Besides, the amount of reservoir operation data will increase with the passage of time, which 
directly affects the major decision (monthly outflow that is equivalent to the abandoned spillage 
and turbine discharge) and the core function (like generation benefit) involved in the operation 
rules. Thus, the update frequency of reservoir operating rules can be set to a monthly basis in 
practice. On the other hand, in many parts of the world, climate change is creating non-stationary 
conditions in the flow-rate and streams. These non-stationary conditions show up as time trends in 
the annual flow-rate of streams and change over time in the pattern of month-by-month 
contributions to the annual streamflow [52–55], which will lead to certain significant impacts on 
reservoir operation. Because of the limited time and energy, the check for time trends in the inflow 
data of the survey region was not made, but this work is necessary for any future application of the 
methods presented here for operating-rule selection. Thus, in the future, we will deepen the 
research on the operation optimization of a hydropower reservoir in the changing environment. 
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