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Abstract: In this work, we develop a novel Lagrangian model able to predict solute mixing in
heterogeneous porous media. The Spatial Markov model has previously been used to predict
effective mean conservative transport in flows through heterogeneous porous media. In predicting
effective measures of mixing on larger scales, knowledge of only the mean transport is insufficient.
Mixing is a small scale process driven by diffusion and the deformation of a plume by a non-uniform
flow. In order to capture these small scale processes that are associated with mixing, the upscaled
Spatial Markov model must be extended in such a way that it can adequately represent fluctuations
in concentration. To address this problem, we develop downscaling procedures within the upscaled
model to predict measures of mixing and dilution of a solute moving through an idealized
heterogeneous porous medium. The upscaled model results are compared to measurements from
a fully resolved simulation and found to be in good agreement.
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1. Introduction

Mixing is the process that brings dissolved chemical species together. Thus, accurately accounting
for mixing is particularly important in the context of correctly predicting mixing-driven chemical
reactions [1–4]. Many existing reactive transport modeling approaches assume perfect mixing at some
scale, while in reality incomplete mixing of reactive species occurs below this scale. The effects of this
have been observed in theory [5–8], numerical modeling [5–7,9,10], laboratory experiments [11–15],
and field studies [16–18]. Incomplete mixing typically results in an overestimation of the amount of
reaction that will occur, presenting the need to artificially, and often non-physically, alter the effective
reaction rate used in the model to better match observations [19]. This has led to the development
of upscaled models that aim to account for subscale concentration fluctuations that limit reaction
e.g., [20–22]. The correct prediction of reaction rates has many practical implications in the context of
porous media and aquifers, e.g., the prediction of contaminant migration [23,24], the remediation of
contaminated groundwater [25,26], and the fundamental prediction of naturally occurring geochemical
reactions that shape the subsurface below us. For these reasons, the development of models that
accurately describe mixing behaviors are necessary.

In general, real flows through geologic porous media are non-uniform with heterogeneity present
over a wide range of scales [2]. For many such systems, it is simply not computationally feasible to
resolve the full flow heterogeneity across all of these scales [2]. This presents the need for upscaled
models that capture the effects of these small scale processes without resolving them. In highly
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heterogeneous porous media, the complex flow organization is characterized by variations over
several orders of magnitude in the hydraulic conductivity field and strong channeling of high velocity
regions [27,28]. This results in larger Lagrangian velocity correlations in space for particles in higher
velocity zones than in lower velocities [27]. It can also lead to strong Lagrangian accelerations as
particles transition between high and low velocity regions [28]. To accurately model mixing in highly
heterogeneous systems, these flow features must be taken into account.

Mixing generally happens more quickly in non-uniform systems as a result of the stretching
and compressing experienced by a fluid due to flow heterogeneity [29–31]. In advection-dominated
transport settings, the underlying flow structure will have a large impact on transport and mixing in
a system. The Péclet number (Pe), which quantifies the ratio between advective and diffusive processes,
plays a key role in determining the enhancement of mixing due to the non-uniform flow. In high Pe
systems with strong velocity contrasts, the flow will deform a solute plume and significantly impact
mixing. This leads to very different behaviors if compared with those emerging in homogeneous media.
This has a clear impact on reaction dynamics as investigated in detail by [32]. Flow topology itself can
also have a strong impact on mixing. This is exemplified by recent studies which observed that regions
of chaotic mixing can occur in Darcy-scale groundwater flows under transient forcing conditions [33]
and examined the role of twisting streamlines on the enhancement of mixing in three-dimensional
anisotropic porous media [34].

There are many ways to quantify mixing, ranging from local to global scales. Many studies
consider global measures of mixing such as the scalar dissipation rate [1,35,36] and the dilution
index [30,35,37]. These global metrics consider the amount of variation in the concentration field
over the entire flow domain as it evolves in time. At local scales, metrics relating to plume
deformation induced by velocity gradients have been shown to be useful. These include, for example,
the Okubo-Weiss parameter [30,38], the largest eigenvalue of the Cauchy-Green strain tensor [38],
the finite-time Lyapunov exponent [38], and the trace of the local strain matrix squared [39]. Recently,
strong mixing regions identified by these local metrics of flow deformation have been linked to higher
amounts of reaction [40]. The Okubo-Weiss parameter [30] and the trace of the local strain matrix
squared [39] have also been explicitly linked to the rate of evolution of the the dilution index over time,
demonstrating a correlation between global mixing behavior and local flow deformation.

Many approaches exist for modeling effective upscaled transport in highly heterogeneous porous
media, e.g., multi-rate mass transfer models [41], fractional advection-dispersion equations [10],
and continuous time random walks [42]. In this paper, we will focus on one particular model,
the Spatial Markov model (SMM). The SMM has been used to predict effective mean transport in a wide
variety of flowing hydrologic systems, including highly heterogeneous geologic media [28,43], fracture
media [44–50], and complex pore scale systems [51]. It has also been extended to predict first-order
and bi-molecular reactions in relatively simple idealized pore scale systems [52,53]. The SMM belongs
to the broader family of continuous time random walk (CTRW) models. In its discrete implementation,
it imposes correlation between successive particle steps. This is unlike many other approaches that
assume statistical independence between subsequent jumps. By doing so, one can typically capture
upscaled behaviors over smaller scales than an uncorrelated model allows. It has been shown that
accounting for such correlation is particularly important in advection-dominated, steady flows [54,55].

The SMM, as we will apply it, is a reduced-dimensionality 1-d model that can describe the
location of a solute plume over time and thus predict mean concentrations. While this is useful for
predicting common depth-averaged observables such as breakthrough curves, having information
on only the mean transport is insufficient to predict mixing. Since mixing is a small scale process
associated with diffusion and the deformation of a plume by a non-uniform flow, fluctuations in
concentration must also be captured in a model, so as to accurately predict large scale mixing dynamics.
Therefore, improvements and adjustments must be made to the traditional SMM in order to successfully
upscale mixing. Recently, the SMM was extended to predict mixing using a trajectory-based
method in a periodic flow domain [56], where the periodic nature of the geometry and flow were
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exploited to downscale the full concentration field from mean transport predictions. Here, we propose
a conceptually similar approach by examining transport through a highly heterogeneous porous
medium. Given the lack of periodicity, the downscaling approach is not as intuitive or obvious.
For this reason, we consider a variety of approaches to predict effective mixing using the SMM. To do
this, we develop several downscaling methods within the upscaled SMM to downscale solute particle
locations and reconstruct representative concentration fields that can be used to quantify mixing.

2. System Setup

The velocity field v(x) considered in this work is representative of an idealized two-dimensional
heterogeneous porous medium. To obtain the flow field, a log-normal random Gaussian-correlated
permeability field κ(x, y) (dimensions of [L2]) is generated with zero mean and variance σ2

ln κ = 9.
The permeability is discretized in squared grid cells of unit length and we fix correlation length λ = 2.
The natural log of the permeability field used in this study is depicted in Figure 1a. The distribution,
variance, and correlation length of the permeability field were chosen to align with the field used in
the work of Le Borgne et al. [28,43], which first introduced the SMM and applied it to successfully
predict mean transport characteristics, including the rate of spreading of the plume as quantified by
the second centered moment as well as breakthrough curves. After generating our permeability field,
we solve Darcy’s law coupled with incompressibility

v(x) =
κ(x)

µ
∇p, ∇ · v = 0, (1)

to obtain our velocity fields, where v is the velocity
[
LT−1], p [ML−1T−2] is pressure, and µ [ML−1T−1]

is viscosity. System (1) is solved using a finite volume method [57]. At the boundaries we impose
permeameter like conditions: no flux across the lateral boundaries and constant head at the upstream
and downstream boundaries. The mean velocity can then be rescaled to any desired value, so for
convenience we choose vx = 1. Figure 1b shows the natural log of the absolute value of the velocity

v =
√

v2
x + v2

y, where vx and vy are the velocity fields in the horizontal and vertical directions,
respectively. The flow domain was generated to be large enough so that when we simulate transport
the solute will not interact with the boundaries. Domain lengths in the x and y directions equal to
Lx = 8000 and Ly = 2000, respectively, were deemed sufficient for this purpose.

The governing equation for transport is the advection dispersion equation

∂C(x, t)
∂t

= D∇2C(x, t)− v · ∇C(x, t), (2)

where C is the solute concentration
[
ML−2] and D is the constant isotropic dispersion coefficient[

L2T−1]. Our dispersion coefficient is selected to be a constant for simplicity and to align with the
work of Le Borgne et al. [28,43], although it should be noted that using a velocity-dependent dispersion
coefficient can have an impact on mixing [58,59]. Rather than solving Equation (2) directly, we model
it with an equivalent particle tracking random walk approach. Our plume is discretized into a large
number of particles. Each particle’s mass is given by mp = mtot/Np, where mtot is the total amount of
mass of the solute, Np is the number of particles, and mp is the mass carried by each particle. mtot = 1,
Np = 105, and mp = 10−5 are chosen for this study. In this fully resolved model, the particles move in
time according to Langevin equation

x(tn+1) = x(tn) + v(tn)∆t +
√

2D∆tξξξ (3)

where ξξξ ∼ N(0, 1), ∆t is the time step, and v is the particle velocity interpolated from the velocity field
shown in Figure 1b. At every time step, the particle moves with an advective step and a random jump
reflecting diffusion with zero mean and a variance equal to 2D∆t.
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We consider an advection-dominated flow with Péclet number equal to Pe = vxλ
D = 200,

where vx = 1 is the mean velocity in the horizontal direction of the flow, λ = 2 is the correlation
length of the permeability field, and D = 10−2 is the constant dispersion coefficient. Our simulation
time step is ∆t = 10−3. For our initial condition, we consider a flux-weighted line injection of a solute.
The line injection is placed at x = 0.4Lx between ymin = 0.25Ly and ymax = 0.75Ly, as indicated on
Figure 1. This location was chosen so that the solute would not interact with the flow boundaries over
the times that we are interested in measuring mixing.

2000

0
0 8000

8000

2000

0
0

(b) ln(v) = ln
⇣q

v2
x + v2

y

⌘

(a) ln()

Figure 1. (a) The natural log of the permeability field κ and (b) the natural log of the absolute value of

the velocity v =
√

v2
x + v2

y, where vx and vy are the velocity fields in the horizontal and vertical flow
directions, respectively. The solid black line on each of the fields indicates the location of the solute
line injection and the small squares indicate regions which we have zoomed in on so the flow features
could be seen more clearly on the right side of the figure.

To quantify mixing in this system, we consider two commonly used metrics of global mixing.
First, we measure the integral of the solute concentration squared, given by

M(t) =
∫

C2(x, t)dx. (4)

M(t) describes how fluctuations in concentration evolve in time over the entire domain. The time
derivative of this quantity multiplied by −1/2 is known as the scalar dissipation rate and is
a well-known metric used to quantify the rate of mixing [1,35,36]. Our second metric of mixing
is the dilution index, defined as

E(t) = exp
(
−
∫

C(x, t)ln[C(x, t)]dx
)

. (5)

The dilution index describes the degree of solute mass uniformity (i.e., dilution) in a system and
is proportional to the volume occupied by a solute [37]. Under perfect mixing when C(x, t) is uniform
over the entire domain under consideration, the integral of the squared concentration M(t) will be
at a minimum, the scalar dissipation rate will be equal to zero, and the dilution index E(t) will be at
a maximum.

In order to compute M(t) and E(t), the concentration field must first be calculated. To obtain
the concentration field, we map particles onto the same spatial grid as the velocity field. Then,
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the concentration in the ith grid cell is given by Ci = Ni mp/Agrid, where Ni is the number of particles
in the grid cell and Agrid is the area of the grid cell. Figures 2 and 3 show the calculation of M(t) and
E(t) in time from the fully resolved simulation using Equations (4) and (5), respectively (solid blue
line). In the development of our upscaled model, our goal is to match the simulation results of this
fully resolved simulation as well as possible.

Figure 2. The integral of the squared concentration, M, versus time for the fully resolved random walk
model and the different versions of the upscaled model described in Section 4.

Figure 3. The dilution index, E, versus time for the fully resolved random walk model and the different
versions of the upscaled model described in Section 4.
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3. Upscaled Model: Spatial Markov model

Next we describe the SMM and suite of modifications to the traditional method that were made
for the purpose of predicting mixing. We provide a detailed overview of the SMM, but for more details
refer the interested reader to the detailed descriptions provided in [54,60].

3.1. Model Parameterization

As in previous implementations of the SMM, we parameterize the model by running high
resolution particle tracking simulations over two representative cells in our flow field using the
random walk method described in the previous section using Equation (3). We initially have our flux
weighted line injection located at x = 0.4Lx and for our model parameterization we track the evolution
of each of these particles in time until they have reached the downstream location x = 0.4Lx + 2Lcell .
A cell length of Lcell = 24λ was deemed appropriate for our system. Further discussion on this choice
of cell length can be found in Section 3.2.1.

During the parameterization step, we record several features of a particle’s trajectory: (i) the
particles’ y position at the inlet of the first cell (y0), (ii) the particles’ y position at the inlet of the
second cell (y1), (iii) the time it takes for the particles to travel through the first cell (τ1), and (iv)
the time it takes for the particle to travel through the second cell (τ2). This process is illustrated in
Figure 4. After the joint distribution f (y0, y1, τ1, τ2) is obtained, it is used to inform the upscaled model.
Typically, only τ1 and τ2 are recorded in the parameterization of the Spatial Markov model, but the
additional information on y0 and y1 is required here for our downscaling procedure, which aims to
predict mixing.

x0

t0

x1 = x0 + Lcell

t1 = t0 + ⌧1

x2 = x0 + 2Lcell

t2 = t0 + ⌧1 + ⌧2

y0

y1

Figure 4. Diagram illustrating the parameterization step for the upscaled model. Each particle moves
by random walk over a distance of two cell lengths and the particle’s initial y position (y0), y position
at the inlet of the second cell (y1), and travel times through the first and second cells (τ1 and τ2,
respectively) are recorded. The red circles represent an example of a single particle trajectory.

3.2. Model Mean Longitudinal Transport

The SMM is a random walk particle-based model. As for the fully resolved model described
previously, the plume is discretized into a large number of particles of equal mass mp. Unlike the
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fully resolved model, a particle takes a uniform step in space of size Lcell and moves forward in time
a random amount τ at each step in the upscaled model. In the SMM, during each model step, particles
move forward in time and space according to Langevin equation

x(n+1) = x(n) + Lcell

t(n+1) = t(n) + τ(n+1) n = 0,1,2,...
(6)

where τ(n+1) is sampled from

f (τ) =

{
f (τ1) if n= 0

f (τ(n+1)|τ(n)) if n = 1,2,... .
(7)

The distribution of τ1 ( f (τ1)) is measured directly during the parameterization step and the
distribution of τ2 given τ1 ( f (τ2|τ1)) is modeled by a transition matrix. To obtain the transition
matrix, f (τ1) is separated into 20 equiprobable bins and the cutoff times associated with each bin
are recorded. This bin number is chosen based on a convergence test and is in line with previous
estimates for the required number of bins [60]. Bin 1 contains the particles with the fastest travel times
and Bin 20 contains particles with the slowest travel times. A particle with travel time τp is in Bin i if
tc,i ≤ τp < tc,i+1, where tc,i is the cutoff time for Bin i, tc,1 = 0, and tc,21 is greater than the maximum
value of τ1 and τ2 for all particles. Then, the transition matrix is defined by

Ti,j = P(τ2 ∈ Bin j|τ1 ∈ Bin i) ≈ f (τ2|τ1). (8)

It is assumed that f (τ(n+1)|τ(n)) = f (τ2|τ1). Thus, each block of the transition matrix, Ti,j,
describes the probability that a particle will have a travel time in Bin j given that its travel time was in
Bin i in the previous step.

Using Equation (6) in the SMM, we know when a particle is at a location NLcell , where N is
an integer. In other words, at a specified time t∗, the SMM provides information about which cell each
particle is in, how long it has been there, and how long it will remain there, but the exact location
of a given particle beyond this is unknown. In order to predict mixing by estimating M(t) or E(t)
as defined in Equations (4) and (5), we need to have an estimate of the spatial distribution of the
concentration field at a given moment in time. To obtain such information from the SMM, we must
make an educated guess as to where a particle will be located within a cell. This means that we
must develop a downscaling procedure within the upscaled model to predict the location of each
particle. Note that we are not attempting to accurately reproduce the detailed concentration fields
observed in the fully resolved model, but are instead trying to develop a downscaling procedure that
provides an accurate estimate of the integral of the squared concentration, M, and the dilution index,
E, in time—i.e., we are trying to generate a numerical closure via a downscaling process. In Section 4,
we describe a variety of different downscaling methods considered here for the purpose of predicting
mixing. While we actually implemented several more than those described here, we focus on this
limited number to highlight specific features.

3.2.1. Choice of Cell Length

To determine the appropriate cell length, breakthrough curves (BTCs) were measured using the
upscaled SMM at four downstream locations at distances 48λ, 96λ, 144λ, and 192λ from the inlet and
compared to BTCs measured with the fully resolved model. The SMM was run using a variety of cell
lengths in order to determine a cell length that would be appropriate for use in our expanded SMM
to measure mixing. The BTCs measured using the SMM with cell lengths of Lcell = 6λ, 12λ, and 24λ

(dotted lines) are shown on Figure 5 along with the corresponding BTCs measured with the fully
resolved model (solid lines). The upscaled model should be able accurately capture the peaks and
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tails of the BTCs. By examination of Figure 5, it is clear that the upscaled model with Lcell = 6λ is
unable to capture either the peaks or the tails of the BTCs and the SMM results seem to deteriorate as
the particles move downstream. For this reason, we must choose a larger cell length than 6λ for the
SMM. From Figure 5, the SMM with Lcell = 12λ appears to capture the peaks and tails of the BTCs
relatively well, but Lcell = 24λ gives better results. For this reason, a cell length of Lcell = 24λ was
deemed appropriate for our system. This result implies that a length scale of 24λ is required to capture
the transport dynamics in the heterogeneous system we consider. While limited to the specific level of
heterogeneity investigated here, this result quantifies the characteristic scale necessary to identify the
parameters of our effective transport model with respect to the one associated with the conductivity
field. This scale is likely associated with connected structures (e.g., channels) emerging in the velocity
field and that are relevant for the characterization of the travel time of successive jumps. This estimate
is fully consistent with the detailed work of [61].

Figure 5. Breakthrough curves measured at distances 48λ, 96λ, 144λ, and 192λ downstream from the
inlet for both the fully resolved model (solid lines) and the Spatial Markov model (dotted lines) with
cell lengths of (top) 6λ, (middle) 12λ, and (bottom) 24λ. From these results, it was determined that
a cell length of 24λ was an appropriate choice for our upscaled model.
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4. Downscaling Procedure to Predict Mixing

In this section we discuss the downscaling procedures developed in order to construct full
concentration fields within the upscaled model. The goal here is not to accurately approximate the
fully resolved concentration field, but rather reconstruct some effective concentration field that can be
used to predict our desired global measures of mixing. To obtain this information, we must develop
a procedure to estimate the x and y locations of each particle at any given time.

4.1. Downscaling the Streamwise Location x

As mentioned previously, at any time t∗ we know which cell each particle is in, how long it has
been in that cell, and how much longer it will be there. Consider a particle that is in Cell n + 1 at time
t∗. The particle will travel through that cell over an amount of time τ(n+1) and has been in that cell
for a time equal to t∗ − t(n), where t(n) is the total time traveled by the particle upon entering Cell
n + 1. In order to make an educated guess for the x location of the particle within the cell at time t∗,
we assign each particle a mean longitudinal velocity through the cell equal to v(n+1) = Lcell/τ(n+1).
For our downscaling procedure in x, we assume that the particle moves straight across Cell n + 1
with a uniform velocity equal to v(n+1). Thus, we linearly interpolate along this path to determine the
downscaled x position, x∗, i.e.,

x∗ = (t∗ − t(n))v(n+1) + x(n). (9)

This is the same choice for predicting x locations used in [53] and this process is illustrated
schematically in Figure 6.

(t⇤ � t(n))v(n+1)

(x⇤, t⇤)

x(n+1) = x(n) + Lcell

t(n+1) = t(n) + ⌧ (n+1)

x(n)

t(n)

Figure 6. Illustration of the downscaling procedure in the x direction. A particle is in Cell n + 1 and
will travel through that cell over an amount of time τ(n+1). We want to determine the particle’s x
location at time t∗.

Figure 7 shows the histogram of particle x positions for both the fully resolved and upscaled
models at various points in time throughout the simulation. This figure shows that the downscaling
method described here does a reasonable job of predicting the x positions of particles relative to
the small scale simulation. While it is certainly not perfect, we deem this sufficient and choose it as
the method we will use to predict particle x locations for all cases. A feature that can be observed
is that longitudinal particles’ locations are better matched as time advances (compare, for instance,
results in Figure 7a–c to Figure 7d–f). This is consistent with the fact that our method considers a
constant longitudinal velocity across a single step and therefore ignores subscale fluctuations that
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appear to average out across multiple steps of a single particle. Finding a good method to guess the
y location of a given particles requires more effort, and we propose several different methods in the
following sections.

Figure 7. Histogram of particle x locations at times (a) t = 1, (b) t = 20, (c) t = 40, (d) t = 60, (e) t = 80,
and (f) t = 100 for both the fully resolved particle tracking simulations (solid black line) and the Spatial
Markov model with the downscaling method described in Section 4.1 (dashed blue line). The bin size
selected for the histogram is the same as the fully resolved grid resolution.

4.2. Downscaling the Spanwise Location y

4.2.1. Method 0

Before developing more sophisticated downscaling procedures to predict the particle y locations,
we start with probably the most naive approach; that is, we assume we know nothing about a particle’s
y location and allow it to take any value with uniform probability between ymin and ymax. Thus,
the downscaled x and y positions are given by

x∗ = (t∗ − t(n))v(n+1) + x(n)

y∗ = (ymax − ymin)η
∗ + ymin

(10)

where η∗ ∈ U(0, 1). This method corresponds to a case where information about the probable y
positions of particles is either unavailable or unimportant.

Figure 2 shows the calculation of M vs. time and Figure 3 shows E vs. time for both the fully
resolved model and the upscaled model using Method 0. From Figures 2 and 3, it is clear that Method 0
causes our upscaled model to strongly overpredict mixing. This result is unsurprising, as the placement
of particles in the y direction based on a uniform distribution is equivalent to complete mixing of the
solute in the y-direction. In reality, particles traveling on similar streamlines will tend to congregate
with one another, leading to large transversal fluctuations in the concentration field. For this reason,
a uniform distribution is not suitable here. More knowledge of the system is needed in order to
adequately represent the particle y locations in the downscaling procedure.
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4.2.2. Method 1

As observed in the previous section, it is crucial to incorporate more information from the system
in the prediction of the particle positions in the y direction. Recall that in our parameterization step we
recorded the joint distribution f (y0, y1, τ1, τ2). For Method 1, we assign each particle in the upscaled
model a y location equal to its initial y position, y0, at all times. Therefore, the downscaled x and y
positions are given by

x∗ = (t∗ − t(n))v(n+1) + x(n)

y∗ = y0.
(11)

This process is illustrated in Figure 8. With this method, we are proposing that the particle’s initial
position in y may be a sufficient approximation at all times in our upscaled model. From a statistical
perspective this aligns with the idea that this might be its most likely location.

(t⇤ � t(n))v(n+1)

x(n+1) = x(n) + Lcell

t(n+1) = t(n) + ⌧ (n+1)

x(n)

t(n)

y0

(x⇤, y⇤, t⇤)

Figure 8. Illustration of the downscaling procedure Method 1 in the y direction. A particle is in Cell
n + 1 and will travel through that cell over an amount of time τ(n+1). The particle’s x location is
determined using the method described in Section 4.1. We want to predict the particle’s y location at
time t∗. In this method, the downscaled y location is equal to each particle’s initial y position, y0.

From Figures 2 and 3, it is observed that there is a large improvement in the prediction of M(t)
and E(t) using Method 1 relative to Method 0. This method does well at earlier times when particles
have not moved very far from their initial position, but starts to under-predict mixing at ∼t = 10
as the particles have moved farther downstream and their initial y position is no longer as good of
an approximation. This under-prediction of mixing can be attributed to the fact that particles would
not move along a straight streamline in reality. This method does not allow for any form of transverse
spreading, which is something that should be taken into account. Moving forward, we aim to improve
this result by incorporating more information from the system.

4.2.3. Method 2

We know in reality that particles are not traveling along straight horizontal streamlines through
our heterogeneous flow. The next step in improving our downscaling procedure would be to
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incorporate this idea and attempt to simulate a more realistic particle trajectory in our upscaled
model. We adjust the Langevin equation to include a y component in our Spatial Markov model, i.e.,

x(n+1) = x(n) + Lcell

y(n+1) = y(n) + ∆y

t(n+1) = t(n) + τ(n+1) n = 0,1,2,....

(12)

Here, ∆y = y1 − y0 comes from f (y0, y1, τ1, τ2), which was determined during the
parameterization step of the model. Each τ value has an associated ∆y value; τ is drawn as usual using
the transition matrix and its corresponding ∆y value is selected for each particle at every step. Then in
the downscaling procedure, we linearly interpolate between y(n) and y(n+1) over the cell length Lcell to
the point x∗, i.e.,

x∗ = (t∗ − t(n))v(n+1) + x(n)

y∗ =
y(n+1) − y(n)

Lcell
(x∗ − x(n)) + y(n).

(13)

This method is illustrated schematically in Figure 9.

(t⇤ � t(n))v(n+1)

(x⇤, y⇤, t⇤)

x(n)

y(n)

t(n)

x(n+1) = x(n) + Lcell

y(n+1) = y(n) + �y

t(n+1) = t(n) + ⌧ (n+1)

�y

Figure 9. Illustration of the downscaling procedure Method 2 in the y direction. A particle is in Cell
n + 1 and will travel through that cell over an amount of time τ(n+1). The particle’s x location is
determined using the method described in Section 4.1. We predict the particle’s y location at time t∗

using Method 2.

The results of Method 2 in the calculation of M(t) and E(t) compared with the fully resolved
model results are shown on Figures 2 and 3, respectively. This method appears to show an improvement
over Method 1, except at early times (before time = 10) when most of the particles are still in the first
cell. It is worth noting that at all times throughout our simulation this method is over-predicting
mixing. This can be attributed to the fact that Method 2 is not capable of incorporating the idea that
particles traveling near each other are likely to have similar trajectories. In this version of the upscaled
model, each particle draws a new (τ,∆y) pair when it enters a new cell. The method is unable to
account for the fact that particles traveling near each other will likely have similar τ and ∆y values.
While τ values are correlated by the implementation of the transition matrix in the SMM, particles
with similar travel times can have very different values of ∆y associated with them due to the highly
heterogeneous nature of the flow field. This results in the observed over-mixing for Method 2 in
Figures 2 and 3.
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4.2.4. Method 3

In this final method, we will add some complexity to the parameterization step of the model.
We previously measured the joint distribution f (y0, y1, τ1, τ2) in the model parameterization. Now,
we expand this step by recording information on the particle trajectories within the first cell. To measure
these trajectories, we record the y positions for each particle as they travel across the first cell at Nt

evenly spaced points in the x-direction. Therefore, in our updated parameterization step we record the
joint distribution f (y0, yt,1, yt,2, ..., yt,Nt = y1, τ1, τ2), where yt,# are the particle y positions measured
at Nt points along their trajectory. Nt = 20 was determined to be a sufficient number of sampling
positions for capturing the particle trajectories within the cell.

In order to incorporate this additional particle trajectory information into our downscaling
procedure, we separate the particles into zones based on their initial y position, y0. These zones were
defined by separating the y0 particle positions into a number Nz of equiprobable regions. Since our
solute line injection defined by the particle y0 positions is flux-weighted, these equiprobable zones will
not be uniformly spaced in the y direction. Nz = 20 was selected here, so that each zone will contain
trajectory information from Np/Nz = 5000 particles. A broad range of zone numbers were tested and
the results were not significantly affected, indicating the robustness of this method. The histogram of
y0 values is shown in Figure 10a, where each color represents a different zone number.

After defining our zones, we then create a set of y values, Yj, for each zone number j. The set
Yj contains all of the y positions measured in the trajectories for every particle that had y0 in Zone j.
This means that Yj contains every y value from each particle trajectory defined by y0, yt,1, yt,2, ..., yt,Nt =

y1 that had its initial y position, y0, located in zone number j. In this study, Yj is a set containing
Nt × Np/Nz = 20× 5000 y values. Figure 10b shows the histogram of the set of y values Yj for each
zone number j. The adjustment of the parameterization step is illustrated in Figure 11.

Figure 10. (a) The distribution of y0 separated into Nz = 20 equiprobable zones and (b) the distribution
of y values for each zone calculated in the parameterization step.
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x0

y0

t0

Zone 1

Zone 2

Zone 3

Zone 4

x1 = x0 + Lcell

y1 = yt,Nt

t1 = t0 + ⌧1

Figure 11. Illustration of the parameterization step for downscaling Method 3. For simplicity, the
schematic only shows 4 zones, but in our simulations we separate the domain into Nz = 20 equiprobable
zones based on the initial y positions, y0. As is depicted here, we measure the particle y positions at
Nt = 20 equally spaced locations in x across the first cell in order to capture the trajectory of each
particle. We illustrate this with four sample trajectories for particles in Zone 2. The particle trajectories
defined by yt,1, yt,2, ..., yt,Nt may have y positions outside of their defined zone, but this does not
change the set of y values associated with each zone Yj to which they contribute. The set Yj contains all
y positions y0, yt,1, yt,2, ..., yt,Nt = y1 for every particle that had y0 in that zone.

After defining our zones and determining the set of y values Yj associated with each zone number
j, we will now use this information in our downscaling procedure. In this method, we will determine
the downscaled y position of each particle at some time t∗ by randomly selecting a y value from the
set of possible y values, Yj, associated with each particle’s zone number j. The particle’s zone number
depends exclusively on its initial y position, y0, and does not change at any point throughout the
simulation. For example, a particle that had y0 in Zone 2 will always draw from the set of possible y
values associated with that zone, Y2. Thus, the downscaled x and y positions at time t∗ are given by

x∗ = (t∗ − t(n))v(n+1) + x(n)

y∗ = y(n+1)
j ,

(14)

where y(n+1)
j is a y value selected randomly with uniform probability at each Spatial Markov step from

the set Yj associated with the particle’s zone number j.
This method incorporates the idea that particles will in general travel along paths that have y

values similar to their initial y position. They will not likely be making large jumps in the y direction,
but they will also not simply maintain their initial y position as we assumed in Method 1. By selecting
from a set of y values based on each particle’s initial y position, we are assuming that particles over
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time will have the same distribution in y as they did in the first cell during the model parameterization.
The y positions of particles are assigned through a regionalization of the transversal dimension y into
zones, preventing them from making excessively large jumps in the spanwise direction. The results of
Method 3 in the measurement of M(t) and E(t) compared to the fully resolved model and the other
upscaled models are shown on Figures 2 and 3, respectively. As observed in these figures, Method 3
performs better than the other upscaled models in estimating M(t) and E(t).

5. Discussion

Now, we compare the different upscaled methods both qualitatively and quantitatively.
From Figures 2 and 3, it is clear that Methods 1, 2, and 3 all perform very well relative to Method 0 in
predicting M(t) and E(t) as compared to the fully resolved random walk algorithm. Here, we will
discuss the successes of each of these methods as well as their shortcomings.

Figure 12 shows the particle locations at three different times throughout the simulations for the
fully resolved random walk model and the upscaled methods 0, 1, 2, and 3. As already noted above,
our goal was not necessarily to reproduce the concentration fields of the fully resolved simulation, but
to capture the key features that enable an accurate estimate of M(t) and E(t), such as the peaks in
concentration and the spreading of the plume. Many closures for predicting reactive transport involve
integrated nonlinear terms like these e.g., [62,63] and so accurately estimating them is an essential
first step to accurate upscaling of reactive transport. As observed in Figure 12, Method 0 clearly
over-predicts mixing at all times. This is consistent with the results of Figures 2 and 3. In Figure 12,
Method 1 qualitatively appears similar to our fully resolved simulations at t = 1 and 10, but it appears
that the concentration peaks may be too high and there is not enough spreading of the plume at
t = 100. This is in agreement with the under-prediction of mixing observed for Method 1 after t = 10
in Figures 2 and 3. Methods 2 and 3 also appear qualitatively similar to the fully resolved simulation
at t = 1 and 10, but may have slightly too much spreading. It is also observed in Figure 12 that
there is some discontinuous structure for Method 3 at t = 10. This corresponds to the point in time
where the particles have begun to enter the second SMM cell. At each step in the SMM, each particle
selects a new y value from the set Yj associated with that particle’s zone number j. This means that as
a particle enters a new SMM cell it selects a new y value that is somewhere between the minimum and
maximum values of Yj, resulting in the observed structure. At t = 100, Method 2 clearly has too much
spreading, but may still be capturing the peaks in concentration. Figures 2 and 3 are in agreement with
these observations as Method 2 slightly over-predicts mixing at all times after t = 0.03. At t = 100,
the plume of Method 3 has a different shape than the fully resolved simulation, but the amount of
spreading and regions of high concentration are comparable. Figures 2 and 3 show that Method 3
also very slightly over-predicts mixing at all times except very early times, but in general show results
that are very close to that of the fully resolved simulation. Upon visual inspection of Figures 2 and 3,
Method 3 appears to give the best prediction of M(t) and E(t).

After qualitatively examining each of these methods, we now want to quantify which method
performs the best. To do this, we use the mean absolute error on a log scale, defined as

ε(β) =
∑

Npts
i=1 |log10β1,i − log10β2,i|

Npts
(15)

where β is either M(t) or E(t), β1 is the mixing metric calculated in the fully resolved model, β2 is the
mixing metric calculated in the upscaled model, and Npts is the number of points in time at which
M(t) and E(t) are measured. We choose to calculate the mean absolute error on a log scale so as not to
penalize the smaller values of M(t) and E(t). The results of this error calculation are shown in Table 1.
As expected, Method 0 has a significantly larger error than Methods 1, 2, and 3. Methods 1 and 2 had
very similar error values, and Method 3 had the smallest error in the measurement of both M(t) and
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E(t). Based on this error metric, Method 3 is the option that performs the best. This is consistent with
the qualitative examination as well.

Figure 12. Particle locations for the fully resolved simulation, Method 0, Method 1, Method 2,
and Method 3 at t = (a) 1, (b) 10, and (c) 100.

Table 1. The mean absolute error of log10β, where β is either M(t) or E(t), for each of the upscaled
methods as defined by Equation (15).

ε(M) ε(E)

Method 0 0.5895 0.4888
Method 1 0.1275 0.0893
Method 2 0.1121 0.1217
Method 3 0.0352 0.0646

6. Conclusions

In this work, we have extended the Spatial Markov model to predict effective mixing in flows
through idealized two-dimensional heterogeneous porous media. To do this, we developed several
downscaling methods to predict the particle locations within the upscaled model and thereby
approximating solute distribution within the domain. From these predicted particle locations, we were
able to generate concentration fields that could then be used to calculate the evolution of the solute
mixing, as quantified by integral of the squared concentration, M(t), and the dilution index, E(t),
in time. The results of each of these downscaling methods developed for the SMM were compared to
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a fully resolved random walk simulation. In order to be able to predict M(t) and E(t) accurately with
our upscaled model, it was crucial to capture the same amount of variation in the concentration field
as in the fully resolved model. Each of these upscaled methods require nearly the same computation
time and are on the order of 1000 times faster to run than the fully resolved method. Although Method
3 does add more complexity to the upscaled model than the other methods presented here, it is as
computationally efficient as the other methods and provides the best prediction of E(t) and M(t).
For this reason, we recommend Method 3 as an extension of the Spatial Markov model to predict
mixing in uniform mean flow simulations in heterogeneous porous media.

Although we were able to predict M(t) and E(t) within an acceptable margin of error using our
upscaled model, there is still room for improvement. Our results show that a key feature to be encoded
in the upscaled approaches is that particles traveling near each other will have similar trajectories.
Method 3 provides good results in terms of matching average mixing behavior through a rough
regionalization of transversal particle positions. Still, we observe a slight over-prediction of mixing
and the methodology is not able to capture the topological structure of the solute plume. We envision
that the method can be further improved in future works, particularly with the aim of generalizing the
approach to broader transport settings beyond one-dimensional transport.
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