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Abstract: Estimation of ground-truth daily evapotranspiration (ETc) is very useful for developing
sustainable water resource strategies, particularly in the North China Plain (NCP) with limited
water supplies. Weighing lysimetry is a well-known approach for measuring actual ETc. Here, we
introduced an alternative to lysimetry for ETc determination using Insentek sensors. A comparison
experiment was conducted for maize plants at Xuchang Irrigation Experiment Station, in the NCP,
in 2015 and 2016. Insentek ETc was evaluated using data on clear days and rainy days independently.
We found that daily ETc increased gradually from VE (emergence) to VT (tasseling) stages, peaked at
the R1 (silking) stage with the highest value of 7.8 mm·d−1, and then declined until maturity. On
average, cumulative total of lysimetric ETc was 19% higher than that of Insentek ETc. The major depth
of soil water extraction might be 60 cm for maize plants on lysimeters according to soil water depletion
depth monitored by Insentek sensors. Daily ETc significantly related to soil water content (SWC) in
topsoil (0–30 cm) in an exponential function (coefficients of determination (R2) = 0.32–0.53), and to
precipitation (Pre) in a power function (R2 = 0.84–0.87). The combined SWC (0–30 cm)–Pre–ETc model
may offer significant potential for accurate estimation of maize ETc in semi-humid environment of
the NCP.
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1. Introduction

The North China Plain (NCP) produces 58 and 33% of the domestic wheat and maize yields
in China, ensuring China’s food security [1]. In 2016, maize (Zea mays L.), with a total yield of
220 million tons, was planted on a 36 million hectare across China, making a 49% contribution to
domestic increase in grain production [2]. Maize is also known as one of the highest water-using crops
in different regions [3,4]. Thanks to a continent monsoon climate, annual precipitation falls between
400 and 600 mm in the NCP, with 65% of precipitation occurring in maize seasons [5], while annual
evapotranspiration ranges from 800 to 900 mm: 50–100% higher than precipitation [6]. For decades,
crop water consumption has been being supplemented by extracting the declining groundwater in the
NCP at a speed exceeding aquifer recharge [7]. In the future, immense volumes of groundwater will
be required for the agricultural sector with an ever-growing population [8]. Nevertheless, agronomic
practices, such as cultivar updating and irrigation optimizing, have been made to extend the life of
the aquifer. Consequently, only a 10% increase in crop evapotranspiration (ETc) contributed to a 50%
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yield increase over the past two decades [9]. Of those practices, ETc-based irrigation scheduling is
considered a powerful tool to decrease long-term aquifer extraction [10].

In general, ETc is the process where water is consumed through soil evaporation and plant
transpiration during the water cycling [11]. It has always been considered as an equivalent to crop
water use [12]. Water balance equation is the most widely used method to estimate ETc. In the
equation, ETc stands for water loss from soil surface and plants whereas precipitation and irrigation
represents water input. Water-saving strategies largely depend on the monitoring and controlling of
ETc [5,6]. There are numerous methods available for estimating ETc [12–15], among which weighing
lysimetry is normally used as a standard means [16]. However, its construction is expensive and its
operation requires professional personnel [17]. This restricts the popularity of lysimetry. Alternatives
should be developed to facilitate ETc monitoring. ETc estimation based on the oven-drying method is
simple; however, it is laborious and time-consuming [4]. Another way is to adopt the neutron probe
method [18]. This enables the estimation of ETc regardless of crop types and soil properties. However,
this method usually needs a span of time to measure soil water content (SWC), and is difficult to
estimate daily or sub-daily ETc [19]. Another approach for ETc estimation is remote sensing technology.
It enables us to use satellite observations to estimate ETc at a global and regional scale [20]. However,
studies have shown that different algorithms of remote sensing models for ETc estimation have strong
divergence [21]. Usually, the algorithms to estimate ETc have been based on a surface energy budget
using thermal infrared data, which required plenty of ground-based measurements and were affected
by cloud contamination, providing uncertainties to the ETc estimates [21,22]. Therefore, a real-time
ground-truth monitoring of ETc is needed.

The Insentek sensor (Beijing Oriental Ecological Technology Ltd., Co., Beijing, China) is an
emerging technology that can automatically monitor soil moisture data hourly or sub-hourly (Figure 1).
It is an apparatus for real-time soil moisture monitoring powered by solar energy. Insentek sensor
allows the determination of daily changes in soil water storage (SWS), making the calculation of daily
ETc possible. Our previous study showed that root mean square error (RMSE) of SWC between the
Insentek sensor and the oven-dry method was 0.927 cm3·cm−3, and relative prediction deviation (RPD)
was 7.99 for silt loamy soils, indicating Insentek sensor is a reliable tool to represent real SWC values
(Table 1). The latest figure have shown that there have been more than 15,000 sensors already installed
across China, including remote areas such as Tibet (personal communication). An ETc monitoring
network that covers the whole country has been formed. Through checking the year-round data,
Insentek sensors have showed better continuity and stability than other soil moisture techniques
(e.g., time-domain reflectometry, neutron probe, and oven-drying etc.). In this study, weighing
lysimeters were adopted to continuously monitor ETc of summer maize along with Insentek sensors.
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Table 1. Test for goodness of fit between soil water content (soil water content (SWC), cm3·cm−3)
measured using an Insentek sensor and oven-dry method across different soil textures.

Soil
Texture

SWC Measured by Insentek Sensor Goodness of Fit Correlation Significance

Maximum Minimum Mean RMSE RPD R2 p

Sand 3.46 28.64 18.09 1.044 6.78 0.997 0.0001
Silt loam 7.26 35.11 22.71 0.927 7.99 0.995 0.0001

Clay 17.74 33.71 25.35 0.897 5.61 0.997 0.0001

RMSE is root mean square error used to evaluate the differences between estimated and observed SWC; RPD is
relative prediction deviation, values measured by Insentek sensor are reliable with RPD ≥ 2.0 [23]; R2 is coefficient
of determination; p is probability.

Until now, the degree to which ETc from Insentek sensor method represents that of the lysimetry
has not been well tested. In this study, we started the comparison work between the two. Moreover,
precipitation was recorded by a nearby weather station to analyze the relationship between ETc and
precipitation. We hypothesized that ETc from the Insentek sensor method was similar to that of
lysimetry, and that ETc was significantly related to precipitation and soil moisture. The objectives
of this study were to evaluate the efficacy of Insentek sensor method using lysimetric data, and to
quantify the relationships among ETc, SWC and precipitation for maize plants in the NCP.

2. Materials and Methods

2.1. Site Description

The experiment was carried out at the Xuchang Irrigation Experiment Station, North China
Plain, in 2015 and 2016 (34◦08′25” N, 113◦59′04” E, a.s.l. 71 m) (Figure 2). Four sets of large-scale
weighing lysimeters (2.0 m wide × 2.4 m long × 2.3 m in depth) along with four Insentek sensors were
adopted to compare daily ETc. The place had a continent temperate monsoon climate. The soil was a
fluvo-aquic soil. Soil characteristics of the lysimeters are presented in Table 2. The bottom 30 cm was
filled with a very coarse sand and <3 cm gravels to permit drainage towards lysimeter outlet.
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Table 2. Soil physical properties prior to the start of the experiment at the Xuchang experiment station,
North China Plain, in 2015.

Soil Layers
(cm)

Clay
(<0.002 mm)

Silt
(0.002–0.05 mm)

Sand
(>0.05 mm) Soil Texture 1 Wilting

Point
Field

Capacity
Soil Bulk
Density

0–30 22% 36% 42% Silt loam 13.4 27.3 1.43
30–60 24% 39% 37% Silt loam 12.5 25.8 1.46
60–100 20% 41% 39% Silt loam 12.2 26.9 1.43

100–150 15% 32% 53% Sandy loam 10.4 24.1 1.54
150–200 10% 22% 68% Sandy loam 9.4 22.9 1.51

1 Soil texture was determined according to the Chinese Soil Classification System [24].

Mean annual precipitation is 640.9 mm, of which 65% falls during the maize growing season.
Mean annual temperature is 14.7 ◦C, and annual sunshine hours are 2280 h [4]. Soil bulk density at the
0–60 cm soil layer was 1.45 g·cm−3 and soil organic matter at the same layer was 16.5 g·kg−1. Available
N, P2O5, and K2O at the same layer were 36.5, 23.4, and 219.8 mg·kg−1, respectively [25]. The water
table was detected more than 5 m below the soil surface.

2.2. Experimental Design

Crops were grown in a winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) relay
cropping system. The lysimeters were made of steel metal sheets. Total lysimeter weight was
approximately 24 t, including the container mass. The lysimeter was built in 2012, and ETc data
have been monitored since March, 2014. Insentek sensors were installed at the center of each lysimeter
in October, 2014. After three years of natural packing, the lysimeter monolith was regarded to duplicate
the natural soil status [26].

The upper 2.0 m depth of soil monolith in each lysimeter was filled with undisturbed monolith.
The large-scale weighing lysimeter system contains a main body, load cell, and data logger system
(Figure 1). Weighing resolution was ±100 g, equal to ±0.1 mm of water column. The masses of the
lysimeters were measured every 30 s, and the data were reported as 30 min means. The depth of
lysimeter (2.3 m) permits development of normal rooting and water extraction for summer maize
in the NCP [27]. Collecting buckets were suspended from the bottom of lysimeters to hold gravity
drainage effluent. Load cells connected to the bucks were adopted to separately measure drainage
mass without varying total weight of the lysimeters. Insentek sensors were installed between maize
rows at the center of lysimeters. Insentek ETc was computed using water balance equation at daily
interval. Lysimetric data are usually noisy due to wind and other external disturbance. The lysimeter
noise was separated from signals using a filtering routine [28]. Additionally, biases on lysimeters were
controlled by careful management of sowing, fertilization and irrigation.

A popular form of maize seeds (cultivar Pioneer 335) was sown on 5 June 2015 and 7 June
2016 (Figure 3). Maize was planted in a row with a spacing of 50 cm and plant–to–plant with a
spacing of 30 cm. After maize plants were thinned, there were 32 plants left per lysimeter, equal to
a density of 66,700 plant ha−1. Application rates of fertilizer for each lysimeter were 225 kg·ha−1 N,
180 kg·ha−1 P2O5, and 55 kg·ha−1 K2O, respectively. Diammonium phosphate and potassium sulfate
were broadcast as base fertilizer prior to planting. One half amount of urea was applied as base
fertilizer before sowing, whereas the rest amount of nitrogen was top-dressed at VT (tasseling) stage.
Fertilizer was incorporated into soils to a depth of 20 cm using hand-cultural method. Besides a flood
irrigation (55 mm) after maize sowing to guarantee seed germination, no supplemental irrigation was
added as rainfall met the crop water requirement in both years. Weeds and pests control was applied
according to the local governmental recommendations.
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stage; VT, tasseling stage; R3, milk stage) at the Xuchang Irrigation Experiment Station. The date in the
figure was recorded when more than three quarters (>75%) of the crops developed into the particular
growth stage. The number in parentheses is days after sowing.

2.3. Data Collection and Measurements

2.3.1. Soil Water Content

Insentek sensors (Beijing Oriental Ecological Technology Ltd., Co., Beijing, China) were used to
monitor soil water content (SWC, cm3·cm−3) at 10 cm increment to a depth of 100 cm. The radius of soil
volume prospected by the Insentek sensors is 15 cm (Figure 1). The sensor is a wireless soil moisture
sensor powered by a rechargeable battery, which was, in turn, charged by a solar panel. In order to
evaluate the performance of Insentek sensors, relevant tests were conducted. Our experimental results
showed that, compared to the oven-drying method, the Insentek sensor method is a promising tool for
monitoring moisture across various soil textures.

2.3.2. Daily Crop Evapotranspiration

Daily lysimetric ETc was determined as the difference between the mass losses and gains on
a whole day basis divided by the lysimeter area (4.8 m2), and the density of water (1.0 g·cm−3),
converting lysimeter mass in kg to the equivalent depth of water in mm. Daily ETc was calculated
using Equation (1):

ETc = ∆SWS + Pre + I− R−D (1)

where ∆SWS is the daily changes in soil water storage (mm) of lysimeter; Pre is the precipitation (mm);
I is the irrigation quota (mm); R is the surface runoff, assumed to be negligible due to flat surface and
lysimeter freeboard; and D is the drainage flux, measured by vacuum drainage systems.

Daily ETc estimated using Insentek sensors was calculated on a daily basis using the same water
balance as in Equation (1), except the calculation of ∆SWS, which was calculated based on the soil
volumetric water content in 0–100 cm depth.

2.3.3. Grain Yield and Water Use Efficiency

At physiological maturity, all maize plants from each lysimeter were sampled. To determine the
grain yield, the ears of all plants of maize in each lysimeter were air dried until constant mass, and
then the grain was separated, cleaned, and weighed. Grain yield was calculated on a dry-matter basis.
Water use efficiency (WUE, kg·ha−1·mm−1) was calculated as the grain yield (kg·ha−1) produced per
unit of ETc (mm).

2.3.4. Relationship between ETc and Soil Water Content

To determine the response of ETc to SWC on clear days, an exponential function combined with a
quadratic function was used as follows:
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ETc = ea+b×SWC+c×SWC2
(2)

where ETc is crop evapotranspiration (mm·d−1) and SWC is soil water content (cm3·cm−3) on clear
days; a, b, and c are parameters to be fitted.

2.3.5. Relationship between ETc and Precipitation

Daily ETc on rainy days was restrained by precipitation, especially for moderate to heavy rain.
In this study, ETc on rainy days was related to precipitation in a negative power function as follows:

ETc = a× Pre−b (3)

where as ETc is crop evapotranspiration (mm·d−1) on rainy days; Pre is precipitation (mm); a and b are
function parameters to be fitted.

2.3.6. Meteorological Data

A weather station was built adjacent to the lysimeter fields. The net radiation, air temperature,
relative humidity, and wind speed and direction were recorded at 2.0 m height over mowed grass on
an hourly basis.

2.3.7. Evaluation of Insentek Data

Performance of the Insentek sensor method to estimate daily ETc was evaluated using a
combination of graphical and statistical methods. The evaluation factors include slope and intercept
for linear regression between the lysimetric and Insentek data, coefficient of determination (R2), root
mean square error (RMSE), and relative prediction deviation (RPD). The R2 describes the proportion
of variance in lysimetric ETc explained by Insentek data. The RMSE can be used to investigate the
differences between lysimetric and Insentek values. The RMSE is calculated using Equation (4):

RMSE =

√
n

∑
i=1

(
xInsen − xlysi

)2
/n (4)

where RMSE is the root mean square error; xInsen and xlysi are corresponding ETc values estimated
based on Insentek and lysimetry, respectively; and n is the number of values evaluated. The smaller
the RMSE values are, the more accurate the Insentek data turn out to be.

The RPD is used to indicate the reliability of Insentek data. RPD is calculated using Equation (5):

RPD = STDEV
(

xlysi

)
/RMSE (5)

where RPD is the relative prediction deviation and STDEV is the standard deviation of lysimetric ETc

values. RPD ≥ 2.0 indicates Insentek data are reliable; 1.4 < RPD < 2.0 means the data are feasible but
need to be improved; and RPD ≤ 1.4 indicates the data are unreliable [23].

2.4. Statistical Analysis

Data were analyzed using an analysis of variance with Statistical Analysis Software (version 19.0,
SPSS Inc., Chicago, IL, USA). Significance was declared at the probability level of 0.05, unless
otherwise stated. Relationships among ETc, SWC, and precipitation were analyzed by means of the
Levenberg–Marquardt Algorithm. Figures were plotted using Original Pro 9.1 (Origin Lab Corporation,
Northampton, MA, USA).
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3. Results

3.1. Dynamics of Insentek Soil Moisture

Soil water content (SWC), monitored by Insentek sensors, was between 10.6 and 37.2 cm3·cm−3 in
0–30 cm depth, 23.4 and 38.4 cm3·cm−3 in 30–60 cm depth, and 27.3 and 38.8 cm3·cm−3 in 60–100 cm
depth in both seasons (Figure 4). Precipitation mainly increased SWC for 0–60 cm depth. On average,
SWC increased by 33%, 11%, 10%, 8%, 5%, and 4% for 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm,
40–50 cm, and 50–60 cm soil depths, respectively, by precipitation >15 mm. A limited effect on SWC
was observed in 60–80 cm depth and minor effect in 80–100 cm depth. Except early vegetative phase
before days after sowing (DAS) 40 (mid of July), a precipitation affect for SWC was discovered when
soil depth was below 80 cm. In the rooted soil layers (0–60 cm), SWC gradually declined from DAS 40
to maturity, whereas in 60 cm below soil layers, it remained stable, indicating the major depth of soil
water extraction for lysimeter maize might be 60 cm.
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3.2. Daily Crop Evapotranspiration

Precipitation was 4% and 6% above normal in the maize growing seasons of 2015 and 2016. No
supplemental irrigation was added after maize emergence (VE); thus, soil moisture was mainly affected



Water 2019, 11, 25 8 of 16

by precipitation and ETc. Lysimeter and Insentek produced similar trends in daily ETc (Figure 5).
Lower ETc rates were observed when precipitation >15 mm. However, ETc increased markedly after
precipitation occurrence due to an increase in soil water evaporation. On average, peak ETc rates,
usually occurring in intermittent periods of precipitation, exceeded 2.5 and 4.5 mm·d−1 over vegetative
and reproductive phases of maize. However, mean peak lysimetric ETc rates were 29% higher than
Insentek ETc (4.87 vs. 3.83 mm·d−1) in both growing seasons. The highest ETc rates occurred on days
after sowing (DAS) 53 (VT) in 2015, and on DAS 43 (V12) in 2016, respectively. Daily ETc decreased
appreciably and was kept to a relatively lower level until maturity. Throughout the seasons, variations
in daily lysimetric and Insentek ETc basically changed with dynamics of daily mean temperature,
except the period from DAS 55 (VT) to DAS 85 (R4) in 2016 with ongoing overcast and rain, giving rise
to lower ETc than was expected.
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3.3. Cumulative Crop Evapotranspiration

On average, cumulative Insentek ETc was 310 mm with an average of 2.63 mm·d−1 in both
years (Figure 6). Lysimeter produced 19% higher cumulative ETc than did Insentek. Cumulative
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lysimetric ETc became constantly higher after DAS 40 (V10), and the discrepancies between them
gradually grew from then on. Cumulative ETc increased with the accumulation of air temperature in a
positive linear relationship. Lysimetric ETc showed a rapid response to precipitation with an average
increase in ETc from 0.24 to 7.42 mm·d−1 during the following 5 days after heavy rainfall (>50 mm),
whereas the response of Insentek ETc lagged behind lysimetric ETc, with a smaller increase from 0.89
to 5.87 mm·d−1.
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growing seasons of (a) 2015 and (b) 2016, at the Xuchang Irrigation Experiment Station, in the North
China Plain.

3.4. Responses of ETc to Soil Water Content

As precipitation >15 mm noticeably reduced ETc, and increased SWC, only data collected on
clear days were selected for correlation analysis between ETc and SWC. Our results showed that,
over the two years, ETc was significantly correlated with SWC in 0–30 cm depth; however, it was not
correlated with the SWC below 30 cm depth (Table 3). A detailed study showed that ETc increased
with SWC in 0–30 cm depth in an exponential function combined with a quadratic function (Figure 7).
Effects of SWC at 10 cm interval to 30 cm depth accounted for 32–59% (R2) of ETc variations, and the
contributions of SWC to ETc declined from 10 to 30 cm soil layer.
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Table 3. Correlation coefficient (R) of evapotranspiration (ETc) related to soil water content at each
soil depth.

Soil Depth (cm) 10 20 30 40 50 60 70 80 90 100

Lysimetry 0.67 ** 0.57 ** 0.53 ** 0.21 0.19 0.17 0.12 0.09 −0.04 −0.12
Insentek 0.68 ** 0.58 ** 0.52 ** 0.22 0.21 0.05 0.01 −0.11 −0.17 −0.05

** refers to significant correlation at p < 0.01.
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3.5. Responses of ETc to Precipitation

Both Insentek and lysimetric ETc was significantly reduced on rainy days. Our results showed
that precipitation explained 84–87% variations of daily ETc on rainy days (Figure 8a). Moreover,
precipitation, as an independent factor controlling ETc when it rains, reduced daily ETc in a negative
power function. Compared to ETc on clear days, precipitation averagely reduced lysimetric ETc by
72%, and Insentek ETc by 54%, indicating a faster response of lysimetric ETc to precipitation than
Insentek ETc.

3.6. Goodness of Fit

There exists a significant positive linear correlation between Insentek and lysimetric ETc data,
with a slope of 0.68–0.69, and an intercept of 0.48–0.51, taking Insentek ETc as y values (Figure 8b).
A test for goodness of fit showed that the RMSE values were less than 0.87 mm, and RPD values were
around 2.0, indicating the Insentek sensors method is, to some extent, reliable for predicting real ETc of
summer maize in the NCP (Table 4). Slopes smaller than 1.0 indicated that Insentek ETc was generally
smaller than lysimetric ETc, though they have similar ETc trends. Thus, improvements should be
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considered to enhance Insentek sensors accuracy. Those measures include, but are not limited to, using
longer Insentek sensors (e.g., 200 cm long) to represent SWC dynamics in deeper layers.Water 2018, 10, x FOR PEER REVIEW  11 of 16 
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Table 4. Test for linear regression and goodness of fit between Insentek ETc (y) and lysimetric ETc (x)
data of summer maize in 2015 and 2016.

Year
Linear Correlation Goodness of Fit Significance

Slope Intercept R2 RMSE RPD p

2015 0.6839 0.4805 0.8261 0.872 1.921 0.001
2016 0.6884 0.5085 0.8571 0.776 2.061 0.001

R2 is coefficient of determination; RMSE is root mean square error used to evaluate the differences between
estimated and observed ETc; RPD is relative prediction deviation, values measured by Insentek sensor are reliable
with RPD ≥ 2.0 [23]; p is probability.

3.7. Grain Yield and Water Use Efficiency

In the NCP, maize is usually planted after the harvest of wheat in a winter wheat-summer maize
double-cropping system. Due to soil water extraction by wheat and scarcity of rainfall, initial soil water
storage (SWS0) prior to maize sowing was extremely low (Table 5). This necessitated an irrigation
immediately after sowing to guarantee seed germination. Grain yields were on average 15% lower
than the yield (9165 kg·ha−1) from surrounding field experiment, probably due to soil compaction
and saline stress in a lysimetric environment. Because the Insentek sensor stood for 100 cm soil depth,
whereas lysimeter for 200 cm, as well as lower SWC in upper layers, the Insentek SWS0 was extremely
lower in 2015 and 2016. At harvest, lysimetric SWSh was 19% and 17% higher than Insentek SWSh.
Consequently, lysimetry reported a 20% and 17% higher ETc in 2015 and 2016, resulting in a 16% and
14% lower WUE than the Insentek method.

Table 5. Grain yield and estimated soil water storage, crop evapotranspiration, and water use efficiency
using the Insentek and lysimetric methods, at the Xuchang Irrigation Experiment Station in 2015
and 2016.

Year Treatment Irrigation
(mm)

Precipitation
(mm)

Grain Yield
(kg·ha−1)

SWS0
1

(mm)
SWSh

1

(mm)
ETc

(mm)
WUE 3

(kg·ha−1·mm−1)

2015
Insentek

55 434 7919
86 b 2 264 b 311 b 25.4 a

Lysimeter 197 a 314 a 372 a 21.3 b

2016
Insentek

55 442 7670
101 b 289 b 309 b 24.8 a

Lysimeter 203 a 338 a 362 a 21.2 b
1 SWS0 and SWSh is soil water storage prior to sowing and after harvest of maize, respectively, as estimated by
the Insentek and lysimetric method; 2 Different letters stand for significant differences at p < 0.05; 3 WUE is water
use efficiency.
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4. Discussion

4.1. Advantage and Disadvantage of Lysimetry and Insentek Method

The Insentek sensor method had several advantages over the lysimetry method, including ease of
deployment, lower initial expense, and wireless transmission of real-time data [4,25]. In this study,
Insentek sensors were installed inside lysimeter soils, allowing to record daily dynamics of SWC to
a depth of 100 cm. Previous studies indicated SWC measurement depth for ETc estimation should
extend to the major depth of soil water extraction, which was flexible with crop types and weather
conditions [11,29]. In Bushland, Texas, in a semiarid climate, it was found that 100 cm long neutron
probe access tubes were sufficient to represent lysimetric ETc on an irrigated cotton field [18,19]. In this
study, maize plants were grown under a semi-humid climate with seasonal precipitation ≥450 mm.
Initially, the SWC in the upper layers was extremely low at maize sowing, giving rise to discrepancy
between Insentek and lysimetric ETc, which was calculated based on different depths. This was
probably attributable to the water uptake depth for wheat exceeding 100 cm under traditional border
irrigation, and low water availability at wheat harvest in the NCP [30,31]. Maize crops usually have a
shallower rooting system due to the high frequency of precipitation [32,33]. Nevertheless, according
to soil water depletion depth monitored by Insentek sensors, the major depth of water extraction of
maize on lysimeters might be 60 cm. Therefore, ETc rates simulated by a 100 cm long Insentek sensor
can be assumed as representative of actual rates. Additionally, compared with the eddy covariance
and remote sensing methods, ETc estimates by a network of soil moisture sensors were considered as
viable source of ground truth ETc data that were convincing both in theory and practice [34]. Previous
studies have shown that ETc determined by the neutron probe method can represent lysimetric ETc,
however, it wasn’t able to calculate ETc on a daily or sub-daily scale due to a lack of automatic
measurement [35,36]. This shortcoming can be overcome by Insentek sensors.

However, there still exist limitations for Insentek sensors to simulate ETc. For example, the
Insentek method led to weaker ETc responses to precipitation compared to the lysimetry method [25].
This led to a bias in ETc simulation on rainy days. Nevertheless, Insentek method had merits to reduce
potential ETc errors induced by animal invasion and other disturbance factors. Although response of
Insentek ETc to precipitation lagged behind lysimetry, it increased stability of ETc estimation due to a
good performance in keeping out outside disturbance factors.

4.2. Cumulative Evapotranspiration Responses to Soil Water Content

Cumulative ETc varied from 309 to 372 mm for summer maize in 2015 and 2016. The values were
consistent with previous ETc total for summer maize in the NCP [37], but were up to 50% lower than
that of irrigated spring maize in semi-arid region of northern China [38]. Additionally, the values were
up to 100% lower than reported for the southern High Plains in the USA [3]. The lower ETc rates could
be attributed to short growth duration (<90 days) and the almost rain-fed condition for summer maize
in the NCP. In this study, water extraction depth mainly concentrated on 0–60 cm soil layer. This was
probably due to favorable climate conditions such as adequate precipitation. Our study showed that
daily ETc had a positive exponential relationship with soil moisture in topsoil (0–30 cm). One of the
reasons might be that the largest variations in soil moisture occurred in topsoil because the shallow
zone had the largest root density and water extraction by maize plants [19]. Some used neutron
probe method to estimate ETc variations on a weekly basis; however, the Insentek sensor method had
advances in automatic records of SWC, and was safe from radiation. Significant correlation between
ETc and near surface SWC can be verified by the finding that only SWC in the upper 30 cm of soil
significantly varied in irrigated cotton fields at Bushland, Texas [39].

4.3. Comparison of Insentek Method to Other Methods

Although prior studies concluded that ETc based on a 100 cm deep access tube was sufficient to
represent lysimeter ETc [40], there was still a 14% under-estimate of mean daily ETc by the Insentek
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sensor method compared to the lysimetry method in the present study. One probable approach to
improve the accuracy of Insentek ETc was to adopt a 200 cm long probe equivalent to lysimeter
depth, which will be conducted in further study. A comparison of ETc calculated using lysimetry
and neutron probe method has been conducted [35]. Some concluded that there was no difference
between them [18,41,42], while others found that ETc from lysimeters was greater than that of the
oven-drying or neutron probe method [43,44]. Using remotely sensed ETc, it was found that the
ETc produced differences of around 20–45% with the ground measurements using large aperture
scintillometer systems during the growing season, and the model performance deteriorated for cloudy
days [20]. Larger errors of daily ETc estimates were associated with clouds and rain events, which
affected satellite normal mapping, adding additional data noise [45]. Compared with remote sensing
methodology, the Insentek method produced smaller differences. Compared with soil coring and
neutron probe methods, Insentek sensors recorded soil moisture hourly without labor cost, directly
improving the convenience and efficiency of ETc estimation.

4.4. Simulating Crop Evapotranspiration on Rainy Days

Using a remote sensing ETc model, it was found that ETc had a negative correlation with
precipitation in areas where the growing-season precipitation was 250 mm [21]. However, in arid areas
with precipitation less than 200 mm, the correlation becomes weaker due to insufficient precipitation
and a more complex water-heat flux interaction [46]. It should be noticed that those correlations by
remote sensing were calculated mostly on an annual basis [47]. It did not reflect the instantaneous
response of ETc to daily precipitation as was done in this study. Through analysis, we found that
precipitation with an amount ≥15 mm significantly inhibited daily ETc. Thus, ETc data on rainy days
were independently used to analyze the correlation. Our results showed that simulated ETc were in
good agreement with the actual ETc on rainy days. Both lysimetric and Insentek ETc was related to
precipitation in a negative power function. The effect of precipitation on Insentek ETc was smaller
compared to lysimetric ETc, indicating a weaker response to precipitation. A probable reason was
that Insentek ETc was estimated using soil water storage changes after rain-water infiltration, which
needed time to finish the process [4].

5. Conclusions

The North China Plain (NCP) produces one third of China’s maize production (≈220 million
tons per year), and is one of the most productive granaries in China. In this work, an alternative
based on Insentek soil moisture data to estimate ETc was evaluated in comparison with lysimetry
in the NCP. Insentek ETc had a significant linear correlation (R2 = 0.83–0.86) to lysimetric ETc, with
RMSE < 0.87 mm, and RPD < 2.1, indicating that Insentek sensors are efficient tools in estimating
maize ETc in the NCP with acceptable accuracy. Since precipitation and SWC play an important role
in water balance calculation for ETc, responses of ETc to them were analyzed on different weather
days. The results indicated that ETc significantly relates to precipitation (Pre) on rainy days in a
power function (R2 = 0.84–0.87). On clear days, ETc significantly relates to SWC in topsoil (0–30 cm)
in an exponential function (R2 = 0.32–0.53). The combined SWC (0–30 cm)–Pre–ETc model may offer
significant potential for predicting ETc. Our method provides a reference for reducing lysimetric data
noise and may be useful to the study on responses of ETc to climatic change in the NCP.
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