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Abstract: The anaerobic membrane bioreactors (AnMBR) with ring membrane module were operated
under mesophilic temperature (M-AnMBR) and atmospheric temperature (A-AnMBR). Compared
to the M-AnMBR, the removal efficiency of the A-AnMBR was found to be lower and the faster
membrane fouling occurred in the A-AnMBR under corresponding hydraulic retention time (HRT).
The MiSeq high-throughput sequencing was applied to analyze the microbial community structure.
The HRT change had different effects on the community richness and diversity of the cake and
bulk sludge. The abundance of phylum Proteobacteria in the M-AnMBR was higher than that in
the A-AnMBR, which should account for the higher removal of nutrients in the M-AnMBR. The
faster membrane fouling would occur in the A-AnMBR due to the relatively high abundance of
Bacteroidetes in the bulk sludge and cake sludge. Moreover, specific comparison down to the genus
level showed that the dominant abundant bacterial genera were Candidate division OP8 norank and
Anaerolineaceae uncultured in the cake sludge for M-AnMBR, and were VadinHA17 norank, WCHB1-69
norank, VadinBC27 wastewater-sludge group, and Synergistaceae uncultured in the cake sludge for
A-AnMBR The different representative genera with the variation of the HRTs for the two bioreactors
might indicate the different performance between the two AnMBRs.

Keywords: microbial community structure; anaerobic membrane bioreactor; municipal wastewater
treatment; cake sludge and bulk sludge; hydraulic retention times

1. Introduction

Anaerobic digestion can reduce the environmental threat of wastes and simultaneously produce
energy in the form of biogas; therefore, it is an effective technology for waste treatment [1]. Membrane
bioreactors (MBRs) have been increasingly and widely used for wastewater treatments in the last
decade [2,3]. Due to the combination of anaerobic processes and membrane technologies, considerable
attention has been devoted to the anaerobic membrane bioreactor (AnMBR) process for wastewater
treatment [4]. AnMBRs have the ability to produce effluents similar in quality to those generated
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during aerobic treatment [5]. There are many cases in the literature investigating the efficiency of the
AnMBR technology for wastewater treatment [5,6]. Lin et al. demonstrated the technical feasibility as
well as economic feasibility of AnMBR treating wastewater [7].

It was believed that the performance of an anaerobic system has been reported to be tied closely
with the microbial community structure [8]. Meanwhile, the bacterial community structure in MBR was
significantly affected by the hydraulic retention time (HRT) [9]. It was obvious that anaerobic processes
are strongly influenced by operational temperature; however, the heating of reactors demands energy
and investment. Hence, anaerobic treatment has a great advantage at ambient temperatures during
the process of wastewater treatment [10].

Membrane fouling is regarded as a major operational drawback for the membrane bioreactor
(MBR) process, which has been researched thoroughly for aerobic MBR. The membrane fouling
reduces permeate flux, which may require frequent membrane cleaning resulting in the decrease
of the membrane lifespan. The microbial metabolites (extracellular polymeric substance (EPS) and
soluble microbial product (SMP)) are identified to play significant roles in the membrane fouling
formation [11,12].

The microbial community has a close relationship with the microbial metabolites [13,14], which
had an effect on the membrane fouling in MBR. Meanwhile, the formation of membrane fouling in
MBR is an intrinsically biological succession process of microbial communities on the membrane
surface [15]. Therefore, the investigation on the microbial community is important to understand the
membrane fouling phenomenon in MBR [13].

It had been revealed that some microorganisms in the cake sludge should be the result of the bulk
sludge depositing [16]. However, the microbial communities in cake sludge and bulk sludge had a
different correlation with membrane fouling during the MBR operation process [17,18]. It is interesting
to identify the microbial communities in cake sludge and bulk sludge in AnMBR [19]. Nevertheless,
the research of microbial community in bulk sludge and cake sludge is still limited in the AnMBR for
wastewater treatment.

In the study, two AnMBRs with ring membrane modules treating municipal wastewater were
operated on a laboratory scale under mesophilic and atmospheric conditions at different HRTs.
The main objective was to evaluate long-term bacteria community by MiSeq high-throughput
sequencing under mesophilic and atmospheric conditions with different HRTs. MiSeq high-throughput
sequencing was carried out to investigate the microbial community structure in different environmental
samples [20,21]. The community richness and diversity and species abundance were discussed
emphatically to explore the relationship between MBR performance and the microbial community
characters in bulk sludge and cake sludge. It is anticipated that this study could provide a new insight
to understand the AnMBR treatment performance through researching the microbial community
characters of bulk sludge and cake sludge under different HRTs.

2. Materials and Methods

2.1. AnMBRs Operation with Ring Membrane Modules

The two same AnMBRs were employed in this study and were operated under mesophilic
temperature (35 ◦C) (M-AnMBR) and atmospheric temperature (25 ◦C) (A-AnMBR) (see Figure 1). The
setup of the AnMBR had been introduced in a previous study [22]. The AnMBR was consisted of an
anaerobic reactor with a working volume of 8 L and a ring membrane module. The AnMBR with a
mixer (complete mixing) was fed with synthetic wastewater, and the effluent was collected with a
suction mode of 4 min “on” and 1 min “off”. The transmembrane pressure (TMP) was monitored by
a manometer, and once the TMP reached 30 kPa in any of the AnMBRs, the membrane modules in
the two bioreactors were taken out and cleaned. The modules were reloaded into the bioreactors to
run the next HRT after chemical cleaning. The AnMBRs were operated under three different HRTs
conditions: 24 h, 12 h, and 6 h.
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Figure 1. Schematic of the mesophilic and atmospheric anaerobic membrane bioreactor and 
experimental setup. 

2.2. Sludge Sample Collection 

When the TMP increased to 30 kPa, the cake sludge formed on the membrane surface was 
carefully scraped off by a plastic sheet and simultaneously flushed with deionized (DI) water. After 
that, the membranes were soaked in 1% NaClO solution for chemical cleaning. The collected cake 
sludge samples were collected after being mixed on a magnetic blender. The bulk sludge samples 
were collected at the operation process under different HRTs. All samples were stored in a 
refrigerator (−20 °C) before further analysis. 

2.3. Extraction of SMP and EPS 

The supernatant was obtained by centrifuging biomass samples at 5000 rpm for 5 min, and then 
the SMP was collected after the supernatant was filtered through a 0.45 μm cellulose acetate 
membrane (Taoyuan, Haining, China). The loosely bound EPS (LB-EPS) and tightly bound EPS (TB-
EPS) were extracted by two-step heating methods [23]. 

Figure 1. Schematic of the mesophilic and atmospheric anaerobic membrane bioreactor and
experimental setup.

2.2. Sludge Sample Collection

When the TMP increased to 30 kPa, the cake sludge formed on the membrane surface was
carefully scraped off by a plastic sheet and simultaneously flushed with deionized (DI) water. After
that, the membranes were soaked in 1% NaClO solution for chemical cleaning. The collected cake
sludge samples were collected after being mixed on a magnetic blender. The bulk sludge samples
were collected at the operation process under different HRTs. All samples were stored in a refrigerator
(−20 ◦C) before further analysis.

2.3. Extraction of SMP and EPS

The supernatant was obtained by centrifuging biomass samples at 5000 rpm for 5 min, and then
the SMP was collected after the supernatant was filtered through a 0.45 µm cellulose acetate membrane
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(Taoyuan, Haining, China). The loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were
extracted by two-step heating methods [23].

2.4. Microbial Community Analysis

According to a previous study [24], the bulk sludge and cake sludge obtained from the
M-AnMBR and A-AnMBR were first processed for DNA extraction. The 16S rRNA genes were
amplified from the extracted DNA with primer sets, 515F (5’-GTGCCAGCMGCCGCGG-3’) and
907R (5’-CCGTCAATTCMTTTRAGTTT-3’). Polymerase chain reaction (PCR) was performed in a
thermocycler (ABI GeneAmp® 9700, Thermo Fisher Scientific, Waltham, MA, USA) under the following
conditions: initial denaturing step of 3 min at 95 ◦C; followed by 25 cycles of denaturing (95 ◦C for
30 s), annealing (55 ◦C for 30 s), and elongation (72 ◦C for 45 s); and a final extension step at 72 ◦C for
10 min.

Purified PCR products were applied for sequencing on the Illumina Miseq platform (Illumina, San
Diego, CA, USA). Rarefaction curves, Community richness Estimators of Chao1 and ACE, Community
diversity Estimators of Shannon and Simpson, and the Good’s coverage were generated with MOTHUR
for each sample. Representative sequences from each operational taxonomic unit (OTU) were assigned
down to the phylum and class level, and the relative abundance of a given phylogenetic group was
calculated. A hierarchical cluster (Heatmap) analysis and principal component analysis (PCA) were
performed. Venn diagrams were obtained, and the Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) tree was constructed. The Miseq reads were also separately deposited in the National
Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database under accession
numbers SRR8113740-SRR8113752.

2.5. Other Item Analysis

Chemical Oxygen Demands (COD) were determined according to the Chinese National
Environmental Policy Act (NEPA) standard methods [25]. Protein and carbohydrate concentrations in
the EPS and SMP samples were measured by the Lowry method and the phenol-sulphuric method,
respectively. All the above analyses were performed in duplicate, and their average values were listed.

3. Results and Discussion

3.1. Performance of the AnMBRs

The treatment performance of the AnMBRs is shown in Table 1. The COD removal performed
stable during the 189 days’ operation for M-AnMBR with the removal efficiencies of 91.09%, 93.51%,
and 92.39%, respectively for HRT 24 h, 12 h, and 6 h. Compared to that of the M-AnMBR, the removal
efficiency of the A-AnMBR was found to be lower under each HRT. It is interesting to observe that the
highest removal efficiency both in the two bioreactors was occurred under HRT 12 h.

Table 1. Wastewater treatment efficiencies of the anaerobic membrane bioreactors under mesophilic
temperature (M-AnMBR) and atmospheric temperature (A-AnMBR) with different hydraulic retention
times (HRTs).

Items HRT Influent
COD (mg/L)

Supernate
COD (mg/L)

Microbial
Removal
Rate (%)

Permeate
COD (mg/L)

Total
Treatment

Efficiency (%)

M-AnMBR 24 h 570.41 152.53 73.26 50.81 91.09
A-AnMBR 24 h 570.41 259.97 54.42 137.06 75.91
M-AnMBR 12 h 630.49 87.44 86.13 40.94 93.51
A-AnMBR 12 h 630.49 171.86 72.74 109.84 82.58
M-AnMBR 6 h 578.15 63.00 89.11 44.00 92.39
A-AnMBR 6 h 578.15 209.50 63.79 170.00 71.63
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It was seen from Figure 2 that the TMP always maintained lower level in the M-AnMBR and
the faster membrane fouling occurred in the A-AnMBR under each HRT. In the A-AnMBR, the time
for TMP reaching more than 0.030 MPa was 107 days, 52 days, and 30 days for HRT 24 h, 12 h, and
6 h, respectively. At HRT 24 h, the A-AnMBR was operated with a longer membrane fouling period
compared to the other HRTs.
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Figure 2. The transmembrane pressure (TMP) profiles plotted as a function of time in the M-AnMBR
and A-AnMBR.

It is widely accepted that membrane fouling in the membrane bioreactor is significantly affected by
SMP and EPS [26]. Sludge cells in the floc matrix have a double layered EPS structure: LB-EPS diffused
from TB-EPS surrounding the cells [27,28]. Carbohydrates and proteins as the major component of
SMP, LB-EPS, and TB-EPS were analyzed, as depicted in Figure 3. It was noted that the concentrations
of carbohydrates and proteins of LB-EPS and TB-EPS were increased obviously with the decrease
of HRT in the two bioreactors, and the values of the M-AnMBR were much lower than that of the
A-AnMBR. The different contents of SMP and EPS with the variation of the HRT in the two AnMBRs
could be attributed to the variation of the microbial community structure, which plays an important
role in the component of microbial metabolites.
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Figure 3. Quantitative analysis of soluble microbial product (SMP) and extracellular polymeric
substance (EPS) concentrations in the M-AnMBR (a) and A-AnMBR (b).

3.2. Microbial Richness and Diversity Evolution with the Variation of HRT in M-AnMBR and A-AnMBR

The MiSeq high-throughput sequencing was applied to analyze the microbial community structure
in the bulk sludge and cake sludge samples of the AnMBRs under HRT 24 h, 12 h, and 6 h. The biomass
samples were collected when the TMP reached 30 kPa, including bulk sludge samples from M-AnMBR
at HRT 24 h (D1), HRT 12 h (D5), and HRT 6 h (D9) and from A-AnMBR at HRT 24 h (D2), HRT 12 h
(D6), and HRT 6 h (D10) and cake sludge samples from M-AnMBR at HRT 24 h (D3), HRT 12 h (D7),
and HRT 6 h (D11) and from A-AnMBR at HRT 24 h (D4), HRT 12 h (D8), and HRT 6 h (D12). There
was also a single sample of the inoculative sludge named D13. Table 2 summarized the diversity
estimators of Chao1, ACE and Shannon index, Simpson index, and Good’s coverage of sequencing for
each sample.

Table 2. Richness and diversity estimators of the bacterial communities of bulk sludge and cake sludge
in the M-AnMBR and A-AnMBR.

Sample Reads
0.97

OTU ACE a Chao1 b Shannon c Simpson d Coverage e

D1 11549 161 219 205 2.56 0.14 0.995584
D2 8399 152 221 236 2.54 0.2129 0.994166
D3 10960 240 286 290 3.26 0.0883 0.994708
D4 20442 253 286 288 3.22 0.1161 0.997750
D5 11562 160 202 196 2.91 0.0987 0.996281
D6 20943 216 264 252 3.02 0.0977 0.997565
D7 19287 196 233 245 2.66 0.2062 0.997615
D8 13563 248 284 287 3.23 0.1008 0.996387
D9 11678 166 213 224 3.05 0.0818 0.996061
D10 19954 189 226 232 2.89 0.1183 0.997845
D11 16000 195 249 239 2.97 0.117 0.996687
D12 12428 217 336 289 3.37 0.0607 0.994689
D13 16176 184 239 248 2.81 0.1278 0.996847

a ACE richness estimator. b Chao1 richness estimator. c Shannon diversity index. d Simpson diversity index. e

Sampling depth.

In the M-AnMBR, the community richness of the bulk sludge with the decrease of the HRT kept
a relatively constant level, and the community diversity of bulk sludge increased with the decrease
of the HRT. For the cake sludge in the M-AnMBR, the community richness was the highest at HRT
24 h, and the community richness at HRT 12 h and 6 h were similar. The community diversity in the
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cake sludge in the M-AnMBR was the highest at HRT 24 h, and the community diversity at HRT 12 h
was lower than that at HRT 6 h. For the M-AnMBR, it was somewhat reasonable that the increased
loading has no significant effect on diversity and richness in the bulk sludge due to the lower organic
loading rate of municipal wastewater, but the community diversity of bulk sludge increased with
the increased loading. Meanwhile, the loading change had no obvious promoting effect upon the
community richness and diversity of the cake sludge. On the contrary, the communities of the cake
sludge indicated a slight drop in richness and diversity.

In the A-AnMBR, the richness and diversity of the bulk sludge were the highest for the HRT 12 h
among the three HRTs; meanwhile, the richness and diversity of the bulk sludge at HRT 6 were higher
than those at HRT 24. In the A-AnMBR, the richness and diversity of the cake sludge at HRT 24 h
were similar to the community at HRT 12 h; however, the richness and diversity of the cake sludge at
HRT 6 h were higher than those at HRT 24 h and 12 h. For the A-AnMBR, the highest richness and
diversity of the bulk sludge for the HRT 12 h might be responsible for the highest removal efficiencies
of the organic matter among the three HRTs. The increased loading has some significant effect on the
community diversity and richness in the bulk sludge, and the community diversity of the bulk sludge
and richness was first increased and then decreased along with the increasing of loading. Meanwhile,
the loading change had an obvious promoting effect upon the community richness and diversity of
the cake sludge, and the communities of the cake sludge indicated a slight increase in richness and
diversity. The highest richness and diversity of the cake sludge for the HRT 6 h might be responsible
for the highest membrane among the three HRTs.

In the M-AnMBR and A-AnMBR, the microbial community richness of the bulk sludge at each
HRT were all lower than those of the cake sludge. The microbial community diversity of the bulk
sludge at HRT 24 h and 6 h were lower than those of the cake sludge. However, at HRT 12 h,
the diversity of the bulk sludge and cake sludge were similar in the A-AnMBR and the diversity of the
bulk sludge was higher than that of cake sludge in the M-AnMBR. It is noteworthy that for the HRT
24 h, the richness of the cake sludge was similar in the A-AnMBR and M-AnMBR and the richness
of bulk sludge was higher in the A-AnMBR compared to the M-AnMBR. However, the diversity of
the cake sludge and bulk sludge was higher in the M-AnMBR compared to that in the A-AnMBR
at HRT 24 h. The bulk sludge and cake sludge of A-AnMBR had the higher richness than those of
M-AnMBR under HRT 12 h and HRT 6 h. The bulk sludge of A-AnMBR had a higher diversity than
that of M-AnMBR under HRT 12 h, and the bulk sludge of A-AnMBR had a lower diversity than
that of M-AnMBR at HRT 6 h. The cake sludge of A-AnMBR had the higher diversity than those of
M-AnMBR under HRT 12 h and HRT 6 h.

The rarefaction curves were generated for each individual sludge sample, as shown in Figure
S1. In the M-AnMBR, the microbial community richness of the bulk sludge and cake sludge at HRT
12 h and 6 h were lower than those in the A-AnMBR. At HRT 24 h, the richness of the bulk sludge
and cake sludge in the M-AnMBR were similar with those in the A-AnMBR. This observation was in
accordance with the results obtained by Chao1, ACE, Shannon, Simpson, and Coverage estimators
(Table 2), indicating that the variation trend of the microbial community diversity and richness of the
M-AnMBR was different with that of the A-AnMBR with different HRTs.

For the M-AnMBR and A-AnMBR, the loading change had a different effect on the community
richness and diversity of the cake and bulk sludges. For the A-AnMBR, the increase in the organic
loading rate was negative on COD removal, and therefore, COD removal efficiency decreased. For the
M-AnMBR, the increase in the organic loading rate had little significant on the COD removal efficiency
due to the higher microbial activity. This could be attributed to the different microbial activity between
the M-AnMBR and A-AnMBR, and there was a lower microbial activity at 25 ◦C compared with 35 ◦C.
With the change in HRTs, the distinct differences in the microbial richness and diversity between the
two AnMBRs also indicated that the removal efficiencies of organic matter and membrane fouling
in the two AnMBRs were different. The change in HRTs and different operation temperatures likely
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induced an environmental stress on the microbial communities, which subsequently influenced the
community structure and composition.

3.3. Microbial Phylum and Class Identification with Different HRTs in M-AnMBR and A-AnMBR

Qualified reads were assigned to known phyla and class levels to characterize the bacterial
communities (Figure 4). As seen from Figure 4a, all communities showed extremely high diversity,
and 15 phyla were detected in all the sludge samples.

In the M-AnMBR, Bacteroidetes and Chloroflexi were the main phyla for the microbial communities
of bulk sludge under each HRT, and the sum of the two phyla were 65.26%, 63.14%, and 73.06% for
HRT 24 h, 12 h, and 6 h, respectively. The abundance of Candidate division OP8 of bulk sludge in
M-AnMBR at the HRT 24 h (21.00%) was similar with that at HRT 12 h (22.31%), whereas the abundance
of Candidate division OP8 at HRT 6 h significantly reduced to 9.90%. In M-AnMBR, the abundances
of Synergistetes, Chlorobi, Proteobacteria, and Actinobacteria of bulk sludge were increased with the
reduction of HRT. The main microbial phyla of the cake sludge in M-AnMBR under different HRTs
were Bacteroidetes, Chloroflexi, and Candidate division OP8, and the sum of the three phyla were 73.29%,
77.37%, and 71.20% for HRT 24 h, 12 h, and 6 h, respectively.

For the A-AnMBR, Bacteroidetes, Chloroflexi, Synergistetes, and Firmicutes were the main phyla
in the bulk sludge under different HRTs, and the sum of the four main phyla were 91.23%, 81.23%,
and 84.30% for HRT 24 h, 12 h, and 6 h, respectively. The proportion of Bacteroidetes was the largest in
the bulk sludge of the A-AnMBR, and it was 67.38%, 54.41%, and 59.38% for HRT 24 h, 12 h, and 6 h,
respectively. There were five major phyla in the cake sludge of the A-AnMBR, and the dominant phyla
were Bacteroidetes, Chloroflexi, Synergistetes, Firmicutes, and Spirochaetae. The proportion of the five
phyla in the cake sludge were 81.72%, 87.55%, and 83.28% for HRT 24 h, 12 h, and 6 h, respectively.

It was found that most of the sequence reads were affiliated to six major phyla: Bacteroidetes,
Chloroflexi, Synergistetes, Spirochaetae, Firmicutes, and Chlorobi in all samples. The majority of these phyla
were ubiquitous in anaerobic bioreactors [19,29]. Meanwhile, it is interesting to find that the phylum of
Candidate division OP8 was only major in the M-AnMBR, and its abundance was reached up to 47.25% in
the cake sludge of the M-AnMBR at HRT 12 h. However, there was little abundance of Candidate division
OP8 in the A-AnMBR. The abundance of the main phyla in the two bioreactors also have obvious
difference. Contrasting the biological community structures of the two reactors, the abundance of
phylum Proteobacteria in the M-AnMBR was higher than that in the A-AnMBR. Proteobacteria includes
a variety of functionally important bacteria for organic pollutants removal [30,31], which should
account for the higher removal of nutrients in the M-AnMBR. The abundances of Bacteroidetes and
Synergistetes in the M-AnMBR were significantly lower than that of the A-AnMBR under each HRT
both in the bulk sludge and cake sludge. It was reported that Bacteroidetes could potentially release
more proteinaceous EPS, which was beneficial to its colonization [32,33]. Meanwhile, Bacteroidetes
bacterium possesses fimbriae, which could help bacterium attach to the surfaces and may contribute
to Bacteroidetes stable proliferation on the supporting material [34]. Hence, Bacteroidetes were highly
enriched on the membrane surface and enhanced the bacteria adhere to the membrane. Therefore,
the faster membrane fouling would occur in the A-AnMBR due to the relatively high abundance of
Bacteroidetes in the bulk sludge and cake sludge.

Further comparison of the phyla down to the class level was conducted to reveal more information
on the microbial community evolution between M-AnMBR and A-AnMBR. The bacterial communities
based on the class-level identification is illustrated in Figure 4b. A total of 23 bacterial classes were
found in all thirteen sludge samples. It was observed that the main community structure was obviously
different in the two bioreactors. Anaerolineae, vadinHA17, and Candidate division OP8 norank belonging
to Chloroflexi, Bacteroidetes, and Candidate division OP8, respectively, were the three major classes and
accounted for 80.85%, 74.81%, and 73.75% of the total population in the bulk sludge of the M-AnMBR
for 24 h, 12 h, and 6 h, respectively. The class Anaerolineae were anaerobic bacteria that was involved
in carbohydrate decomposition in anaerobic systems [35]. Candidate division OP8 was reported as
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important members of thermophilic microbial communities related to the anaerobic degradation of
hydrocarbons [36–38].Water 2019, 11, x FOR PEER REVIEW 9 of 15 
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There were four main classes in the bulk sludge of the A-AnMBR: vadinHA17, Sphingobacteriia,
and Bacteroidia belong to the Bacteroidetes, and Synergistia belongs to Synergistetes. Sphingobacteriia was
the largest part, and it accounted for 45.02%, 25.6%, and 27.3% for 24 h, 12 h, and 6 h, respectively.
Typically, most bacteria that can be attributed to Bacteroidetes can produce various lytic enzymes and
acetic acid during the organic materials decomposition [39,40], and thus the contribution of the classes
in this study was probably associated with organic matter removal. Synergistia (phylum Synergistetes)
was very abundant, and the class Synergistia includes numerous bacteria that can efficiently decompose
complex organic matters [41–43].

In the cake sludge of the M-AnMBR, the main classes were similar with those in the bulk sludge,
but the proportion of these classes was different, and the vadinHA17 in the cake sludge was apparently
lower than that in the bulk sludge. For the cake sludge of the A-AnMBR, the classes Spirochaetes
became the dominant besides the four main classes in the bulk sludge. Meanwhile, the proportion
of Sphingobacteriia reduced a lot, and it was 34.28%, 20.64%, and 9.4% for HRT 24 h, 12 h, and 6 h,
respectively, which was reduced with the HRT reduction. The abundance of Bacteroidia and Spirochaetes
in the cake sludge of the A-AnMBR was respectively higher than that in the bulk sludge. Especially,
Spirochaetes were increased from 0.68%, 4.62%, and 4.15% in the bulk sludge to 6.5%, 24.4%, and 11.39%
in the cake sludge for HRT 24 h, 12 h, and 6 h, respectively. It has been known that Spirochaetes
are chemoheterotrophic and have a distinctive spiral shape [44]. The Spirochaetes were found in
the methanogenic anaerobic reactor [45], and they were anticipated to retrieve energy through the
fermentation of either carbohydrates or amino acids [46].

For the bulk sludge and cake sludge from the M-AnMBR, the bacteria belonging to the class
Anaerolineae and Candidate division OP8 norank were higher than those for the bulk sludge and cake
sludge from the A-AnMBR under each HRT, but Sphingobacteriia, Bacteroidia, and Synergistia were lower
than those for the bulk sludge and cake sludge from the A-AnMBR under each HRT. The abundances
of Spirochaetes in the bulk sludge from the M-AnMBR was higher than that in the bulk sludge from the
A-AnMBR at HRT 24 h, but for HRT 12 h and 6 h, the abundances of Spirochaetes in the bulk sludge
from the M-AnMBR were lower. However, the abundance of Spirochaetes always was lower for the cake
sludge from the M-AnMBR than that for the cake sludge from the A-AnMBR under the corresponding
HRT. Thus, the different treating performances would occur between the M-AnMBR and A-AnMBR
due to the different microbial communities in the bulk sludge and cake sludge with different HRTs.
In order to identify the different compositions of these microbial communities, an investigation down
to the genus level was needed to further elucidate the functions of the microbial communities involved
in the AnMBR process.

3.4. Microbial Genera Evolution with the Variation of HRT in M-AnMBR and A-AnMBR

The heatmap shows the relative abundance of different bacteria genera found in the samples,
as presented in Figure 5. It can be seen that the representative genera were different between the
two bioreactors.

For the bulk sludge from the M-AnMBR, the bacteria belonging to the genera Anaerolineaceae
unclassified, VadinHA17 norank, Leptolinea, Anaerolineaceae uncultured, and Candidate division OP8 norank
were dominant in all the HRTs. For the cake sludge from the M-AnMBR, Leptolinea, Anaerolineaceae
uncultured, and Candidate division OP8 norank were dominant at HRT 24 h, and the relative abundances
of them were higher than those in the bulk sludge. Candidate division OP8 norank and Anaerolineaceae
uncultured became the most dominant bacterial community for HRT 12 h and 6 h, respectively, for the
cake sludge from the M-AnMBR. Meanwhile, in the M-AnMBR, the relative abundances of Candidate
division OP8 norank and Anaerolineaceae uncultured in the cake sludge were higher than those in the
bulk sludge.
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In the bulk sludge from the A-AnMBR, the microbial community was also different with the
variation of the HRTs. WCHB1-69 norank, VadinHA17 norank, VadinBC27 wastewater-sludge group,
and Synergistaceae uncultured were predominant in all HRTs. Spirochaetes unclassified became the
dominant with the decrease of the HRT. For the cake sludge from the A-AnMBR, VadinHA17 norank,
WCHB1-69 norank, VadinBC27 wastewater-sludge group, and Synergistaceae uncultured were dominant;
however, the relative abundances of VadinHA17 norank and WCHB1-69 norank in the cake sludge
were lower than that in the bulk sludge. The relative abundances of Spirochaetes unclassified and
Synergistaceae uncultured in the cake sludge from the A-AnMBR were higher than that in the bulk
sludge. Anaerolineaceae uncultured became the dominant bacterial community with the decrease of the
HRT in the cake sludge from the A-AnMBR.

Obviously, it could be found that the dominant abundant bacterial genera were Candidate division
OP8 norank and Anaerolineaceae uncultured in the cake sludge for the M-AnMBR, and the dominant
abundant bacterial genera were VadinHA17 norank, WCHB1-69 norank, VadinBC27 wastewater-sludge
group, and Synergistaceae uncultured in the cake sludge for the A-AnMBR. The results indicated that
the microbial communities were quite different for the cake sludge between the two AnMBRs. The
different dominant abundant bacterial genus in the cake sludge might be responsible for the different
membrane fouling in the M-AnMBR and A-AnMBR.

The bacterial communities were clearly divided into two groups based on PCA and UPGMA
from the Unifrac and Mothur analyses (Figure S2). PCA indicated that principal components 1 and
2 explained 52.06% and 20.82% of the total community variations, respectively. The results indicate
there was a divergence between the two bioreactors, suggesting that these samples exhibited different
structures. The bulk sludge samples in all the HRTs and the cake sludge samples at HRT 24 h and
HRT 6 h were clustered together in the M-AnMBR, which showed that the bacterial community
compositions were similar at M-AnMBR, whereas the cake sludge samples at HRT 12 h was well
separated from the other sludge samples. In the A-AnMBR, the bacterial community compositions of
the bulk sludge and cake sludge were similar.

The UPGMA tree revealed two different clusters: group 1 comprised all the samples (bulk sludge
and cake sludge) from the M-AnMBR and group 2 comprised all the samples from the A-AnMBR. This
indicates that the bacterial communities differed significantly between the two bioreactors; however,
the bacterial communities were similar within the same bioreactors.

Venn diagrams were obtained to show the shared and unique OTUs to make further
community-wide comparisons (Figure S3). Figure S3a1 showed the shared and unique OTUs of
the bulk sludge in the M-AnMBR under the three HRTs and the inoculation sludge (D13). The number
of the total observed OTUs in the M-AnMBR under the three HRTs and the inoculation sludge was
291, and 64 OTUs (about 22.0% of the total) were shared in the M-AnMBR under the three HRTs and
the inoculation sludge. The number of total observed OTUs in the A-AnMBR under the three HRTs
and the inoculation sludge was 314, and there were 70 OTUs (about 22.3% of the total) shared in the
A-AnMBR under the three HRTs and the inoculation sludge (Figure S3a2). The shared and unique
OTUs of the cake sludge in the M-AnMBR and A-AnMBR under the three HRTs were showed in Figure
S3b1,b2, and 122 OTUs (about 40.5% of the total) and 163 OTUs (about 52.1% of the total) were shared
under the three HRTs in the M-AnMBR and A-AnMBR, respectively.

The Venn diagrams, PCA, and UPGMA indicated that the HRT affected the bacterial community
abundance in the M-AnMBR and A-AnMBR. The changes of the dominant bacterial community in the
M-AnMBR and A-AnMBR could explain the variances in performance between the M-AnMBR and
A-AnMBR. The results from the Illumina-MiSeq sequencing further advanced our knowledge on the
microbial compositions of the cake sludge and bulk sludge in the M-AnMBR and A-AnMBR, which
may provide a better understanding of the AnMBR operation mechanisms and the improvement of
the AnMBR performance.
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4. Conclusions

Mesophilic and atmospheric anaerobic membrane bioreactors (AnMBR) were operated for treating
municipal wastewater with different HRTs. Compared to the M-AnMBR, the removal efficiency of
the A-AnMBR was found to be lower, and the faster membrane fouling occurred in A-AnMBR
under corresponding hydraulic retention times (HRT). For the M-AnMBR and A-AnMBR, the HRT
change had different effects on the community richness and diversity of the cake and bulk sludge.
This could be attributed to the different microbial activity between the M-AnMBR and A-AnMBR.
The Anaerolineae, vadinHA17, and Candidate division OP8 norank were the major classes in the bulk
sludge of the M-AnMBR, and the main classes in the bulk sludge of the A-AnMBR were vadinHA17,
Sphingobacteriia, Bacteroidia, and Synergistia. Moreover, at the genus level, the dominant abundant
bacterial genera were Candidate division OP8 norank and Anaerolineaceae uncultured in the cake sludge
for the M-AnMBR, and the dominant abundant bacterial genera were VadinHA17 norank, WCHB1-69
norank, VadinBC27 wastewater-sludge group, and Synergistaceae uncultured in the cake sludge for the
A-AnMBR. The distinct differences in the microbial community structures of the bulk sludge might
indicate that the removal efficiencies of organic matter in the two AnMBRs were different with different
HRTs. The different dominant abundant bacterial genus in the cake sludge might be responsible for
the different membrane fouling in the M-AnMBR and A-AnMBR.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/1/160/s1,
Figure S1: The rarefaction curves base on the Illumina-MiSeq sequencing of the bulk sludge and cake sludge
bacterial communities in the M-AnMBR and A-AnMBR. The operational taxonomic units (OTUs) were defined
by 3% distances; Figure S2: The principal component analysis (PCA) of the bacterial communities from the bulk
sludge and cake sludge in the M-AnMBR and A-AnMBR based on the Illumina-MiSeq sequencing of the 16S
rRNA gene (a) and the unweighted pair group method with arithmetic mean (UPGMA) tree showing relationships
between samples according to bacterial profile in the M-AnMBR and A-AnMBR (b). The operational taxonomic
units (OTUs) were determined based on 97% similarity of reads, Figure S3: Venn diagrams showing the overlap
of OTUs from the bulk sludge (a) and cake sludge (b) in the M-AnMBR (1) and A-AnMBR (2).
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