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Abstract: Field measurement of water level is important for water conservancy project operation and
hydrological forecasting. In this study, we proposed a new measuring technique by integrating the
advantages of unmanned aerial vehicle (UAV) photogrammetry and image recognition technology.
Firstly, the imagery of water fluctuation process was captured by an UAV airborne camera, and water
surface line in the imagery was recognized and extracted using image recognition technology.
Subsequently, successive water levels at a measuring section were calculated by parameter calibration.
Statistical parameters of water levels, such as maximum, average, and minimum values during the
capturing period were also calculated. Additionally, we introduced a correction method to offset the
error caused by UAV drift. The newly proposed method was tested in field measurement for Miaowei
hydropower station, China, and the results showed that the method is reliable and adoptable.

Keywords: water level; water fluctuation; unmanned aerial vehicle; photogrammetry; image
recognition; offset correction

1. Introduction

Water level process of water conservancy projects (e.g., Oroville dam, USA; Three Gorges Dam,
China, etc.), overcurrent structures (e.g., spillway, lock approach, and plunge pool, etc.), and rivers is
one of the important hydraulic indexes. In particular, for newly constructed dams and river engineering
works, it is necessary to conduct accurate field measurements of water level and its surface fluctuations
in order to analyze their operation behaviors, test engineering design, and provide operation guidance.
Therefore, the high-precision measurement of water level is significant for the safe operation of water
conservancy projects [1].

Instruments for field measurement of water level should be advanced and automatic with the
premise of reliability, economy, durability, and practicality [1]. Common instruments include water
level measuring rule, float-type water level gauge, pressure-type water level gauge, ultrasonic water
level gauge, and radar water level gauge. However, these instruments have some disadvantages,
especially in the complex natural environment, details are as follows.

• Water level measuring rule is a traditional contacting measurement method, which needs manual
measurement, suggesting that it is difficult to continuously measure water level for its poor
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automaticity. In addition, it is easily damaged under high-speed flow, and also difficult to
accurately obtain the water level when water surface fluctuates intensely.

• Float-type water level gauge is suitable for low sandy flow, and the water level measuring well
needs to be built for its operation [2]. Regularly adjusting the water level and cleaning up siltation
in the measuring well and pipeline often results in high operating cost.

• Pressure-type water level gauge is installed underwater, thus its accuracy is affected by water
impurities and wave, and its calibration process is complex, resulting in a high failure rate [3].

• Ultrasonic water level gauge and radar water level gauge are vulnerable to external interferences,
and they have relatively high operating costs for regular calibration [4,5].

Moreover, for some overcurrent buildings, such as spillways, in order to measure water level
fluctuations, plurality of instruments along the flow need be installed, which increases instrument
installation workload and costs. In some particular cases, such as short-term field measurements during
the flood season of a new water conservancy project, the workload and cost of using above-mentioned
instruments are higher, indicating their low applicability and efficiency.

Image recognition technology, an important automatic, informative, and intelligent method, has
been applied to many water level monitoring systems [6–8]. These systems improved measurement
efficiency. However, these systems need to be equipped with a measuring rule and a fixed image
acquisition device, which limits its applicability in complex conditions, such as high flow velocity
and wide channel. Recently, with rapidly improving performance of unmanned aerial vehicle
(UAV), captures of objective imagery by airborne camera, identification of dynamic morphological
characteristics in imagery based on image recognition technology has become a research hotspot in
the field of water conservancy management [9]. Wang [10] introduced the characteristics of UAV
photogrammetry technology and prospected its application in water conservancy domain. Lin [11]
applied the UAV and image recognition technology to identify and analyze river ice, as introduced
its implementation process, and applied this technology in the ice section of Yellow River, China.
Photogrammetry and image recognition technology were combined by Ahmad and Room to classify
riverway and floodplain area and obtain their scale in physical river model [12]. Stephen [13]
introduced a river boundary recognition system based on UAV images, and provided, in detail,
the image recognition and planning algorithms. Tammingac [14] assessed the capabilities of UAV
to characterize the river channel morphology and hydraulic habitat, including bathymetry, grain
sizes, undercut banks, forested channel margins, and large wood, and discussed the advantages and
challenges of this technology for river research and management. Woodget [15] exploited a novel
approach for characterizing river physical habitat, which consists of a small unmanned aerial system
(sUAS) and Structure-from-Motion photogrammetry (SfM). Their results showed that the sUAS-SfM
approach provided high-resolution and spatially continuous, and explicit measurements of water
depth and point cloud roughness at the microscale. Thumser [16] developed a real-time measurement
system for natural river surface flow velocity fields that are based on drone images and applied it in
the study of Brigach River, German.

In order to overcome the disadvantages of current image-based water level monitoring systems,
this study utilized the technical advantages of both UAV (e.g., flexibility and mobility) [17] and image
recognition technology (e.g., high automaticity and efficiency) [18], and developed a new UAV imagery
based technology for the field measurement of water level (UAVi-fmwl). The objectives of this study
are to: (1) introduce the research idea of the measuring technology and components of the measuring
system; (2) introduce its implementation processes in detail, including coefficient calibration, image
preprocessing, offset correction, and water level identification and calculation; and, (3) examine its
applicability and reliability by applying the new optical measuring technology in a hydraulic prototype
measurement task.
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2. Materials and Methods

2.1. Study Site

A short-term field measurement of the Miaowei hydropower station on the Lancang River, Yunnan
Province, China (25◦51.102′ N, 99◦09.870′ E) was implemented (Figure 1). This newly-constructed
hydropower station came into operation in March 2017. The normal water level of the hydropower
station is 1408.00 m (1985 National Height Datum of China), with a corresponding storage capacity of
0.66 billion m3. This hydropower station is a first-class engineering project (maximum dam height:
139.8 m), with the major functions of flood control, electricity generation, and water supply.

Plunge pool, located at the downstream of spillway, is an important structure for flow energy
dissipation and riverbed erosion protection, and water level and water surface fluctuation of plunge
pool have important influence on plunge pool design and operation, especially for sidewall height [19].
Therefore, the water level at the sidewall of the plunge pool (atomization wind area) during spillway
flooding is an important measurement task.

The sidewall is up to 15 m or more in height, and the flow velocity is high and the water level
fluctuation is large here. Thus, it is difficult to install the measurement ruler. Also, since water
level needs to be observed only for a short time period, other water level measuring instruments are
expensive and with low applicability to install or use. The river width at the water level measurement
section is about 160 m, and there is no suitable condition for fixed camera installation on the opposite
bank. Therefore, the newly developed UAV imagery based technology for field measurement of water
level was adopted.

Figure 1. Miaowei hydropower station spillway flooding. (a) Top view; and, (b) side view.

2.2. Integrated Design of Measurement Technology

We used quadcopter UAV (details in Section 2.3) as an aerial platform to obtain the video of close
range water surface fluctuation process. The dedicated image recognition algorithm was exploited
to recognize the water surface fluctuation processes and to calculate water fluctuation parameters.
The corresponding measurement system consists of UAV and airborne camera, plane wall, baffle or
straight line, two calibration points and a correction point (Figure 2), and image processing software
(Figure 3). The research ideas of this measurement technology are as follows:

1. Two calibration points (B1, B2), located at the water level measuring vertical line (L), are set on
the side wall of the water level measurement section. Both points are higher than the highest
water level of the measurement section, and the absolute elevations of the two calibration points
(Z1, Z2) are staked out in survey, respectively. In addition, correction point (J) is also set to correct
the measurement error that is caused by the UAV offset.

2. UAV hover close the side wall and its airborne camera capture the water surface fluctuation
processes, the selected capture area should include three points B1, B2, J, and consider the highest
and lowest water level at L extension.

3. According to the captured water surface fluctuation video, we used Visual Studio 2008
(VS2008) [20] combined with OpenCV [21] as the development tool under the operating platform
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of Windows 7. The dedicated image recognition algorithm was programmed and used to
recognize the intersection point W of L and water surface in each frame image, and to calculate the
actual elevation of W based on the calibration coefficient and calculation formula automatically.

Figure 2. Schematic of image capture.

Figure 3. Image recognition process.
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2.3. UAV and Drone Camera

In this study, the DJI MAVIC 2 (Figure 4) was used as an aerial platform, and the water surface
fluctuation process was captured by HD integrated drone camera. This camera, L1D-20c model (RGB
lens, frame rate: 10 HZ, pixel: 3840 × 2160), is jointly developed by DJI and Hasselbald. The DJI
MAVIC 2 is a rigid quadcopter with a maximum ascent rate of 5 m/s, a maximum descent rate of 3
m/s and a maximum flight speed of 20 m/s, a maximum range of 5000 m, and a maximum altitude
of 500 m. Its maximum hover stabilization precision is 0.1 m in the vertical direction and 0.3 m in
horizontal direction. Its max-endurance is about 30 min, which is sufficient for our measurement
duration need (less than two minutes every experiment case). The operator can control the UAV and
camera using Wi-Fi, which is a very important function that allows for real-time viewing and the
obtaining of scene being captured by the camera.

Figure 4. General image of the unmanned aerial vehicle (UAV).

2.4. Implementation Process of Measurement Technology

2.4.1. Coefficient Calibration

The coefficient calibration is to map the relationship between the image pixel scale and actual
spatial scale, and it is the key step to accurately calculate the target features in the image. This study
focuses on the water level time series of the measuring section. By numerically calibrating the space
vertical scale, the water level elevation data can be accurately converted. Two calibration points,
B1 and B2, were set on the side wall of the water level measuring section, and their real elevations were
measured by the total station (1985 National Height Datum of China; Z1 = 1322.16 m, Z2 = 1316.16 m),
one offset correction point J was also set on the side wall. The first frame image and related markers
are shown in Figure 5, and corresponding markers coordinates are listed in Figure 6. The origin of
the pixel coordinates of the image is the upper left corner (O) (Figure 6). According to B1 and B2 pixel
vertical coordinates P1, P2, and their actual elevation Z1, Z2, and S point pixel vertical coordinate Ps,
the actual elevation Zs of point S can be obtained. It is considered as the actual reference elevation of
the water level measuring section in the collection area, and Zs is calculated by Equation (1), as:

Zs = Z2 − (Z1 − Z2)
(Ps − P2)

(P2 − P1)
(1)

According to the reference elevation that was obtained by Equation (1), the actual elevation of
point W can be calculated using Equation (2), as:

Zw = Zs + (Ps − Pw)
(Z1 − Z2)

(P2 − P1)
(2)

where Pw is an unknown quantity and it needs to be acquired with the dedicated image
recognition algorithm.



Water 2019, 11, 124 6 of 15

Figure 5. First frame image and related signs.

Figure 6. Schematic diagram of markers.

2.4.2. Image Preprocessing

The main purpose of image preprocessing is to eliminate irrelevant information in the image,
enhance the detectability of relevant information, and minimize calculating task. This step will
improve image segmentation, object recognition reliability, and processing efficiency [22]. Image
preprocessing adopted in this study includes the steps of extracting ROI (Region of Interest), image
graying, binarization, and opening operation. Image preprocessing details are as follows, and the
effect of image preprocessing is shown in Figure 7.

(1) Extraction of ROI. In the image processing, the specific area is selected from the whole image
to be processed by a box, a circle, etc., which is called a ROI, and it serves as an important
preprocessing task primarily for subsequently object tracking. The ROI can reduce processing
time, increase recognition accuracy, and improve processing efficiency [23]. In this study, the ROI
is selected in a box manner (Figures 5 and 6), and the subsequent image processing takes the ROI
as the processing object. In addition, it is necessary to determine the horizontal pixel coordinate
Xc of the measuring section L in the ROI area.

(2) Image graying. Images taken by UAV are always colorized (RGB), and the color of each pixel
is determined by three components: red (R), green (G), and blue (B). Each component has 256
(0–255) values, and one pixel has more than 16 million color changes. Such large amount of data
will reduce the efficiency of image processing. The grayscale image is calculated by calculating R,
G, and B of each pixel in the colorized image, using only one numerical value (0–255) to represent
the characteristics of the pixel. Grayscale image, obtained by a reasonable grayscale calculation
method, can still characterize the target in the color image, and can greatly reduce the calculation
task and improve the image processing efficiency. Therefore, image graying is always the critical
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step in many image processing tasks [24]. After comparing and selecting different gray methods,
this study uses grey-scale average method to obtain gray image, which can meet the needs of
subsequent processing.

(3) Image binarization. Image binarization is also called as image segmentation or image
thresholding [22]. The appropriate threshold is used to distinguish the target and background in
the gray image, which is convenient for subsequent target extraction and parameter calculation.
Selecting an appropriate threshold segmentation manner has been the subject of active research
for many years [25]. In order to avoid the influence of uneven illumination on the segmentation,
we used the adaptive threshold segmentation manner to obtain the threshold of the neighborhood
by calculating the average value of the pixel gray value in the neighborhood of the pixel [26].
A pixel whose gray value is larger than the threshold value is determined to be one type and a gray
value is set as 255. A pixel whose gray value is smaller than the threshold value is determined
to be another type and its gray value is set as 0. By adjusting the threshold parameters in the
algorithm, the water body and the wall are divided. The gray value of the water body area in the
image after segmentation is 255, and the gray value of the wall near the water surface is 0.

(4) Image open operation. After the image segmentation, the binary image generally suffers from
noise or breakpoints, and this situation is especially obvious in photographs that were taken in
the field [27]. In order to eliminate noise and fuse the water surface line breakpoints, the binary
image is processed by the “image open operation” (consists of “erosion operation” and “dilation
operation”) with a certain structuring element [28]. In this study, an ellipse structuring element
(size: 2 × 2 pixel) is defined and operated on the binary image, and the desired smooth air-water
interface line is obtained.

Figure 7. Effect of image preprocessing.

2.4.3. Offset Correction

Slight offset (hover precision) is inevitable for UAV capturing video, which will change the
acquisition area and the measurement section coordinates and affect the recognition accuracy [29].
Therefore, we consider measurement errors that are caused by the UAV offset, and track the real-time
coordinates of the correction point, examine the coordinate offset between the current frame image,
and the correction point in the first frame image. Also, the UAV offset is corrected, and the UAVi-fmwl
is modified. Figure 8 shows the schematic map of offset correction, and the specific process steps are
as follows:

(1) Select the area containing the calibration point (J) as the ROI_b (to distinguish the aforementioned
ROI).

(2) Identify the calibration point (J) in the first frame ROI_b, and calculate its centroid coordinates (XJ0,
PJ0), which is considered as the base coordinate for the offset correction in the subsequent ROI_b.

(3) Identify the centroid coordinates (XJi, PJi) of the calibration point in the ROI_b of ith frame image.
(4) Calculate the difference (∆X, ∆P) between the calibration point coordinates and the base

coordinates in the ROI_b of ith frame image, where ∆X = XJi − XJ0, ∆P = PJi − PJ0.
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Figure 8. Offset correction.

2.4.4. Water Level Identification

The following method is used to obtain the W point actual elevation. On the vertical reference line
(water level measuring section) of the horizontal pixel coordinate Xc, whether the gray value of each
pixel is 0 is determined from the bottom of the line to the upper (the gray value of water and the wall
are 255 and 0, respectively). When the gray value is 0, it means that the W point of the water surface is
reached, and the pixel coordinate value of W point (Xw, Pw) is obtained. Furthermore, the real pixel
coordinate of W is (Xw + ∆X, Pw + ∆P) after UAV offset correction, and water surface real elevation
Zw obtained by introducing Pw + ∆P instead of Pw in Equation (2). By calculating W elevation in
each frame of the video in turn, the water surface elevation and surface fluctuation process of the
measurement section can be obtained. When the last frame of video is recognized, the maximum water
level, average water level, and minimum water level in the collection period are calculated.

3. Results and Discussion

3.1. Application Assessment of UAVi-fmwl

Three cases were conducted to test the UAVi-fmwl applicability. The water level offset
displacements that are caused by UAV drift in each frame are traced. Figure 9 shows the correction
point coordinate trajectories of three cases (30 s, 300 frames), which are also on behalf of UAV drift
trajectories. The UAV drift trajectories present obvious randomness under the influence of UAV
hover stabilization precision, operator control skill and external environment, e.g., atomization wind
that is caused by flooding flow splitting and energy dissipation [30]. Table 1 shows the statistical
parameters of UAV offset displacements of three cases, i.e., the average offset displacement and max
offset displacement. Both offset parameters increase with spillway flooding discharge (Q), which is
always positively correlated with the atomization wind speed [31]. The Max offset displacement is
140.293 cm in Case 3.

Figure 9. UAV drift trajectory. (a) Q = 341 m3/s; (b) Q = 643 m3/s; and, (c) Q = 1249 m3/s.
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Table 1. Statistics of UAV offset displacements.

Case Q (m3/s) Average Displacement (cm) Max Displacement (cm)

1 341 18.478 28.704
2 643 22.604 63.782
3 1249 72.961 140.293

The water level offset displacements that are caused by UAV drift (Figure 9) in each frame
are corrected over time using method in Section 2.4.3. Subsequently, water level in each frame is
obtained using method in Section 2.4.4. The water level fluctuation time series are plotted in Figure 10.
In order to check the reliability of the measurement technology, the water level time series of artificial
recognition (AR) and UAV calculation before offset correction (UAVi-fmwl: BC) are also plotted.
Results showed that the water level fluctuation data that was obtained by UAV is greatly deviated
from the artificial recognition data before the UAV offset correction (UAVi-fmwl: BC), and the water
level fluctuation data is in good agreement with the artificial recognition water level data after the
UAV offset correction (UAVi-fmwl: AC).

Figure 10. Trends contrast between artificial recognition (AR) data and field measurement of water
level (UAVi-fmwl) data. (a) Q = 341 m3/s; (b) Q = 643 m3/s; and, (c) Q = 1249 m3/s.

Furthermore, consistency analysis and linear regression results between artificial recognition
data and UAVi-fmwl calculated data are plotted in Figure 11. The regression coefficient (R) between
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AR data and UAVi-fmwl: BC data decreases with spillway flooding discharge. It is obvious that
the consistency of artificial recognition data and UAVi-fmwl calculated data after offset correction is
much better than artificial recognition data and UAVi-fmwl calculated data before offset correction
(Figure 11). Their probability density distributions (P) of comprehensive data of the three cases
are presented in Figure 12. Detailed comparison results of their probability density distributions
show that the artificial recognition data and UAVi-fmwl calculated data before offset correction has
poor consistency, especially for the relatively larger water level elevation groups. On the contrary,
the artificial recognition data and UAVi-fmwl calculated data after offset correction has relatively good
consistency, which indicates that the proposed method for offset correction of the UAV is reasonable.

Figure 11. Consistency analysis between AR data and UAVi-fmwl data. (a) Q = 341 m3/s;
(b) Q = 643 m3/s; and, (c) Q = 1249 m3/s.
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Figure 12. Probability density distribution of AR data and UAVi-fmwl data (three cases).

In addition, the artificial recognition data has obvious data drift, and the continuity of the data
series is poor, which is mainly caused by manual error (Figure 10a). By contrast, water level continuity
that was obtained by UAVi-fmwl: AC is better than the artificial recognition results. Furthermore,
the UAVi-fmwl image processing for each frame is about 0.2 s and the data acquisition efficiency is much
better than artificial recognition. Therefore, the newly developed unmanned aerial vehicle imagery
based technology for field measurement of water level has good reliability and progressiveness.

It should be pointed out that UAVi-fmwl is not a real-time monitoring system presently.
Furthermore, the water level measurement site should provide an environment to guarantee B1,
B2, and W located at one straight line (Figure 5). However, if there is no wall as this study to set B1, B2,
but the measurement site is suitable for driving a pile or pulling a steel wire (one end with ballast sink
to the riverbed, another end is tired to river bank), the pile or steel wire marked with B1, B2 are also
feasible for UAVi-fmwl.

3.2. Preliminary Application of UAVi-fmwl

Water level of the plunge pool in seven cases of spillway flooding discharge was measured using
UAVi-fmwl. The time series of water level in each working condition is shown in Figure 13. There are
some instantaneous water level crosses between adjacent flooding discharges, however the total water
level is positively correlated with flood discharge.

Figure 13. Time series of water surface fluctuations.

The statistical water levels (maximum, average, and minimum values) of each flooding discharge
condition are shown in Figure 14. Three statistical water levels are all positively correlated with
flooding discharges. Disparity between maximum water level and minimum water level increases
with discharge, which reveals that the water fluctuation is gradually getting more intense with the
stronger interaction of high speed velocity flooding flow and plunge pool water body [32].
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In order to check the sidewall top elevation design, the regression relations of three statistical
water levels and flooding discharges are also plotted in Figure 14, and their regression equations are
calculated, as:

Zmax = 0.0023Q + 1307.9 (3)

Zave = 0.0017Q + 1307.5. (4)

Zmin = 0.0014Q + 1307.2 (5)

where Zmax is maximum water level elevation, Zave is average water level elevation, Zmin is minimum
level water elevation, and Q is spillway flooding discharge.

Figure 14. Relationship between discharge and statistical water level.

Flow in rivers with relative regular form and constant boundary can be approximated as uniform
and steady, and many universal theoretical and empirical equations between Q and water depth (h)
have been proposed, e.g., the classical Q-h relation Equation (6) based on Manning equation and Chezy
equation for a rectangular cross-section river [33,34].

Q = n−1b
5
3 i

1
2

h
5
3

(b + 2h)
2
3

(6)

where n is Manning’s coefficient of the river, b is river width, i is the river slope, and the relationship
between Q and h is nonlinear.

In this study, the research location is located at the downstream of spillway. Flow spraying out
from spillway exit with high speed (generally larger than 20 m/s, Figure 1), and dropping into the
plunge pool, makes the flow extremely non-uniform and unsteady. In addition, the river boundary
form of the research section is irregular, thus the relationship between Q-h is always not consistent
with classical Q-h Equation (6), and this exclusive relationship is unknown until this special research
in this study.

Based on the exclusive linear relationship between Q and h, and the sidewall top elevation of
water level measurement section (B1: 1322.16 m), the maximum allowable spillway flooding discharge
6200 m3/s can be calculated based on Equation (3) if the water surface fluctuation is considered.
This value approximates to the 10% frequency flood discharge (6130 m3/s) of Miaowei hydropower
station. The maximum allowable spillway flooding discharge of 8625 m3/s can be calculated based
on Equation (4) if the water surface fluctuation is neglected, and this value approximates to the 2%
frequency flood discharge (8570 m3/s) of Miaowei hydropower station. This result could provide
reference for the operation and scheduling of Miaowei hydropower station during its flooding period.
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4. Conclusions

Aiming at solving the limitations of current measuring instruments and methods for water
level measurements in the field, we integrated UAV photogrammetry and image recognition
technology, and developed a newly optical measuring technology to measure water level in the
field, and constructed the corresponding measurement system, including UAV, airborne camera, plane
wall, baffle or straight line, calibration points, correction point, and image processing software.

The UAVi-fmwl theory and implementation processes are as follows: (1) capture the video of
water surface fluctuation processes, (2) dedicate image processing software orderly preprocess images
separated from video captured by airborne camera, (3) segment the water body and background, (4) use
the traversal algorithm to calculate the pixel coordinates of measurement section, and (5) obtain the
actual water level at that time according to the conversion coefficient and the conversion relationship.
Particularly, the UAVi-fmwl considers the offset error of UAV and then provides a UAV offset
correction method.

The UAVi-fmwl was applied to water level measurement in the plunge pool downstream of
the spillway of a hydropower station, and the results showed that the newly developed technology
has good reliability, good progressiveness, and strong potential to monitor water level in the field
environment. In addition, an operation and scheduling reference of the hydropower station is acquired
based on the water level analysis results.

The UAVi-fmwl proposed in this study has the advantages of maneuverable and flexible UAV, high
image recognition and analysis automation, high recognition accuracy, non-contact, low cost, and no
requirement for water quality. It is suitable to water level and water surface fluctuation measurement
in complex field environment (e.g., high and steep mountain slope, wide river, high-speed flow),
especially for short-term water surface fluctuation and urgent water level change process measurement
(e.g., dammed lake). This technology can also be applied to hydraulic model experiments and fluid
surface fluctuation measurement of the oil industry and metallurgical industry.
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