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Abstract: Over the last decade, autocalibration routines have become commonplace in watershed
modeling. This approach is most often used to simulate a streamflow at a basin’s outlet. In alpine
settings, spring/early summer snowmelt is by far the dominant signal in this system. Therefore,
there is great potential for a modeled watershed to underperform during other times of the year.
This tendency has been noted in many prior studies. In this work, the Soil and Water Assessment Tool
(SWAT) model was auto-calibrated with the SUFI-2 routine. A mountainous watershed from Idaho
was examined (Upper North Fork). In this study, this basin was calibrated using three estimates of
evapotranspiration (ET): Moderate Resolution Imagining Spectrometer (MODIS), Simplified Surface
Energy Balance, and Global Land Evaporation: the Amsterdam Model. The MODIS product in
particular, had the greatest utility in helping to constrain SWAT parameters that have a high sensitivity
to ET. Streamflow simulations that utilize these ET parameter values have improved recessional and
summertime streamflow performances during calibration (2007 to 2011) and validation (2012 to 2014)
periods. Streamflow performance was monitored with standard objective metrics (Bias and Nash
Sutcliffe coefficients) that quantified overall, recessional, and summertime peak flows. This approach
yielded dramatic enhancements for all three observations. These results demonstrate the utility of
this approach for improving watershed modeling fidelity outside the main snowmelt season.
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1. Introduction

In snow-dominant areas, a strong seasonal signal in runoff can be attributed to spring-time
streamflow. Therefore, hydrologic model auto-calibration routines have a high probability of tuning
parameters to fit this annual peak. Consequently, parameters that are not directly connected to peak
flow runoff but those that control recessional streamflow, baseflow, and even soil moisture have a great
potential to be unrealistically set for the vast majority of the year [1]. Even calibration by multiple
gauges does not offer a significant improvement from this situation [2]. Auto-calibration routines can
yield a constellation of acceptable results that are based on objective metrics. This reality of modeling is
inherently governed by the principle of equifinality [3]. The issue of equifinality can become significant
for distributed and semi-distributed models such as the Soil and Water Assessment Tool (SWAT).
In SWAT, there are a large number of parameters that cannot be constrained by direct traditional
observation (i.e., streamflow). Within the universe of possible model realizations, one should select a
subset of physically realistic parameter values.

In recent years, there has been a proliferation of remote sensing products that provide an
additional form of information that can be used to help calibrate parameters that are not directly
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related to streamflow. Earlier studies have calibrated the SWAT model with other fluxes, such as
evapotranspiration (ET, [4,5]), leaf area index [6,7], and soil moisture [8]. Immerzeel and Droogers [4]
produced SWAT-simulated ET results which were validated with streamflow data, whereas [5] followed
the procedures that are outlined in this paper, that leverage ET observations to directly improve
streamflow simulations. The approach to using ‘soft data’ not directly related to streamflow monitoring
has been previously advocated [9–11]. Another approach uses a clustering method to conduct separate
calibrations for high- and low-flow regimes [12,13]. In either case, the result is the delineation of a
parameter set that more realistically represents the ambient conditions within the watershed.

Parameter selection must be governed by a fundamental understanding of the hydrological
processes that are present within a system. While SWAT can represent snow melt peak streamflow
reasonably well, based on previous studies [14], the model has difficulty with representing baseflow
present during fall to winter, as well as peak flow outside the main snow melt season [1].

A characteristic pattern of soil moisture was noted in alpine regions during the warm
season [15,16]. While streamflow monitoring is affected by this pattern, examining soil moisture and
evapotranspiration data can elucidate the specific details of the hydrologic response at a watershed
scale. This pattern is divided into four distinct phases that are evident within a time series of soil
moisture. (1) The snow meltout phase—a period in which soil moisture values increase. This period
supports increased streamflow. (2) Post-snow melt phase—elevated soil moisture is retained for a
short period during late spring and early summer as the still cool conditions do not support high
losses through evapotranspiration. During this period, streamflow reaches its seasonal peak. (3) Initial
drying phase—where the depletion of soil moisture is noted at the surface (5 cm), but not at greater
depth within the root zone. During this period, the difference between the shallow (20 cm) and deeper
(50 cm) root zones becomes progressively greater. The surface layer can be temporarily recharged
by summertime rainfall events producing variability in the time series. Deeper within the root zone
soil moisture behaves more consistently. In general, this is a period of recession in streamflow unless
affected by precipitation events. (4) Final drying phase—during this period, most of the surface soil
moisture has been depleted and recessional baseflow is provided by soil moisture stored within the
deeper root zone.

This paper examines an alpine watershed from Idaho (USA), and leverages the results from
three remote sensing platforms to constrain evaporation, to improve warm season simulations of
hydrologic response with the SWAT model. The SWAT model has exhibited variable performance
in this geographical setting outside of the spring-time snow melt season [1,17–19]. By incorporating
ancillary data sets streamflow performance markedly. This is of particular importance in areas that can
receive enhanced orographic summertime precipitation, which in the past has led to lethal streamflow
flooding in alpine areas such as the Front Range of Colorado [20,21]. Consequently, developing the
ability for a hydrologic model to improve the representation of alpine hydrologic processes has the
potential to save lives.

2. Materials and Methods

2.1. Watersheds Examined

The examined watershed is located in the southern panhandle of Idaho (Figure 1). Nestled
along the western side of the Bitterroot Mountains, this watershed is immediately west of the North
American continental divide. Climatically, this region has a greater maritime influence during the
winter, with summer characterized by having a greater continental climate with occasional convective
activity. In terms of temperature, wintertime temperatures are generally sub-freezing, whereas brief
summers have warmer conditions (high temperatures around 28 ◦C) with an over 20 ◦C diurnal
range. Abundant precipitation is noted during the winter with lesser amounts during the summer.
In the Upper North Fork, basin total annual precipitation is approximately 1400 mm/year. During the
wintertime months, the majority of this precipitation is in the form of snow. Spring-time snow melt
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dominates the hydrology in this region particularly during the late spring period when streamflow
reaches its annual maximum. However, summer-time convective activity can produce flash flooding.
In addition, winter-time flooding can be caused by anomalously warm temperatures or breaches in ice
dams that are difficult to simulate.
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Figure 1. Locality map showing the position of the Upper North Fork basins in Idaho, USA. The larger
map shows Nash Sufficliffe values within this watersheds sub-basin, based on comparison of simulated
ET with the MODIS13A2v5 ET product (described below).

The Upper North Fork watershed has steep slopes that range from a minimum elevation of 506 m
near the outlet to peaks that exceed 2000 m in height. The streamflow gauge is located near the Canyon
Ranger Station (station number 13340600). This basin spans 3356 km2. The Upper Fork Clearwater
River forms an irregular trellis network, and this river’s outlet is in the northwestern corner. Soils are
dominated by silty loam material with an area classified as rubble land, consisting of sandy loam in the
southeast corner of the basin (Figure 2a). The percentage of soil families/textures are given in Table 1.
This basin is dominated by both evergreen forest (FRSE—75%) and rangeland-brush (RNGB—24%)
with 1% miscellaneous land use (Figure 2b).
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Universal Transverse Mercator (UTM) Zone 11. Land cover data from the National Land Cover 
Dataset 2006 was utilized. Files were in TIFF format with a 30 m resolution [24]. Finally, soil data was 

Figure 2. (a) Soil types and (b) land use types within the Upper North Fork basin.

Table 1. Soil name, texture, and areal percentages within the watershed.

Soil Name Mukey Texture Areal Percentage

Vay 662090 Silty loam 17.33
Prospectors Variant 661986 Silty loam 31.30

Vay 662085 Silty loam 10.89
Buckhouse Family 661824 Silty loam 12.89

Nakama Family 662086 Silty loam 10.10
Honey jones 661952 Silty loam 6.97

Narnett 662001 Silty loam 5.94
Rubble Land (Latour-Honey Jones-Ahrs) 661997 Sandy loam 4.51

2.2. Datasets Used

A 30 m Digital Elevation Model (DEM; USDA Geospatial Data Gateway) was used in the
watershed delineation process that divided the watersheds into sub-basins. The DEM raster file
from the National Elevation Dataset was saved in ArcGRID format [22,23], and it was projected to a
Universal Transverse Mercator (UTM) Zone 11. Land cover data from the National Land Cover Dataset
2006 was utilized. Files were in TIFF format with a 30 m resolution [24]. Finally, soil data was obtained
from the U.S. General Soil Map (STATSGO2) in ESRI Shapefile format, from the USGS Geospatial Data
Gateway [25].
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Several sources provided the hydrometeorological data used in this study. United States
Geological Survey (USGS) streamflow data [26] was downloaded from the USGS National Water
Information System. Daily minimum and maximum temperature data (2002 to 2014) were obtained
from the climate data developed by the PRISM Climate Group, based at Oregon State University [27].
Three measurements were downloaded: precipitation, minimum temperature, and maximum
temperature. The three datasets are available in BIL format, with a spatial resolution of 4 km.

Three evapotranspiration (ET) products were used in this study. All ET data products were
aggregated to a sub-basin average within each watershed. The MOD16A2 Version 5 (MODIS16A2v5)
product is monthly with a 0.5 km spatial resolution. This product is available in HDF format from
the [28]. This product is based on the Penman–Monteith equation, which includes inputs of daily
meteorological reanalysis data along with MODIS remotely sensed data products, such as vegetation
property dynamics, albedo, and land cover.

The second ET product was the Simplified Surface Energy Balance (SSEBop). This monthly actual
ET dataset is available across CONUS, and was obtained from the USGS Geo Data Portal [29,30].
This approach is based on using remotely sensed thermal retrievals, combined with assimilated
meteorological observations (PRISM). It also incorporates MODIS observations for surface albedo,
NDVI, and land surface temperatures. With the elevation constrained by the Shuttle Radar Topographic
Mission these observations are assimilated into the Surface Energy Balance System (SEBS) model,
which evaluates the energy balance terms for each pixel at the limiting conditions for the dry and
saturated states. Therefore, the calculated actual ET is constrained within these two limits. This product
has a GeoTiff format, with a 0.009 degrees spatial resolution.

The Global Land Evaporation: the Amsterdam Model (GLEAM) is the third ET used [31,32].
This product was derived from a number of measurements, including Clouds and the Earth’s
Radiant Energy System net radiation, Atmospheric Infrared Sounder air temperature, Water Cycle
Multi-Mission Observation soil moisture, Land Parameter Retrieval Model vegetation optical depth,
and GlobSnow snow water equivalents. Version 3.1a (b) which is available with 0.25 degrees spatial
resolution in netCDF format was used. GLEAM is a daily product, but in this study, it was aggregated
to a monthly time step.

2.3. SWAT Model Description

Water balance computations form the basis for SWAT. This is a semi-distributed hydrological
model described by [33,34]. This model’s main advantage is the comprehensive model structure
in which all major hydrologic processes are simulated (i.e., surface runoff, subsurface runoff,
evapotranspiration, infiltration, interception, snow accumulation/melting).

The subdivision of the watershed during the basin delineation process forms the sub-basins, with a
total of 69 defined for the Upper North Fork watershed. Daily hydrologic fluxes within each sub-basin
were estimated (surface runoff, subsurface runoff, evapotranspiration, infiltration, interception, etc.).
In each sub-basin, the fundamental computational unit is the hydrologic response unit (HRU). In Upper
North Fork, a total of 552 HRUs were defined. A unique combination of land use, soil, and slope
within a sub-basin defines an HRU. Note that a 10% threshold was used in the definition process to
limit the influence of minor soil types in this analysis. SWAT calculates a water balance that is based on
the area-weighted average of the curve number (CN2) values present within a sub-basin. The SWAT
model lacks the characteristics of a distributed model and the spatial location of the HRUs present
in each sub-basin is not a consideration. The model also allows for the adjustment of the CN2 value,
based on antecedent moisture conditions (dry, normal, or wet). The excessive surface runoff that is
generated, based on sub-basin computations, are routed into overland flow. The flow that intersects
with a channel is routed to adjacent sub-basins downstream, and flows into the watershed outlet.
The variable storage method was used as the channel routing method [35].

SWAT also calculates daily potential evapotranspiration values through several approaches,
and the Penman–Monteith method was chosen in this study. This method used the observed
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temperatures and values for radiation, relative humidity, wind velocity, and atmospheric pressure
that were calculated by the SWAT weather generator. This method is commonly accepted as a more
physically realistic approach to measure evapotranspiration, in contrast to the simpler Priestley
Taylor and Hargreaves methods. In addition, the Penman–Monteith method forms the basis for the
MODIS16A2v5 and SSEBop ET products examined in this study.

The SWAT model has 23 major parameters that influence surface hydrology in areas where
snowmelt can strongly influence runoff, based on previous studies in alpine regions and the SWAT User
Manual ([1,15,36], Table 2). SOL_AWC, SOL_K, and SOL_BD directly affect soil moisture. Potential
and actual evaporation are controlled by five parameters (ESCO, EPCO, CANMX, GW_REVAP,
REVAPMN). Snowmelt runoff is regulated by SFTMP, SMTMP, SMFMX, SMFMN, and TIMP. The other
ten parameters control streamflow by either adjusting baseflow (ALAPHA_BF, GWQMN, GW_DELAY)
or surface quickflow (CN2, SURLAG, OV_N, CH_N1, CH_K1, CH_N2, CH_K2).

Table 2. Streamflow parameters for the Upper North Fork Basin. R indicates change by Multiplication
and A, addition. All other changes are by replacement or absolute adjustments. Numbers in bold
indicate a highly sensitive parameter (p < 0.02).

Parameters Initial Parameters Base Q Parameters Final Parameters

CN2 (Initial SCS Runoff Curve Number for Moisture
Condition II) 35.0 to 58.1 36.5 to 56.5 51.85 to 51.89

CH_N2 (Manning’s “n” Value for the Main Channel) 0 to 0.3 0.826 to 0.2858 0.1360 to 0.1799

CH_K2 (Hydraulic Conductivity of the Main Channel
Alluvium, mm/h) 0 to 500 36.7 to 183.2 61.99 to 63.15

CH_N1 (R; Manning’s “n” Value for the Tributary
Channel) 0 to 0.3 0.0283 to 0.2749 0.0467 to 0.0822

CH_K1 (R; Hydraulic Conductivity the Tributary
Alluvium mm/h) 0 to 300 26.5 to 261.1 95.9 to 119.5

OV_N (Manning’s “n” Value for Overland Flow) 0.01 to 0.6 0.0304 to 0.5832 0.0756 to 0.0908

SURLAG (Surface Runoff Lag Coefficient) 1 to 34 2.40 to 26.75 17.07 to 26.28

ALPHA_BF (Baseflow Alpha Factor) 0.0385 to 0.1075 0.0612 to 0.1051 0.0777 to 0.0952

GW_DELAY (A; Groundwater Delay Time, days) 30 to 450 108.7 to 413.7 150.9 to 213.6

GW_REVAP (A; Groundwater “Reevap” Coefficient) 0.02 to 0.2 0.0275 to 0.1961 0.0986 to 0.1448

GWQMN (A; Threshold Depth of Shallow Aquifer
Water Required for Return Flow to Occur, mm) 0 to 5000 762 to 3572 1354 to 3321

ESCO (Soil Evaporation Compensation Factor) 0 to 1 0.1345 to 0.7605 0.8227 to 0.964

REVAPMN (A; Depth to Shallow Aquifer for “Reevap”
or Percolation to Deep Aquifer, mm) 0 to 500 42.2 to 483.2 51.4 to 251.4

CANMX (A; Maximum Canopy Storage, mm) 0 to 100 33.95 to 86.95 1.738 to 1.931

EPCO (Plant Uptake Compensation Factor) 0 to 1 0.0315 to 0.9745 0.6120 to 0.6196

SOL_AWC (R; Available Water Capacity of the Soil
Layer (mm H2O/mm soil) −0.2 to 0.4 −0.1697 to 0.3631 0.2879 to 0.3852

SOL_K (R; Saturated Hydraulic Conductivity, mm/h) −0.8 to 0.8 −0.6680 to 0.7480 0.2810 to 0.5638

SOL_BD (R; Moisture Bulk Density, g/cm3) −0.5 to 0.6 −0.4159 to 0.5687 −0.2916 to 0.3192

SFTMP (Snowfall temperature, ◦C) −5 to 5 −0.835 to 4.895 1.118 to 1.358

SMTMP (Snow melt base temperature, ◦C) −5 to 5 −3.205 to 4.895 3.613 to 4.407

SMFMX (Melt factor for snow on June 21,
mm H2O/◦C-day) 0 to 10 0.705 to 9.605 2.754 to 5.402

SMFMN (Melt factor for snow December 21,
mm H2O/◦C-day) 0 to 10 0.755 to 7.925 0.916 to 2.181

TIMP (Snow pack temperature lag factor, ◦C) 0.01 to 1 0.0362 to 0.9500 0.2089 to 0.3036
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2.4. SWAT Model Set-Up and Evaluation

A two year warm-up period initialized the models in both watersheds. Longer warm-up periods
had no impact on the simulated streamflow performance. The streamflow simulation was supported by
the 64-bit version of the SWAT Model (2012; revision 627), run at a daily time step. Evapotranspiration
simulations were conducted at the level of the sub-basin, and at a monthly time-step. The channel
routing method selected was the daily rain/CN/daily route rainfall routing option with Variable
Storage. For the Upper North Fork watershed, the calibration period was 2007 to 2011, which was
used for both streamflow and evapotranspiration model runs. The validation period for streamflow
spanned 2012 to 2014.

This study used two primary objective criteria to quantify overall flow performance, which are
standard in the hydrologic community, including the mass balance error (MBE) and the Nash–Sutcliffe
efficiency (NS). The definitions of MBE and NS are given below:

MBE =
∑n

i=1
(
Qsim,i − Qobs,i

)
∑n

i=1 Qobs,i
(1)

NS =
∑n

i=1
(
Qsim,i − Qobs,i

)
∑n

i=1
(
Qsim,i − Qobs,a

) (2)

where, Qobs,a is the average observed value, which includes streamflow (Q) or evapotranspiration
(ET). Qsim,i and Qobs,i are the simulated and observed values at the ith observation, respectively and
n is the number of observations. Three other observations were also used for evaluation, and they
include: baseflow ratio, recessional flow performance, and summertime (July to September) peak
flow performance. These last two observations were evaluated by using both MBE and NS metrics.
To determine the quality of a simulation, the criterion of [37] was used. This paper outlines the basis for
specifying MBE and NS values that constitute perfect, very good, good, satisfactory, and unsatisfactory
simulations (Table 3).

Table 3. Performance metrics used to evaluate model performance (modified from Moriasi et al., 2007).

Threshold NS Absolute MBE

Perfect 1.00 0%
Very Good 0.75 10%

Good 0.65 15%
Satisfactory 0.50 25%

Unacceptable <0.50 >25%

2.5. SUFI-2 Autocalibration Routine

SUFI-2 has become in recent years an increasingly popular stand-alone algorithm used to develop
optimized SWAT parameters [38]. SUFI-2 seeks the optimum parameter set to match simulations
against an observed dataset using a specified objective criterion, while also minimizing parameter
uncertainty. User-selected parameter ranges ensure that the sampling (based on the Latin Hypercube
method) reflects only a physically realistic range within the parameter space. This autocalibration
method’s greatest virtue is the relatively smallest number of runs that are needed to estimate
uncertainty. This algorithm rapidly converges to identify the optimal solution [39–41]. In this study,
the NS value was selected as the objective parameter that are used for calibration.

The SUFI-2 module in SWAT-CUP simulated within sub-basins for ET, and at the watershed outlet
for streamflow. The sub-basins were organized based on dominant soil type (Table 1) supporting eight
simulations per ET product. A ninth simulation was added that grouped sub-basins together that did
not have a soil type that clearly dominated. These simulations were completed to obtain the maximum
possible range of values for ET sensitive parameters. Since only two significant land use types exist
in this basin, we opted to focus on soils to obtain the broadest spectrum of possible ET parameter



Water 2019, 11, 112 8 of 15

values. The overall area-weighted basin average parameter values derived from the suite of nine
ET simulations (Table 4) was used to constrain a second and third series of streamflow simulations.
Each SUFI-2 scenario involved 1000 simulations. After model execution, SUFI-2 outputs an optimal
parameter set, as well as an indication of parameter sensitivity. Parameters with p-values < 0.02 were
highly sensitive (black bold in Table 1).

Table 4. Consistently sensitive evapotranspiration (ET) parameter value ranges, Nash–Sutcliffe
efficiency (NS) performance, and bias from the Upper North Fork basin.

ESCO CANMX SOL_AWC SOL_K SOL_BD Avg NS Average Bias

MODIS16A2 0.7435 to
0.9585

0.9789 to
2.320

0.2719 to
0.3985

−0.7688 to
0.7656

−0.3773 to
0.3244 0.6842 19.1%

Satisfactory

SSEBop 0.4505 to
0.7885

1.146 to
2.250

0.3565 to
0.3913

−0.7912 to
0.3448

−0.4521 to
0.5786 0.6138 20.7%

Satisfactory

GLEAM 3.1a 0.1525 to
0.5605

1.070 to
2.269

0.2557 to
0.3943

−0.7832 to
−0.6568

−0.4951 to
0.1165 0.2637 38.0%

Unsatisfactory

2.6. Scenarios Executed

The modeling procedure is an iterative process that focuses on constraining the parameter space
by using physically realistic parameter values during the calibration period. Three separate sets of
streamflow simulations were executed. The initial streamflow simulation is followed by an ET model
run. Parameter values obtained from the ET modeling were used to support two additional series of
streamflow, as described below.

The Base Q scenario involves setting the CN2 and ALPHA_BF values based on ancillary soft
information. This model series was used only for a comparison. Reasonable potential ranges for
CN2 were obtained by examining land cover and soil within the watersheds. A range of ±25% was
used around the basin-wide average to set the range for this parameter (Upper North Fork, 35.0 to
58.1). However, the minimum value for CN2 was set at 35.0, which is a reasonable lower limit for this
parameter. The ALAPHA_BF was set within a plus or minus of a factor of two of the ALAPHA_BF
value determined by the baseflow program [42].

The next series of scenarios involved using ET simulations to constrain the following
12 parameters that can have a potential impact on ET: CN2, ALPHA_BF, SOL_AWC, SOL_BD,
SOL_K, GW_DELAY, GWQMN, ESCO, EPCO, CANMX, GW_REVAP, and REVAPMN. To further
constrain CANMX analysis calculation of interception based on land cover proportions (see Watersheds
Examined section), conifer estimates of the annual fraction of evergreen forest interception [43] and
previous CANMX estimates (3.56) from moderately dense rangeland settings [44] were compiled.
For the Upper North Fork basin, the optimal ET values for CANMX yielded an annual fraction of
precipitation lost to interception at 29%. Note that this value is close to the 25% average interception
loss recorded in 18 studies of canopy interception summarized in [38]. Based on this supporting
analysis, the ET parameters derived were physically realistic. Note that only sub-basins that exceed 1%
of the overall basin were included the subsequent analysis.

The best parameter values (basin-wide average) from the five most consistently sensitive
parameters (Table 4) were used to support a second series of streamflow models (Best Q MODIS, Best
Q SSEBop). Since the GLEAM ET product yielded unsatisfactory ET results (Table 3), this product was
not used to support the second phase of streamflow simulations. Only simulations that reached at
least satisfactory performance thresholds (Table 5) were considered for further analysis. In Table 5,
‘n’ indicates the number of simulations that reached the specified performance threshold.
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Table 5. Upper North Fork streamflow. (a) Calibration and (b) validation results.

a. Calibration Base Q (n = 11) Best Q (MODIS; n = 8) Best Q (SSEBop; n = 2) Optimized Q (n = 2)

Overall- NS 0.51 to 0.73 0.51 to 0.69 0.53 to 0.66 0.77 to 0.82
Overall- Bias 5.5 to 24.4% 0.2 to 17.7% 5.5 to 16.7% 3.3 to 6.1%

Baseflow Ratio 0.627 to 0.772 0.716 to 0.766 0.736 to 0.766 0.739 to 0.762
Recessional- NS 0.54 to 0.77 0.56 to 0.72 0.51 to 0.62 0.77 to 0.86
Recessional- Bias 1.1 to 24.2% 1.9 to 23.9% 3.5 to 13.1% 7.0 to 8.7%

Summer Peak- NS 0.66 to 0.94 0.67 to 0.91 0.69 to 0.78 0.80 to 0.89
Summer Peak- Bias −24.3 to 19.1% −22.8 to 24.7% −22.6 to −23.9% −5.1 to 2.4%

Performance
Threshold Satisfactory Satisfactory Satisfactory Very Good

b. Validation Base Q (n = 11) Best Q (MODIS; n = 8) Best Q (SSEBop; n = 2) Optimized Q (n = 2)

Overall- NS 0.36 to 0.77 0.42 to 0.72 0.58 to 0.75 0.78 to 0.79
Overall- Bias 9.0 to 27.9% 6.1 to 21.2% 7.5 to 22.2% 8.8 to 10.6%

Baseflow Ratio 0.608 to 0.770 0.708 to 0.761 0.739 to 0.758 0.737 to 0.758
Recessional- NS 0.33 to 0.79 0.59 to 0.75 0.60 to 0.78 0.80 to 0.81
Recessional- Bias 5.9 to 30.3% 8.0 to 23.6% 6.6 to 16.1% 12.1 to 14.7%

Summer Peak- NS −4.25 to 0.60 −0.82 to 0.44 −0.06 to 0.44 0.47 to 0.57
Summer Peak- Bias −98.7 to 27.2% −34.6 to 23.1% −28.6 to −30.3% −2.2 to 1.8%

Performance
Threshold

Unsatisfactory
to Satisfactory Unsatisfactory Unsatisfactory Unsatisfactory to

Satisfactory

For Upper North Fork, the best modeling results were derived from the Best Q MODIS series
(Table 5). All parameter values for the eight Best Q MODIS model runs that yielded at least a satisfactory
performance were used to support a third and final streamflow scenario (Optimized Q) in which all
parameter values were fully constrained based on the Best Q MODIS simulation (Table 5).

Finally, parameter values for the acceptable streamflow simulations for each calibration scenario
were applied for the validation period. Only two simulations yielded satisfactory performances for the
Base Q scenario, and only one for the Optimized Q model run during the validation period.

3. Results

3.1. ET

In the Upper North Fork basin, the MODIS16A2v5 and SSEBop yielded satisfactory results at
the basin scale, unlike the GLEAM 3.1a product (Table 4). All but two sub-basins (58 and 61) yielded
at least satisfactory NS values (Figure 1). These sub-basins poorly performed probably because of
the presence of significant rubble land in these sub-basins. The sandy loam soil that dominates
there sub-basins diverges from the silty loam soils that dominate most of the watershed (Figure 2a).
The MODIS16A2v5 and SSEBop products did a reasonable job of capturing the seasonality of ET
across most of this watershed. All products tended to overestimated summertime ET to varying
degrees in many sub-basins. Both the MODIS13A2v5 and GLEAM 3.1a products overestimate both
winter ET, but GLEAM 3.1a to a greater extent. SSEBop provided a better match with the simulated
wintertime ET.

3.2. Streamflow

Streamflow results are presented in Table 5 and Figure 3 for the Upper North Fork watershed.
The Base Q scenario involved using physically realistic parameter value ranges for CN2 and
ALPHA_BF without any constraints on the other 21 parameters (Figure 3a). The relatively small
number of acceptable Base Q simulations (n = 11; Table 5) is due to the rigorous criteria that are
applied, involving three observations (overall flow, summertime peak flow, and recessional flow).
For a simulation to be considered acceptable, it must exceed the specified thresholds for all three
observations. This greatly limits the number of acceptable simulations that can be obtained from even
an ensemble of 1000 model runs.
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The next phase involved the inclusion of parameter values derived from ET model runs to two
streamflow scenarios (Best Q MODIS, Best Q SSEBop). Using the rigorous three-observation criterion,
eight satisfactory model runs for the Best Q MODIS scenario were found. The Best Q SSEBop yielded
only two satisfactory model runs (Table 5). Better results were obtained for the Best Q MODIS series,
so that parameters from this series were used to constrain the Optimized Q scenario. This scenario
yielded two very good simulations based on overall flow that were better than any previous scenarios,
supporting the utility of this approach. It is especially noteworthy that the final Optimized Q scenario
had very good performance for not just overall flow, but also summertime peak flow and recessional
flow. In addition, the 32 good and 232 satisfactory model runs that were yielded, vastly exceeded the
11 noted in the Base Q series. This result demonstrates the utility of this approach to markedly boost
streamflow performance.
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Figure 3 shows hydrographs for Upper North Fork Base Q (Figure 3a) and Optimized Q scenarios
(Figure 3b). The Optimized Q scenario obviously more tightly matches with the observed data.
This observation is supported by an analysis of summertime peak flow and recessional flow. For the
Base Q scenario summertime peak flow, NS values ranged from (0.66 to 0.94; Table 5), whereas for
the Optimized Q, a much tighter range was noted (0.80 to 0.89; Table 5). The same trends were noted
for recessional flow (Base Q NS = 0.51 to 0.73; Optimized Q NS = 0.77 to 0.82; Table 5). Despite these
improvements, not all runoff events outside the main snow melt season were captured, such as the
anomalous winter-time high-flow events (Figure 3b). Finally, the drop in performance during the
validation period is mostly attributable to a degraded ability to match summer peaks but not overall
performance, which is comparable to the results from the calibration period.

4. Discussion and Conclusions

The three ET products provided a satisfactory to unsatisfactory performance when compared to
SWAT-simulated ET. Generally, MODIS16A2v5 and SSEBop outperformed GLEAM 3.1a. This could
be due to the course spatial resolution of GLEAM, compared with the other products. The effects of
averaging remotely sensed observations within an area with complex terrain can obviously lead to
spurious results. The ET results from the MODIS16A2v5 product had the most utility in limiting the
parameter space for subsequent streamflow model runs. The proposed approach avoids the pitfall
of adjusting ET parameters based on streamflow, to compensate for other processes. Therefore, the
high streamflow objective metric derived during the calibration period did not come at the expense
of an unrealistic depiction of other processes. Alemayehu et al. [45] suggested that to maintain a
correct water balance CANMX and GWQMN were maximized, and ESCO and ALPHA_BF should
be minimized, which translates into better flow performance in an examination of a data-scarce East
African catchment. In this study, CANMX and ALPHA_BF were constrained by soft data (see Materials
and Methods section). The relatively high ESCO values (0.74 to 0.96) for the superior MODIS16A2v5
product supports the supposition, that there was a relatively low evaporative demand from lower
levels of the soil. These results are consistent with those of [16], who noted that evaporative drying
during the summer is focused in the top soil levels. As the warm season progresses, the difference
between the surface and the deeper root zone layers increases, implying that limited evaporative
demand is contributed from the deeper soil levels. The high sensitivity of all three soil parameters
simulated implies that there is a connection between actual evaporation and soil water. Water in
soils can support directly recessional flow by lateral flow and by contributing water to the deeper
subsurface. The parameters that mediate the transfer of water to aquifers below the soils (GW_Delay
and GWQMN) had no sensitivity to ET, which is not surprising. These results imply that lateral
flow might provide an important contribution to recessional flow in this system. While evaporation
obviously has an insignificant impact on groundwater this flux can modulate soil moisture, thus
influencing the contribution of lateral flow to the overall seasonal recession of flow. A final supporting
observation is that reasonable fraction of baseflow was noted in the range of 0.627 to 0.772 [46], which
was observed for all streamflow scenarios in the Upper North Fork basin (Table 5).

The main utility of this approach is the improvement in performance for not only overall flow,
but also for recessional and summer peak flows that are typically not tuned for, within a standard
autocalibration routine. This is best highlighted by a comparison of the Base Q and the final Optimized
Q scenarios. In the Upper North Fork basin, there was a dramatic boost in performance from
satisfactory to very good, based on the examination of overall, recessional, and summertime peak
flows for the calibration period. This difference in performance is illustrated Figure 3. The Base Q
simulations exhibit a wider spread for recessional flow, and a greater tendency to overestimate peak
flow outside the main snow melt season (see arrows, Figure 3a). Conversely, the final Optimized
Q model runs provided a much better match for both recessional and non-snow melt peak flows
(see arrows, Figure 3b).
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By better constraining actual evapotranspiration, more robust water supply forecasts can be
derived. In the past, in alpine settings, water resources outside the spring snowmelt season have
been poorly predicted from the SWAT model [1]. The proposed approach could be coupled with new
methods for accounting for snow packs, producing even more robust streamflow simulations [47,48].
Also, this approach has a potential utility beyond the alpine setting, where the hydrology has a
distorting signal; for example, with watersheds in which there are streamflow performance issues
resulting from excessive irrigation [49] or large reservoir releases [50].

The virtue of the proposed approach is that it can provide an independent constraint on the land
surface conditions that produce runoff. As such, the potential exists to provide a way to optimize
streamflow performance using a multi-process approach, avoiding the problem of over-tuning based
on peak annual flows. Given the proliferation of remote sensing products, the applications of these
datasets has been already applied to the SWAT model for not only evapotranspiration (GLEAM, [5];
MODIS, [51–53]) but also for soil moisture (Soil Moisture Ocean Salinity, [54]; Soil Moisture
Active Passive, [55]), and total terrestrial water (Gravity Recovery and Climate Experiment, [56]).
The hydrologic community has the capability to derive independent estimates of parameters for most
hydrological fluxes. The community needs to better embrace the fusion of multiple observational
datasets to support more robust model calibration.
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