
water

Article

Projected Climate Could Increase Water Yield and
Cotton Yield but Decrease Winter Wheat and
Sorghum Yield in an Agricultural Watershed
in Oklahoma

Solmaz Rasoulzadeh Gharibdousti 1,*, Gehendra Kharel 2 , Ronald B. Miller 3, Evan Linde 4

and Art Stoecker 5

1 Division of Agricultural Sciences and Natural Resources, Oklahoma State University,
Stillwater, OK 74078, USA

2 Department of Natural Resource Ecology and Management, Oklahoma State University,
Stillwater, OK 74078, USA; gehendra.kharel@okstate.edu

3 Department of Biosystems and Agricultural Engineering, Oklahoma State University,
Stillwater, OK 74078, USA; ron.miller@okstate.edu

4 High Performance Computing Center, Oklahoma State University, Stillwater, OK 74078, USA;
elinde@okstate.edu

5 Department of Agricultural Economics, Oklahoma State University, Stillwater, OK 74078, USA;
art.stoecker@okstate.edu

* Correspondence: rasoulz@okstate.edu; Tel.: +1-330-906-4988

Received: 21 November 2018; Accepted: 3 January 2019; Published: 9 January 2019
����������
�������

Abstract: Climate change impacts on agricultural watersheds are highly variable and uncertain across
regions. This study estimated the potential impacts of the projected precipitation and temperature
based on the downscaled Coupled Model Intercomparison Project 5 (CMIP-5) on hydrology and
crop yield of a rural watershed in Oklahoma, USA. The Soil and Water Assessment Tool was used
to model the watershed with 43 sub-basins and 15,217 combinations of land use, land cover, soil,
and slope. The model was driven by the observed climate in the watershed and was first calibrated
and validated against the monthly observed streamflow. Three statistical matrices, coefficient of
determination (R2), Nash-Sutcliffe efficiency (NSE), and percentage bias (PB), were used to gauge the
model performance with satisfactory values of R2 = 0.64, NS = 0.61, and PB = +5% in the calibration
period, and R2 = 0.79, NSE = 0.62, and PB = −15% in the validation period for streamflow. The model
parameterization for the yields of cotton (PB = −4.5%), grain sorghum (PB = −27.3%), and winter
wheat (PB = −6.0%) resulted in an acceptable model performance. The CMIP-5 ensemble of three
General Circulation Models under three Representative Concentration Pathways for the 2016–2040
period indicated an increase in both precipitation (+1.5%) and temperature (+1.8 ◦C) in the study
area. This changed climate resulted in decreased evapotranspiration (−3.7%), increased water yield
(23.9%), decreased wheat yield (−5.2%), decreased grain sorghum yield (−9.9%), and increased
cotton yield (+54.2%) compared to the historical climate. The projected increase in water yield might
provide opportunities for groundwater recharge and additional water to meet future water demand
in the region. The projected decrease in winter wheat yield—the major crop in the state—due to
climate change, may require attention for ways to mitigate these effects.
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1. Introduction

Impacts of climate change on agricultural production and water resources have been reported
globally [1–5]. Ray et al. [6] found that more than 60% of the variability in crop yield in top global
production regions is associated with climate, with both positive and negative responses noted
depending upon geographic locations and irrigation applications [7–9]. For example, future climate
change could increase corn and wheat yields in high latitudes and reduce them in middle to low
latitudes [9,10]. Kang et al. [8] found that yields of wheat, rice, and maize were more sensitive to
precipitation than temperature and generally increased with increased precipitation. On the other
hand, Kang et al. [8] and others indicated increased crop production with a modest rise in average
temperature of 1–3 ◦C, but decreasing yields above this range. From the hydrological modeling
perspective, the Soil and Water Assessment Tool (SWAT) [11] has been used to assess quality and
quantity issues [12,13] to identify critical source areas [14] and impacts on crop-yield [15,16] due to
changes in climate and land uses in order to suggest improved management practices [17].

The Southern Great Plains in the U.S. is a water-limited and sometimes highly irrigated
agricultural and oil-producing region which has experienced recurring droughts, which in turn
have caused surface water losses and variability in crop yield [18]. Climate models project increased
variability in precipitation and temperature for this region and thus suggest significant future variability
in crop yield [19–21], as well as policy challenges related to the management of water required for
food and energy-related economic interests [18,22].

Oklahoma is located in the Southern Great Plains, and similar to many states in that region,
agriculture plays a key role in the state’s economy. Therefore, understanding the effects of a changing
climate on water resources and agricultural yields is crucial to developing sustainable and resilient
mitigation measures. The water needs for crop irrigation, livestock, and aquaculture in Oklahoma
amount to nearly 50% of the state’s total water use and that percentage is projected to rise by 11–16%
by 2060 [23,24]. It is projected that future precipitation and temperature will vary significantly
in the state [25,26], but it is unknown if these changes will result in an increase or decrease in
water and crop yields. For example, an increase in temperature in the region may increase crop
water requirements leading to higher irrigation costs, stress on groundwater sources, and reduced
profitability for farmers [27,28]. Alternately, increased precipitation or changes to seasonality may
offset the impact of increased temperature, increasing crop yields. Understanding such changes is
important in the water-stressed basins of central and western Oklahoma.

2. Materials and Methods

The Soil and Water Assessment Tool (SWAT) was used to develop a hydrological and agricultural
production model of a portion of the Fort Cobb agricultural watershed in southwest Oklahoma.
The model was calibrated and validated for monthly streamflow and annual yields of cotton, grain
sorghum, and winter wheat. Future climate projections from three global climate models (GCMs)
were then used as climate inputs for the validated model to estimate the climate-associated changes
on watershed hydrology and crop yield. The sequence of model development and validation steps is
illustrated in Figure 1, and described in detail in the following sections.
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Figure 1. Conceptual model of integrated SWAT and climate model. DEM: Digital Elevation Model; 
GCM: General Circulation Model; and RCP: Representative Concentration Pathway. 
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streamflow gauge station maintained by the United States Geological Survey (USGS 07325800) 
receives runoff from these two sub-watersheds, and therefore provides an opportunity to calibrate 
and validate the hydrological model with observed streamflow data. These two sub-watersheds 
occupy an area of 342.6 km2, 43% of the Fort Cobb Reservoir watershed, and the combined land use 
is approximately 50% cropland, 44% pastureland, and 6% other land cover types [29]. 

The major crops in the study area are winter wheat (34%), cotton (9%), and grain sorghum (1.5%); 
other crops grown in the study sub-watershed include alfalfa, canola, corn, and soybean (5.5%). 
Nearly half of the soils in the study region are predominantly silty, with lesser hydraulic 
conductivities. Field reconnaissance of the watershed revealed that a few of the older solid-set or 
side-roll irrigation systems are still used in the watershed, but that most irrigation systems have been 
upgraded to center-pivot systems from the Rush Springs aquifer [30]. Population in south-western 
Oklahoma, in which the study sub-watersheds are located, is sparse and decreasing. Agriculture 
focuses on commodity production (beef, wheat, and row crops) with high costs and low margins [31]. 
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Figure 1. Conceptual model of integrated SWAT and climate model. DEM: Digital Elevation Model;
GCM: General Circulation Model; and RCP: Representative Concentration Pathway.

2.1. Study Area

The study area consists of two sub-watersheds, Cobb Creek and Five Mile Creek, which are
headwaters of the Fort Cobb Reservoir watershed (Figure 2). These two sub-watersheds were
integrated into a single study area. Between 1982 and 2015, the study area received an annual
average 2.2 mm/day precipitation, with a daily average temperature of 15.8 ◦C. The closest available
streamflow gauge station maintained by the United States Geological Survey (USGS 07325800) receives
runoff from these two sub-watersheds, and therefore provides an opportunity to calibrate and validate
the hydrological model with observed streamflow data. These two sub-watersheds occupy an area of
342.6 km2, 43% of the Fort Cobb Reservoir watershed, and the combined land use is approximately
50% cropland, 44% pastureland, and 6% other land cover types [29].

The major crops in the study area are winter wheat (34%), cotton (9%), and grain sorghum (1.5%);
other crops grown in the study sub-watershed include alfalfa, canola, corn, and soybean (5.5%). Nearly
half of the soils in the study region are predominantly silty, with lesser hydraulic conductivities. Field
reconnaissance of the watershed revealed that a few of the older solid-set or side-roll irrigation systems
are still used in the watershed, but that most irrigation systems have been upgraded to center-pivot
systems from the Rush Springs aquifer [30]. Population in south-western Oklahoma, in which the study
sub-watersheds are located, is sparse and decreasing. Agriculture focuses on commodity production
(beef, wheat, and row crops) with high costs and low margins [31].
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Figure 2. Five Mile Creek and Cobb Creek sub-watersheds within Forb Cobb Reservoir watershed
located in three counties of Southwestern, OK, USA.

2.2. Hydrological Model

The SWAT model [11] was used to develop a hydrological model of the Fort Cobb study area,
consisting of the Cobb Creek and Five Mile Creek sub-watersheds. SWAT is a hydrological modeling
tool widely used to simulate the long-term effects of changes in climate, land use management, and
agricultural practices [17,25,32,33]. The 10 m United States Geological Survey (USGS) Digital Elevation
Model (DEM) was used to delineate the watershed boundary using the location of the USGS gauge
station at Cobb Creek near Eakley (07325800) as the watershed outlet. The study area was then divided
into 43 sub-basins with an average area of 8 km2 (min. 0.2 km2 and max. 28 km2). Soil attributes
including texture and moisture capacity were derived from the Soil Survey Geographic Database
(SSURGO) [34]. The crop data layer for the year 2014 [29] was used to identify the locations of each
crop and land cover type in the study watersheds. These soil and crop data and slope derived from
the DEM were combined to produce 15,217 hydrologic response units (HRUs), which represent unique
combinations of soil, land use, and slope. In SWAT, an HRU is the finest scale of measurement
where routings of water, nutrients, and sediments are calculated and then aggregated to the sub-basin
and the watershed level. A large number of HRUs were generated in our study at the expense of
computational efficiency to understand the detailed effects of climate change on this agriculture-pasture
intensive watershed.

The historical climate over the period 1982–2016 was characterized using data from two weather
stations located in the study area and maintained by the Agricultural Research Service of the United
States Department of Agriculture (https://datagateway.nrcs.usda.gov/). Daily averages for three
weather variables, precipitation, minimum temperature, and maximum temperature, were collected
and assigned to HRUs based on proximity to the weather station.

Data on crop management practices, including fertilizer application, management practices in
the study area, and tillage type for the selected crops were obtained through consultation with local
personnel from the Oklahoma State University Cooperative Extension Service and Conservation

https://datagateway.nrcs.usda.gov/
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District, and from the available literature [35,36]. Details about the management practices and how
they were applied to the model are included in Appendix A (Table A1). Grazing is a significant factor
in the watershed with an effect on hydrologic response, and therefore it is included in the model
using the cattle stocking rate (0.5 head/ha), consumed biomass (3 kg/ha/day), trampled biomass
(0.47 kg/ha/day), and deposited manure (1.5 kg/ha/day) as obtained from the USDA-NASS and
Storm et al. [35,37].

Model Calibration and Validation

Streamflow observations recorded at the USGS gauge station 07325800 were obtained. The years
1991–2000 were used as the calibration period, while 2001–2010 was used as the validation period
for the model (Figure 2). Seventeen parameters related to streamflow were manipulated using the
automated SWAT Calibration and Uncertainty Procedures (SWAT-CUP) at monthly scale [38] (Table 1).

Table 1. Model parameters with the calibrated values for streamflow in the study area.

Parameter Description Calibrated Value

GWQMN Threshold depth of water in the shallow aquifer required for
return flow to occur (mm) 0.6

GW_REVAP Groundwater “revap” coefficient (unit less) 0.02

REVAPMN Threshold depth of water in the shallow aquifer for “revap” to
occur (mm) 1.4

RCHRG_DP Deep aquifer percolation fraction (unit less) 0.47

GW_DELAY Groundwater delay (days) 376

CN2 SCS Curve number adjustment for soil moisture condition II
(unit less)

−12.7 % of default
values

ALPHA_BF Baseflow Alpha Factor (days) 0.95

ESCO Soil evaporation compensation factor (unit less) 0.83

EPCO Plant uptake compensation factor (unit less) 0.3

CH_K1 Effective hydraulic conductivity in tributary channel alluvium
(mm/h) 0.093

SURLAG Surface runoff lag coefficient (unit less) 3.1

EVRCH reach evaporation adjustment factor (unit less) 0.34

TRNSRCH Fraction of transmission losses partitioned to deep aquifer
(unit less) 0.095

ALPHA_BNK base flow alpha factor for bank (days) 0.84

SOL_AWC Available water capacity of soil layer (mm H2O/mm soil) 0.036

CH_N2 Manning’s n value for the main channel (unit less) 0.18

CH_K2 Main channel conductivity (mm/h) 1.98

The model performance for streamflow was evaluated using three statistical measures: coefficient
of determination (R2), Nash-Sutcliffe efficiency (NSE), and percentage bias (PB). The values of R2 (0.64),
NSE (0.61), and PB (5%) (Figure 3) in the model calibration period were deemed to be satisfactory
by metrics suggested by other SWAT-based studies [39,40]. The calibrated model was then validated
by comparing the USGS observations with SWAT simulated streamflow for the ten-year time period
2001–2010. The model performance with the validation dataset (R2 = 0.79; NSE = 0.62; PB = −15%)
was reasonable, as shown in Figure 3.
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validation (2001–2010) periods.

Manual calibration of the model for yields of cotton, grain sorghum, and winter wheat followed
successful hydrologic calibration using percent bias as a measure of performance, which is popularly
used in crop-yield modeling studies [41,42]. Yield data were based on the Oklahoma State University
experimented variety trials data for the years 2005 to 2010 (http://croptrials.okstate.edu/) and
county level crop yield data for the years 1986 to 2005 (Oklahoma Agricultural Statistics database,
http://digitalprairie.ok.gov/cdm/ref/collection/stgovpub/id/11177). The variety trial crop yield
data came from experimental sites in seven southwestern Oklahoma counties (Blaine, Caddo, Canadian,
Comanche, Custer, Grady, and Tillman), including those where the study watershed is located
(Figure 1). Ten crop model parameters were selected (Table 2) and their associated value ranges
were set based on recommendations made by Nair et al. [43]. The values were then manually adjusted
until the PB for the crop models reached satisfactory values for cotton (−4.5%), grain sorghum
(−27.3%), and winter wheat (−6.0%) from the year 1986 to 2010 (Figure 4).

Table 2. Cotton, grain sorghum, and winter wheat yield calibration parameters.

Parameter Unit Parameter Definition

Calibrated Values

Cotton Grain
Sorghum

Winter
Wheat

BIO_E kg/ha/MJ/m2 Radiation use efficiency or biomass energy ratio 14 37 29

USLE_C no unit Minimum value of USLE C factor for water erosion 0.1 0.2 0.02

HVSTI kg/ha/kg/ha Harvest index for optimal growing season 0.3 0.3 0.3

OV_N no unit Manning’s “n” value for overland flow 0.12 0.12 0.12

BLAI m2/m2 Maximum potential leaf area index 3 4.5 3

FRGRW1 fraction Fraction of plant growing season to the first point on
the optimal leaf area development curve 0.14 0.15 0.03

FRGRW2 fraction Fraction of plant growing season to the second point
on the optimal leaf area development curve 0.3 0.5 0.35

LAIMX1 fraction Fraction maximum leaf area index to the first point
on the optimal leaf area development curve 0.005 0.05 0.03

CNYLD kg N/kg seed Normal fraction of nitrogen in yield 0.018 0.02 0.02

CPYLD kg P/kg seed Normal fraction of Phosphorus in yield 0.0027 0.0032 0.0018

http://croptrials.okstate.edu/
http://digitalprairie.ok.gov/cdm/ref/collection/stgovpub/id/11177


Water 2019, 11, 105 7 of 17

Water 2019, 01, x FOR PEER REVIEW  7 of 17 

 

LAIMX1 fraction 
Fraction maximum leaf area index to 
the first point on the optimal leaf area 

development curve 
0.005 0.05 0.03 

CNYLD kg N/kg seed Normal fraction of nitrogen in yield 0.018 0.02 0.02 
CPYLD kg P/kg seed Normal fraction of Phosphorus in yield 0.0027 0.0032 0.0018 

 

 
(a) 

 
(b) 

 

(c) 

 

Figure 4. Observed and simulated average annual yields of (a) cotton, (b) grain sorghum, and (c) 
winter wheat in the study area. 

2.3. Future Climate Data 

Future climate projections for the study area were obtained from three GCMs (MPI-ESM-LR, 
CCSM4, and MIROC5) specifically downscaled for the southern Great Plains where the study 
watersheds are located by the USGS–South Central Climate Science Center (SCCSC) 
(http://dx.doi.org/10.15763/DBS.SCCSC.RR). The SCCSC, in an effort to provide seamless climate 
projection data for the U.S. South Central region, downscaled climate data for the entire Red River 
Basin for three GCMs using three statistical downscaling methods with a spatial resolution of ~11 km 
[44]. Three GCMS are included in the Coupled Model Intercomparison Project-5 (CMIP-5) climate 
projections under the climate-forcing effects of three Representative Concentration Pathways: RCP 
2.6, 4.5, and 8.5 (Table 3). The 3 GCMs and 3 RCPs created 9 climate scenarios for this study. Mendlik 
and Gobiet [45] suggested that an ensemble of multiple GCMs and RCPs be used for hydrological 
modeling to minimize the biases and uncertainties associated with GCM projections. 

500

600

700

800

900

1000

1100

1200

1300

1400

1500

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

C
ot

to
n 

yi
el

d 
(k

g/
ha

)

Year

50

1050

2050

3050

4050

5050

6050

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

G
ra

in
 s

or
gh

um
 y

ie
ld

 (k
g/

ha
)

Year

20

520

1020

1520

2020

2520

3020

3520

4020

4520

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

W
he

at
 y

ie
ld

 (k
g/

ha
)

Year

Observed crop yield 

Simulated crop yield 

Average of observed crop yield 

Figure 4. Observed and simulated average annual yields of (a) cotton, (b) grain sorghum, and (c)
winter wheat in the study area.

2.3. Future Climate Data

Future climate projections for the study area were obtained from three GCMs (MPI-ESM-LR,
CCSM4, and MIROC5) specifically downscaled for the Southern Great Plains where the study
watersheds are located by the USGS–South Central Climate Science Center (SCCSC) (http://dx.doi.
org/10.15763/DBS.SCCSC.RR). The SCCSC, in an effort to provide seamless climate projection data for
the U.S. South Central region, downscaled climate data for the entire Red River Basin for three GCMs
using three statistical downscaling methods with a spatial resolution of ~11 km [44]. Three GCMS
are included in the Coupled Model Intercomparison Project-5 (CMIP-5) climate projections under the
climate-forcing effects of three Representative Concentration Pathways: RCP 2.6, 4.5, and 8.5 (Table 3).
The 3 GCMs and 3 RCPs created 9 climate scenarios for this study. Mendlik and Gobiet [45] suggested
that an ensemble of multiple GCMs and RCPs be used for hydrological modeling to minimize the
biases and uncertainties associated with GCM projections.

Table 3. The Coupled Model Intercomparison Project-5 global climate models used in the study.

GCMs Model Agency
Atmospheric
Resolution
(Lat × Lon)

Downscaled
Resolution
(Lat × Lon)

Downscaling Method

CCSM4 National Center for Atmospheric
Research, Boulder, CO, USA 0.90 × 1.25

0.1 × 0.1 Quantile mapping
method-cumulative
density function
transform [44]

MIROC5
Atmosphere and Ocean Research
Institute, University of Tokyo,
Tokyo, Japan

1.41 × 1.41

MPI-ESM-LR Max Planck Institute for
Meteorology, Hamburg, Germany 1.80 × 1.80

Lat × Lon means: Latitude × Longitude.

http://dx.doi.org/10.15763/DBS.SCCSC.RR
http://dx.doi.org/10.15763/DBS.SCCSC.RR
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3. Results

3.1. Future Climate

Nine combinations of the CMIP-5 climate projections (3 GCMs × 3RCPs) were generated for
the future period 2016–2040. The nine CMIP5 climate scenarios indicated changes for the study area
in average annual precipitation (−10.6% to +13.2%), and average annual temperature (+1.7 ◦C to
+2.0 ◦C), compared to the 1986–2010 historical climate (Figure 5). The overall average of all nine future
climate combinations indicated an increase in average annual precipitation of +1.5%. Examining the
future trends of precipitation by RCP, on average the RCP2.6 indicated the greatest increase compared
to the historical average (+2.9%), followed by RCP4.5 (+0.8%) and RCP8.5 (+0.6%). However, there
were large differences in precipitation between the GCMs. For instance, RCP8.5 had the lowest
average annual increase in precipitation but the highest variation among GCMs, with MPI-ESM-LR
showing the highest increase (+13.1%) and CCSM4 showing the most reduced precipitation (−10.7%).
Examining overall monthly averages, precipitation increased over the historical average markedly
in February (+52.4%), April (+33.3%), and November (+23.8%) while it decreased in June (−27.5%),
August (−11.3%) and December (−8.3%) (Figure 5a).
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Figure 5. Average monthly precipitation (a) and average monthly temperature (b) under the historical
(1986–2010) and future (2016–2040) climate. For future climate, values are presented as an average of
all three GCMs for each climate scenario (RCP).

The average of all nine future climate combinations indicated an increase in average annual
temperature of 1.8 ◦C. The RCP8.5 and RCP4.5 scenarios showed the highest average annual increase
(+2.0 ◦C), followed by RCP2.6 (+1.7 ◦C). Within the RCP averages, the highest average annual
temperature increase occurred in RCP 8.5 (CCSM4, +2.3 ◦C). Examining the overall monthly averages,
the future climate indicated an increase in average monthly temperature during the first half of the
year, with the highest increase in April (+4.2 ◦C) and the lowest increase in August (+0.7 ◦C), and
average decreases in September (−0.2 ◦C), October (−0.7 ◦C), and November (−0.9 ◦C) (Figure 5b).

3.2. Water Balance

Model simulations showed that the projected changes in precipitation and temperature in the
watershed would decrease potential evapotranspiration (PET) by 13.4% and actual evapotranspiration
(ET) by 3.7%, leading to an overall increase in modeled water yield of 23.9% (Table 4). Water yield is the
average volume of water reaching the watershed outlet over the total modeling period, and is reported
as the unit length of water (volume/area). Examining the RCP averages, the greatest water yield
increase occurred in RCP4.5 (148.4 mm/year), which also saw the lowest annual ET (693.3 mm/year)
among the RCPs (Table 4). Overall, we found a markedly higher variation in water yield (−39.3% to
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+92.8%) with MPI-ESM-LR and CCSM4 under RCP8.5, indicating the highest (+92.8%) and lowest
(−39.3%) water yield respectively, compared to the historical period (Table 5).

Table 4. Average annual rainfall, potential evapotranspiration (PET), evapotranspiration (ET), surface
runoff (SURQ), groundwater flow to stream (GWQ), and water yield (WYLD) under historical
(1985–2010) and future climate (2016–2040). Water yield is the net amount of water entering the
stream from each hydrologic response unit, groundwater flow and surface runoff.

Climate Scenario
Rainfall PET ET SURQ GWQ WYLD

(mm) (mm) (mm) (mm) (mm) (mm)

RCP2.6 Mean 829.8 1604.6 709.5 32.4 48.7 142.6
RCP4.5 Mean 812.8 1676.5 693.3 31.7 51.9 148.4
RCP8.5 Mean 811.1 1706.6 704.4 30.3 45 133.4
Overall Mean 817.9 1662.6 702.4 31.5 48.6 141.4

Modeled Historical Mean 806.2 1920.1 729.2 38.3 30.7 114.2

Percent change 1.5% −13.4% −3.7% −17.9% 58.4% 23.9%

Table 5. Future water yield (WYLD) as modeled by future climate compared to the historical yield.

RCP GCM WYLD (mm) Change from Historical (%)

2.6
MPI-ESM-LR 193.5 69.5

MIROC5 124.9 9.4
CCSM4 113.5 −0.6

4.5
MPI-ESM-LR 196.0 71.6

MIROC5 136.0 19.1
CCSM4 118.6 3.9

8.5
MPI-ESM-LR 220.2 92.8

MIROC5 115.1 0.8
CCSM4 69.3 −39.3

Historical 114.2 -

Seasons are critically important for crop production, and therefore to help understand changes at a
finer temporal scale, modeled values were calculated for Winter (December, January, February), Spring
(March, April, May), Summer (June, July, August), and Autumn (September, October, November).
On average, water yield increased relative to historical values in all four seasons with the highest
increase in winter (+54.5%), followed by spring (+34.9%), fall (+24.6%), and summer (+14.8%)
(Figure 6d).Water 2019, 01, x FOR PEER REVIEW  10 of 17 
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Figure 6. Model simulated (a) total monthly surface runoff, (b) total monthly water yield, (c) total
monthly evapotranspiration, and (d) seasonal total water yield under historical (1986–2010) and future
(2016–2040) climate. The values are presented as an average of all three global climate models (GCMs)
for each representative concentration pathways (RCP).

3.3. Crop Yield

The overall mean of climate scenarios indicated decreased yields for winter wheat (−225.07 kg/ha,
−5.2%) and sorghum (−433.24 kg/ha, −9.9%), and increased yields for cotton (328.67 kg/ha, +54.2%)
for the period 2016–2040 relative to the historical mean annual yields (Table 6). The modeled future
winter wheat yield varied between −23.0% and +5.8%, with the greatest decline in MPI-ESM-LR/RCP
8.5 and the greatest increase in CCSM4/RCP 2.6 (Table 6). Of the nine future climate scenarios modeled,
the winter wheat yield decreased in five. It was found that sorghum yields were consistently lower
(−16.5% to −1.9%) and cotton yields higher (18.2% to 105.9%), compared to the historical yield in all
nine climate scenarios.

Table 6. Percentage crop yield changes under the modeled climate change scenarios relative to the
historical yield. The values represent the difference between the calculated average crop yield for the
climate scenario and the observed average yield expressed as a percent of the observed yield.

Crop

RCP 2.6 RCP 4.5 RCP 8.5
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Cotton 73.1 18.2 33.9 41.7 103.4 28.8 32.8 55.0 105.9 27.3 64.7 66.0 54.2
Sorghum −1.9 −8.3 −8.8 −6.3 −8.1 −13.0 −16.5 −12.5 −2.4 −16.3 −13.4 −10.7 −9.9

Winter wheat −16.8 2.5 3.3 −3.7 −23.0 −0.5 5.8 −5.9 −18.7 2.8 −2.6 −6.2 −5.2

The majority of cotton grown in the study area is irrigated by center pivot, but a small percentage
is dryland. This separation was included in the model through analysis of NASS aerial imagery
(https://datagateway.nrcs.usda.gov/) and calculating the area of cotton plantings within and outside
the center pivot circles, then only irrigating the actual center pivot area. Analysis of the climate scenario
modeled cotton production shows differences between irrigated and dryland yield rates (Table 7).
The overall irrigated cotton yields (1120.7 kg/ha) are significantly greater (p = 0.006) than the dryland
yields (807.7 kg/ha).

https://datagateway.nrcs.usda.gov/
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Table 7. Mean annual irrigated and dryland cotton yields for future climate scenarios (2016–2040).
The irrigated average annual yields are significantly greater than the dryland mean yields (p = 0.006).

RCP GCM
Cotton Yield (kg/ha)

Irrigated Mean Dry Land Mean

2.6
CCSM4 1015.7

1014.8
671.9

752.7MIROC5 804.1 656.8
MPI-ESM-LR 1224.6 929.4

4.5
CCSM4 976.2

1147.5
688.1

797.6MIROC5 1018.2 618.9
MPI-ESM-LR 1448.1 1085.7

8.5
CCSM4 1257.7

1199.9
820.9

873.5MIROC5 918.3 671.5
MPI-ESM-LR 1423.6 1128.1

Overall Mean 1120.7 807.9

4. Discussion

The potential future changes in precipitation and temperature and how they interact to affect the
water balance in agricultural watersheds is crucial. Overall, the nine climate scenarios based on three
downscaled CMIP5 climate projections indicated increases in both precipitation and temperature for
the study watershed over the 2016–2040 period modeled. The overall modeled increase in precipitation
of nearly 1.5%, could mean increased water availability and opportunity for groundwater recharge
(Table 4). Our estimates of increased precipitation in the study area are similar to the values estimated
by Qiao et al. [26] who used a 39-member ensemble of the downscaled CMIP5 climate projections
for the Arkansas Red River Basin, but differs from the estimates by Garbrecht et al. [18] of decreased
precipitation in the region. However, the projected increase in average annual temperature of 1.9 ◦C in
the watershed is similar to the increase Garbrecht et al. [18] estimated. The diverging precipitation
estimates between the Garbrecht et al. [18] and our study could be due to the use of two different climate
datasets; we used CMIP-5 projections while CMIP-3 was used by Garbrecht et al. [18]. Compared
to CMIP-3, the CMIP-5 models include an improved physical representation and integration of the
processes in the atmosphere, ocean, and land with higher resolution and a new representation of
anthropogenic forcing of climate [46,47]. It was found that compared to CMIP-3 simulations, CMIP-5
ensembles have improved regional-scale temperature distributions with no systematic change for
precipitation [46].

The GCMs in RCP 8.5 had the largest range in water yield, with values from +92.7% to −32.7% of
the modeled historical yields. This extreme range in water yields (Table 5) appears to be related to
rainfall, which had its highest value in MPI-ESM-LR and lowest in CCSM4 relative to the historical
climate (Table 4). The overall increase in water yield occurred despite a significant reduction in average
annual surface runoff (−17.9%), and thus is contributed entirely by increase in groundwater recharge
(+58.4%) which has likely been influenced by a reduction in modeled actual ET (Table 4). The relatively
low water yield increase in summer seen in Figure 6d could be due to a combination of higher
temperature (+2.1 ◦C) and reduced precipitation (−4.6%) in the months of June and August compared
to the historical climate (Figure 5a,b). Our finding of increased water yield in the watershed is similar
to findings reported from other watersheds in the U.S. For example, in an agriculturally intensive
watershed in the northern Great Plains, Neupane et al. [48] found climate change increased average
water yield by 8–67%. Similar to modeled results from this study, Neupane et al. [48] reported that the
increased water yield was due primarily to increases in groundwater contribution. Gautam et al. [15]
reported a 29% increase in median water yield in a heavily agricultural experimental watershed of
Missouri, USA under the CMIP-5 climate.

Crop modeling using the climate scenarios decreased winter wheat and grain sorghum yields
and increased the yield of cotton in the watershed (Table 5). An increase in temperature of 2.9 ◦C
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and relatively unchanged precipitation in the critical growing season could have led to lower soil
moisture and suppressed winter wheat production. Our result of decreased winter wheat yield is
consistent with the estimates of Rosenzweig et al. [9] and Delphine et al. [10], who found that wheat
yield would decrease in low to mid-latitude areas of the globe due to climate change. Winter wheat
is Oklahoma’s most valuable crop and decreased wheat yield is of important concern because of its
economic significance locally in the watershed and regionally. Nearly one third of the study watershed
is traditionally planted with winter wheat, and Oklahoma is the fourth largest producer of winter
wheat in the U.S.

Cotton production is sensitive to temperature, and according to Adhikari et al. [16] cotton yields in
the Texas High Plains increased with temperature and sufficient water under future climate projections,
including increased atmospheric CO2. Their results indicated that the increased cotton yield could be
partly attributed to increased temperature in the future, and that with additional atmospheric CO2,
cotton could potentially withstand the impacts of future climate variability if irrigation water remains
available at current levels. In this modeling study, we allowed cotton irrigation at historical levels
throughout the future simulation and thus, similar to Adhikari et al. [16], well-irrigated cotton was
able to benefit from increased temperature. The modeled dryland cotton yields (807.9 kg/ha) were
much smaller than the irrigated crop (Table 6) and showed no essential change from the modeled
historical yield (808.3 kg/ha). Therefore, the potential climate benefits for future cotton production in
the study area depend on sustainable management of water resources for irrigation.

This study represents an important first step towards understanding and adapting to the
uncertainty that projected change in climate poses to an agricultural watershed. Projecting downscaled
future climate scenarios onto the current mix of agricultural practices produces an understanding of
future changes based on a familiar frame of reference, which is among the types of information needed
by stakeholders such as agricultural advisors to alert local farmers of the need to adapt. Travis and
Huisenga [49] found that the occurrence of extreme climate events increased the rate of adaptation to
changing climate among farmers, which implies action after poor yields. Schattman et al. [50] noted
that farmers perceive climate change risks in terms of known experience, and therefore are more likely
to respond to adaptation planning information that incorporates typical activities.

Our study has important limitations that need to be addressed in future research. The first
limitation is related to modeling of sediment and nutrient loadings which we excluded in this study
but are important in the selection and implementation of best management practices in agricultural
watersheds. Any changes in climate, hydrological response, and/or on-farm practices will likely
change the yields of nutrients or sediments, and therefore should be studied. The next limitation is
related to hydrological and climate model related uncertainty in the estimated water and crop yield;
in this study we examined climate model related uncertainty by including an ensemble of three GCMs
and three RCPs as suggested by Brown et al. [51], which yielded a general understanding of potential
hydrologic and standard crop yield changes. The next step would be to utilize a sophisticated crop
yield model, in the manner of Adhikari et al. [16] and Bao et al. [52], and at a regional scale with several
sources and a mix of important model input and management scenarios as suggested by Daggupati
et al. [12] and Akkari and Bryant [53], to better understand and prepare potential farm adaptation
strategies at local and regional scale.

5. Conclusions

In this study, we investigated climate change impacts on surface runoff, water yield, and crop
yield in an agricultural watershed of Oklahoma using a SWAT based hydrological model. We found
that the study area saw increases in future average annual precipitation (1.5%) and temperature (1.9 ◦C)
compared to the 1986–2010 climate. There was higher variability in precipitation between the GCMs
with some indicating decreased precipitation, while others projected increased precipitation. These
changes in precipitation and temperature led to decreased potential evapotranspiration (−13.4%) and
evapotranspiration (−3.7%) resulting in an overall increase in water yield (+23.9%) in the study area.
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The projected increase in water yield might provide opportunities for groundwater recharge and
additional water to meet projected water demand in the region. With the future climate projections,
the models simulated reduced yields for grain sorghum and winter wheat while the cotton yield
increased significantly. The projected decrease in yield of winter wheat—the major crop in the
watershed and in the state—due to climate change may require additional research on ways to mitigate
these effects.
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Appendix A

Table A1. Conventional or reduced tillage for dryland crops and pasture in the study area.

Crop Date (Month/Day) Operation

Cotton

1/1 Tillage operation (Disk Plow Ge23ft)

3/15 Tillage operation (Disk Plow Ge23ft)

5/15 Tillage operation (Springtooth Harrow Ge15ft)

6/1 Tillage operation (Finishing Harrow Lt15ft)
Pesticide Operation (Pendimehalin, 0.25 kg)

6/10 Fertilizer application (Elemental Nitrogen, 50 kg)

6/11 Plant

7/1 Tillage operation (Row Cultivator Ge15ft)

11/15 Harvest and kill

Pasture

1/1 Plant

3/1 Auto fertilization

5/1 Grazing operation (Beef-Fresh Manure, GRZ_DAYS *: 180,
BIO_EAT *: 3, BIO_TRMP *: 0.47, MANURE_KG *: 1.5)

Winter wheat

3/15 Fertilizer application (Elemental Nitrogen, 80 kg)

6/1 Harvest and kill

7/1 Tillage operation (Chisel Plow Gt15ft)

8/1 Tillage operation (Offset Dis/heavduty Ge19ft)

9/20 Fertilizer application (Elemental Nitrogen, 80 kg)
(Elemental Phosphorus, 35 kg)

9/22 Tillage operation (Disk Plow Ge23ft)

9/24 Tillage operation (Springtooth Harrow Lt15ft)

9/25 Plant

12/1 Grazing operation (GRZ_DAYS *: 90, BIO_EAT *: 3,
BIO_TRMP *: 0.47, MANURE_KG *: 1.5)
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Table A1. Cont.

Crop Date (Month/Day) Operation

Grain sorghum

5/1 Plant

5/27 Fertilizer application (Elemental Nitrogen, 150 kg)

5/28
Tillage operation (Springtooth Harrow Ge15ft, Disk Plow
Ge23ft, Mecoprop Amine, 125), Pesticide Operation
(Mecoprop Amine, 125 kg)

10/18 Tillage operation (Disk Plow Ge23ft)

10/20 Tillage operation (Springtooth Harrow Ge15ft)

10/30 Harvest and kill

Alfalfa

4/1 Harvest only

5/15 Harvest only

7/1 Harvest only

8/29 Fertilizer application (Elemental Nitrogen, 50 kg), (Elemental
Phosphorous, 20 kg)

9/7 Plant

10/15 Harvest only

Hay

4/1 Harvest only

7.1 Harvest only

8/29 Auto fertilization

9/7 Plant

10/15 Harvest only

Rye

6/10 Harvest only

8/10 Fertilizer application (Elemental Nitrogen, 80 kg),
(Elemental Phosphorous, 35 kg)

9/20 Plant

9/15 Grazing operation (GRZ_DAYS *: 150, BIO_EAT *: 3,
BIO_TRMP *: 0.47, MANURE_KG *: 1.5)

Note: * AUTO_NSTRS: Nitrogen stress factor of cover/plant triggers fertilization. This factor ranges from 0.0 to 1.0
where 0.0 indicates there is no growth of the plant due to nitrogen stress and 1.0 indicates there4 is no reduction of
plant growth due to nitrogen stress; * GRZ_DAYS: Number of consecutive days grazing takes place in the HRU;
* BIO_EAT: dry weight of biomass consumed daily ((kg/ha)/day); * BIO_TRMP: dry weight of biomass trampled
daily ((kg/ha)/day); * MANURE_KG: dry weight of manure deposited daily ((kg/ha)/day).
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