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Abstract: Environmental problems caused by UV filters, a group of emerging contaminants,
have attracted much attention. The removal of two typical UV filters benzophenone (BP)
and 4,4′-dihydroxy-benzophenone (HBP) in water was investigated by the UV/H2O2 process.
The response surface methodology (RSM) and central composite design (CCD) were applied to
investigate the effects of the process parameters on the degradation rate constants, including the
initial contaminant concentration, H2O2 dose, and UV light intensity. BP is more easily degraded
by the UV/H2O2 process. Both processes followed pseudo-first-order kinetics. The results obtained
with the built RSM model are in accordance with the experimental results (adjusted coefficients
R2(adj)= 0.9835 and 0.9778 for BP and HBP, respectively). For both processes, the initial contaminant
concentration (exerting a negative effect) were the most important factors controlling the degradation,
followed by H2O2 dose and UV intensity (exerting positive effects). A total of 15 BP degradation
products and 13 HBP degradation products during the UV/H2O2 process were identified by LC/MS
and GC/MS. A series of OH radical irritated reactions, including hydroxylation, carboxylation,
and ring cleavage, led to the final degradation of BP and HBP. Degradation pathways of BP and HBP
were also proposed. On the whole, this work is a unique contribution to the systematic elucidation of
BP and HBP degradation by the UV/H2O2 process.

Keywords: emerging contaminants; benzophenone-type UV filters; UV/H2O2; advanced oxidation
process; response surface methodology (RSM); degradation products

1. Introduction

Organic UV filters have been extensively used in sunscreens for skin protection. The organic UV
filters and their metabolites may flow into rivers or lakes due to the emission through direct discharge
(washing) or indirect discharge (sewage plant effluents) [1,2]. Many UV filters have been detected in
the aqueous environment, including 2,4-dihydroxy benzophenone (2,4-DBP), benzophenone-3 (BP3),
2-phenylbenzimidazole-5-sulfonic acid (UV-T), octyl methoxycinnamate (OMC), and octocrylene [3,4].
Most of the organic UV filters are lipophilic compounds and tend to accumulate in soils and
sediments of the aqueous environment, as well as in the food chain (e.g., fish, birds, mammals) [5].
The accumulation of UV filters in organisms has become a major concern, because many UV filters
and their metabolites show the apparent endocrine disruption and the hormonal effects, both in vitro
and in vivo [6,7].

Benzophenone (BP) and 4,4′-dihydroxy-benzophenone (HBP), two type of benzophenone-type
UV filters, are widely detected in sewage and other environmental media across the world, such as
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United States, Japan, and Switzerland [5,8–12]. There are reports that the concentration of BP reached
250 ng/L in wastewater [13]. The potential risks resulting from the occurrence of BP and HBP must
not be overlooked.

Advanced oxidation processes (AOPs) are a series of processes that can generate hydroxyl radicals
to efficiently degrade organic pollutants in contaminated water [4,14,15]. The UV/H2O2 system is a
type of AOP, in which hydrogen peroxide (H2O2) is added in the presence of UV light to generate
hydroxyl radicals [16–18]. It is found that the UV/H2O2 process can remove a large range of organic
pollutants, including cyanobacterial toxins [19], diclofenac [20], amoxicillin [21], and other emerging
contaminants [22–24].

Benzophenone-type UV filters are usually the hardly biodegradable substances [25]. There are
over 20 benzophenone-type UV filters, including HBP, BP, benzophenone-2, benzophenone-3 (BP3),
benzophenone-4, benzophenone-5, and benzophenone-9. Among them, BP3 is the dominant
UV filter and the most-frequently detected in the aquatic environment [26,27]. Many reported
works have focused on the occurrence, transformation, and fate of BP3 [28–30]. The removal,
degradation mechanism, and ecotoxicity of BP3 by different treatment processes were assessed,
such as UV/H2O2 [31], ozone [32], fungal [33], chlorination [34,35], and activated persulfate [36,37].
In addition, the removal of other benzophenone-type UV filters, including BP2, BP4, and BP9, were
also evaluated by different AOPs [38–43].

BP, as a basic benzophenone-type substance with the simplest structure, is the important precursor
for the production of other benzophenone-type UV filters. However, there are few reports on the
removal of BP by photocatalysis and ozonation [44,45]. Chen [46] and Katsuhiko [47] investigated the
biodegradation and fate of BP in aquatic environments and the activated sludge of a sewage treatment
plant. It took a relatively long time for microbes to degrade a certain concentration of BP due to the
toxic effect of BP. HBP is the di-hydroxyl addition product of BP. To date, research examining about the
removal of BP and HBP by the UV/H2O2 process is rarely reported. The degradation behavior and
characteristics of BP by AOPs have great reference value for the treatment and control of wastewater
containing benzophenone-type UV filters.

The primary purpose of this research is to explore the degradation of two UV filters BP and HBP in
water by the UV/H2O2 advanced oxidation process. The response surface methodology (RSM) analysis
combined with the experimental design is used to investigate the main factors of the UV/H2O2 process.
Additionally, the degradation intermediates are identified by an LTQ-Orbitrap high-resolution mass
spectrometer and GC-MS. Through these analyses, combined with the chemical structure analysis,
degradation mechanisms of BP and HBP by the UV/H2O2 process are also proposed.

2. Materials and Methods

2.1. Chemicals and Reagents

BP and HBP were purchased from Energy Chemical Reagent (Shanghai, China). The relevant
physical and chemical properties are shown in Table 1. Methanol (HPLC grade) was obtained from
Sigma-Aldrich, Inc. (St. Louis, MO, USA). Hydrochloric acid, sodium hydroxide, and hydrogen
peroxide (H2O2 30% w/w) were all of analytical grade. All solutions were prepared using ultrapure
water (resistivity 18.3 mΩ·cm) from a Milli-Q water purification system (Millipore, Burlington, MA,
USA). An Oasis HLB cartridge (Waters, 500 mg, 6 cc, Milford, MA, USA) was used for the solid
phase extraction (SPE) pretreatment. A silylation reagent (Ekear, Shanghai, China), containing
N,O-bis(trimethylsilyl)trifluoroacetamide and trimethylchlorosilane (BSTFA/TMCS, 99:1), was used
for the GC derivatization.
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Table 1. Properties of benzophenone (BP) and 4,4′-dihydroxy-benzophenone (HBP).

Properties BP HBP

Name Benzophenone 4,4′-dihydroxy-benzophenone
CAS Number 119-61-9 611-99-4

Molecular Formula C13H10O C13H10O3
Molecular Weight 182.2179 214.2167

Partition coefficient (Log P) 3.18 2.55
Molar Refractivity 56.0 ± 0.3 59.8 ± 0.3

Chemical Structure
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compound solution and H2O2 were added into the reactor. The compound solution and H2O2 were 
added in a range of concentrations to the photoreactor. The range of BP/HBP concentration is 4 to 
50 mg·L−1, while the rang of H2O2 dose is 0.1–0.5 mmol·L−1. The UV light was then turned on to start 
the degradation reaction. BP and HBP samples were collected at set intervals. The distance between 
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determined by an ultraviolet meter (Model UV-B, Photoelectric Instrument Factory of Beijing 
Normal University). 

 
Figure 1. Experimental setup. 

2.3. Compounds Determination 

Quantitative analyses of BP and HBP were carried out by liquid chromatography (LC-100, Wu 
Feng, China), which was equipped with an HPLC C18 column (4.6 × 150 mm, 5 µm, LK Tech). The 
mobile phase was 60% methanol and 40% water with 5 mM ammonium acetate. The other optimized 
conditions were as follows: a flow velocity of 1.0 mL·min−1, an isocratic elution, and a UV wavelength 
of 264 nm. Under the HPLC conditions, the compound peak with high resolution was obtained for 
quantitative analyses. The determination error was less than 5%. 

2.4. Degradation Products Identification 

Water samples were collected at set intervals during the process and later mixed together. Before 
the LC-MS and GC-MS analysis, water samples were pretreated according to an SPE procedure 
developed and optimized by our research group [40]. 

Mass spectrum data was acquired through the acquisition of parent ions combined with the 
analysis of diagnostic product ions on a hybrid LTQ-Orbitrap (Thermo Scientific, Waltham, MA, 
USA). The other MS conditions were as follows: negative mode, data-dependent acquisition (DDA), 
a dynamic exclusion of 5 s, and a collision energy (CE%) of 45 eV. The chromatography separation 
was performed with a Polar-RP C18 column (Welch Ultimate, 100 × 2.1 mm, 3.0 µm).  
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2.2. Photoreactor and Experimental Tests

The photodegradation experiment was performed in a glass photoreactor (200-mL volume,
10-cm diameter), as shown in Figure 1. A lamp emitting at 254 nm (75 W, Philips, Shanghai, China)
was hung over the glass photoreactor. A stir bar was kept in the reactor for the solution mixing.
The compound solution and H2O2 were added into the reactor. The compound solution and H2O2

were added in a range of concentrations to the photoreactor. The range of BP/HBP concentration is
4 to 50 mg·L−1, while the rang of H2O2 dose is 0.1–0.5 mmol·L−1. The UV light was then turned on
to start the degradation reaction. BP and HBP samples were collected at set intervals. The distance
between the UV lamp and the water surface was adjusted manually for various UV intensities, which
were determined by an ultraviolet meter (Model UV-B, Photoelectric Instrument Factory of Beijing
Normal University).
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2.3. Compounds Determination

Quantitative analyses of BP and HBP were carried out by liquid chromatography (LC-100, Wu
Feng, China), which was equipped with an HPLC C18 column (4.6 × 150 mm, 5 µm, LK Tech).
The mobile phase was 60% methanol and 40% water with 5 mM ammonium acetate. The other
optimized conditions were as follows: a flow velocity of 1.0 mL·min−1, an isocratic elution, and a UV
wavelength of 264 nm. Under the HPLC conditions, the compound peak with high resolution was
obtained for quantitative analyses. The determination error was less than 5%.

2.4. Degradation Products Identification

Water samples were collected at set intervals during the process and later mixed together.
Before the LC-MS and GC-MS analysis, water samples were pretreated according to an SPE procedure
developed and optimized by our research group [40].

Mass spectrum data was acquired through the acquisition of parent ions combined with the
analysis of diagnostic product ions on a hybrid LTQ-Orbitrap (Thermo Scientific, Waltham, MA,
USA). The other MS conditions were as follows: negative mode, data-dependent acquisition (DDA),
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a dynamic exclusion of 5 s, and a collision energy (CE%) of 45 eV. The chromatography separation was
performed with a Polar-RP C18 column (Welch Ultimate, 100 × 2.1 mm, 3.0 µm).

A GC-MS (QP-2010, Shimadzu, Kyoto, Japan) equipped with a capillary column (DB-5,
30 m × 0.5 mm × 0.5 mm) was used to identify the degradation products, such as small molecular
organic acids. Before the GC-MS analysis, water samples were prepared through freeze-drying and
sequent derivatization by a BSTFA/TMCS reagent at 70 ◦C [48]. Sample preparation was repeated
three times for LC-MS and GC-MS analysis.

2.5. CCD Experimental Design and RSM Analysis

RSM is a useful tool for the exploration of the relationship between explanatory variables
and response variables [49,50]. Currently, RSM is extensively used for experimental design, model
building, and parameter evaluation and optimization [51–53]. Central composite design (CCD) is
an experimental design, useful in response surface methodology, for building a RSM model. In this
research, RSM and central composite design (CCD) were applied to investigate the contaminant
degradation by the UV/H2O2 process, as shown in Table 2.

Design Expert 7.1 software (student evaluation version) (Stat-Ease, Minneapolis, MN, USA) was
applied for the experimental design, RSM analysis, and RSM model construction. Three factors were
selected to evaluate the influence of the operating parameters, including the UV light intensity (x1),
initial contaminant concentration (x2), and H2O2 dose (x3). A total of 40 runs were performed in the
experiment, including 20 runs for BP, and 20 runs for HBP. The experiment was repeated three times
to obtain the average. Pseudo-first-order rate constants for a 30 min UV radiation (KBP1, KHBP) were
taken as the response variables, calculated by Equation (1).

ln(
C
C0

) = −K× t (1)

where C0 and C are the contaminant concentration at 0, and t min in mg·L−1, K is the first-order rate
constant in min−1, and t the reaction time in min.

For the statistical calculation, the variables xi were coded to Xi through Equation (2):

Xi =
xi − x0

δx
(2)

where Xi is the dimensionless value of an independent variable, xi is the real value of the variable, x0

is the real value of the variable at the center point, and δx represents the step change [54].

3. Results and Discussion

3.1. BP and HBP Degradation by the UV/H2O2 Process

The removal of BP and HBP with three different initial contaminant concentrations in 30 min was
compared, as shown in Figure 2. The other reaction conditions included a UV intensity of 900 µW·cm−2

and an H2O2 concentration of 0.30 mmol·L−1. The removal of HBP was only 37.7%, while the BP
removal was as high as 74.9% in 30 min with an initial contaminant concentration of 13.8 mg·L−1.
It is evident that the removal of BP was much higher than that of HBP under the same degradation
conditions, which means that BP is more easily degraded by the UV/H2O2 process. HBP is the
di-hydroxyl addition product of BP. After a hydroxyl group is added on the ring of BP, the steric
hindrance effect possibly prevents the further addition of hydroxyl radical on the ring [55], which
makes the degradation of HBP by the UV/H2O2 process more difficult.
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Pseudo first-order reaction kinetics was also used to describe the UV/H2O2 process, as shown
in Figure 3. The experimental conditions were as follows: a UV intensity of 900 µW·cm−2, an H2O2

concentration of 0.30 mmol·L−1, and an initial BP/HBP concentration of 22.5 mg·L−1. The reaction
rate constants of BP and HBP are 0.025 and 0.012, respectively. Figure 3 shows that pseudo-first-order
reaction kinetics was successfully fitted with test results (R2(adj) 0.991 and 0.982), according to the
kinetic model Equation (1).
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3.2. Established RSM Model and Its Validation

All runs were performed according to the CCD experimental design. Pseudo-first-order reaction
kinetics was used to fit the experimental results of every run. The regression coefficients (R2 > 0.95)
show that the degradation reactions were in good agreement with the pseudo-first-order reaction
kinetics at different degradation parameters. Pseudo-first-order rate constants were calculated by
Equation (1), summarized in Table 2.
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Table 2. Expert design together with the observed experimental data.

Run
UV Light

x1 (µw·cm−2)
Initial

Concentration
x2 (mg·L−1)

H2O2
Concentration
x3 (mmol·L−1)

First-Order Degradation
Rate Constant (min−1)

KBP (min−1) KHBP (min−1)

1 1400 5.00 0.10 0.050 0.023
2 900 22.5 0.20 0.020 0.010
3 400 5.00 0.50 0.069 0.037
4 900 22.5 0.30 0.027 0.012
5 400 5.00 0.10 0.015 0.008
6 900 31.3 0.30 0.025 0.007
7 900 22.5 0.30 0.031 0.013
8 400 40.0 0.10 0.003 0.004
9 900 22.5 0.30 0.029 0.012
10 900 22.5 0.40 0.032 0.015
11 900 22.5 0.30 0.023 0.012
12 400 40.0 0.50 0.013 0.005
13 1150 22.5 0.30 0.033 0.014
14 900 22.5 0.30 0.030 0.012
15 650 22.5 0.30 0.021 0.011
16 1400 5.00 0.50 0.131 0.065
17 900 22.5 0.30 0.025 0.012
18 1400 40.0 0.50 0.036 0.008
19 1400 40.0 0.10 0.013 0.002
20 900 13.8 0.30 0.047 0.015

Based on the results obtained in each run, an RSM model was constructed to explain the
relationship between the reaction parameters and the results, as follows:

KBP = 0.0280 + 0.0160X1 − 0.0250X2 + 0.0210X3 − 0.0080X1X2+

0.0050X1X3 − 0.0130X2X3 − 0.0069X2
1 + 0.0310X2

2 − 0.0100X2
3

(3)

KHBP = 0.0120 + 0.0053X1 − 0.014X2 + 0.0093X3 − 0.0054X1X2+

0.0019X1X3 − 0.0082X2X3 + 0.0036X2
1 − 0.0016X2

2 + 0.0052X2
3

(4)

Considering only the first-order effect in Equation (3), X2 has a high coefficient of 0.025, followed
by X3 (0.021) and X1 (0.016). This means X2 (the initial BP concentration) has the most important effect
on rate constants and therefore inhibits the observed rate constant. From the above polynomial, it can
be readily seen that a high synergetic effect of X2X3 (0.013) decreases the rate constant. The similar
observation can also be seen in Equation (4).

After the models are built, the analysis of variance (ANOVA) is used to assess the significance
of each term, and the robustness of the RSM model. Table 3 shows the summary of the analysis
outcomes, including the estimated effects, and the ANOVA of the models with coded units. F-values
of 127.0 (BP model) and 93.9 (HBP model) imply that the two models are of significance. There is a less
than 0.01% chance for the BP and HBP models that these large “Model F-values” could occur due to
noise. The degree of significance of each term is represented by its P-value. A P-value less than 0.05
indicates the significance of the model terms, while the value higher than 0.05 explains that the model
terms are of insignificance [56].
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Table 3. Analysis of variance (ANOVA) for BP and HBP degradation model.

Terms
BP HBP

Sum of
Squares Mean Square F-Value P-Value Sum of

Squares Mean Square F-Value P-Value

Model 1.412 × 10−3 1.549 × 10−3 127.01 <0.0001 3.668 × 10−3 4.076 × 10−4 93.92 <0.0001
X1 2.194 × 10−3 2.194 × 10−3 179.87 <0.0001 2.404 × 10−4 2.404 × 10−4 55.38 <0.0001
X2 5.223 × 10−3 5.223 × 10−3 428.25 <0.0001 1.652 × 10−3 1.652 × 10−3 380.65 <0.0001
X3 3.582 × 10−3 3.582 × 10−3 293.74 <0.0001 7.380 × 10−4 7.380 × 10−4 170.04 <0.0001

X1X2 5.072 × 10−4 5.072 × 10−4 41.59 <0.0001 2.365 × 10−4 2.365 × 10−4 54.50 <0.0001
X1X3 2.030 × 10−4 2.030 × 10−4 16.65 0.0022 3.003 × 10−5 3.003 × 10−5 6.92 0.0251
X2X3 1.303 × 10−3 1.303 × 10−3 106.84 <0.0001 5.396 × 10−4 5.396 × 10−4 124.32 <0.0001
X1

2 8.762 × 10−6 8.762 × 10−6 0.72 0.4165 2.413 × 10−6 2.413 × 10−6 0.56 0.4731
X2

2 1.742 × 10−4 1.742 × 10−4 14.28 0.0036 4.803 × 10−7 4.803 × 10−7 0.11 0.7462
X3

2 1.962 × 10−5 1.962 × 10−5 1.61 0.2335 5.038 × 10−6 5.038 × 10−6 1.16 0.3066
Lack of Fit 7.843 × 10−5 1.569 × 10−5 1.65 0.2978 1.962 × 10−5 1.962 × 10−5 1.61 0.2335

As for the two models, UV intensity (X1), initial contaminant concentration (X2), and H2O2 dose
(X3) are the significant model terms and have a statistically significant effect upon the degradation rate
constants (P-value < 0.05). Their interaction terms between the three factors, including X1X2 and X2X3,
are also significant terms. However, the terms′ square interactions (X2

1 , X2
2 , and X2

3) do not exhibit a
statistically significant effect.

The regression coefficients (R2) indicates how much of the variability in the data is accounted for
by the model. R2(adj) values of the BP and HBP models are 0.9835 and 0.9778, respectively. These imply
that 98.35% and 97.78% of the variations for BP/HBP degradation rate constants are explained by the
independent variables, and only about 1.65% and 2.22% of the variations are not explained by the
model. The F-values for the lack-of-fit test of the BP and HBP models are 1.65 and 4.50, respectively,
which means the lack-of-fit is significant relative to the pure error. The results illustrate that the
two models adequately match the UV/H2O2 process and can serve to investigate the experimental
data space.

3.3. Analysis of the Response Surface Models

Response surface contour plots of BP and HBP degradation are shown in Figure 4, in which
the inner effects of three variables on the rate constant are presented. These charts show the strong
interaction among UV light intensity, initial contaminant concentration, and H2O2 dose, which had a
statistically significant effect on the UV/H2O2 degradation. The single effects on the rate constants of
BP and HBP degradation are also shown in Figure A1.
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rate constant from the low (blue) to the medium (green) and to the large (red)).

The results show that UV light intensity and H2O2 dose have a positive effect on the rate constant
(Figure 4a–d; Figure A1a,e). In other words, a higher UV intensity and H2O2 dose yields a higher rate
constant. UV intensity is a critical factor for the OH radical production, which is primarily responsible
for the contaminant degradation. The increase in UV photons in the solution causes an increase in OH
radical concentration, thereby accelerating the degradation process.
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It is also evident that H2O2 is an essential source for the OH radical production (Figure A1c,f).
The addition of H2O2 could produce more OH radicals to accelerate the degradation process.
Similar findings were also observed during BP3 and ibuprofen degradation by the UV/H2O2

process [31,57]. However, previous studies explained that the excessive addition of H2O2 shows
an adverse effect on the removal, due to the scavenger effect of H2O2 on OH radicals [51,58]. In the
current test, H2O2 dose shows a positive effect on the rate constant in the range of 0.1 to 0.5 mmol·L−1,
which means H2O2 concentration has not reached the inhibition zone.

The initial BP and HBP concentrations illustrate the adverse effect on the rate constant (Figure 4c,f;
Figure A1b,e). In other words, a higher initial contaminant concentration could inhibit the degradation
process. BP and HBP are both efficient UV filters and could absorb UV photons in solution. With the
increasing of initial contaminant concentration, the contaminants could absorb more UV photons,
which reduces the production of OH radicals inspired by UV photons, thereby further decreasing
the degradation efficiency [31]. Moreover, the robustness of the models was also investigated by the
diagnostic plots (Figure 5). The data points nearly scattering along a straight line in Figure 5 indicates
that the predicted values in the models are equal to the actual values.
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The effects of three parameters on degradation can be compared with the help of perturbation plots
(Figure 6). The plots were obtained at UV intensity of 900 µw·cm−2, the initial BP/HBP concentration
22.5 mg·L−1 and H2O2 dose of 0.30 mmol·L−1. The steep curvatures indicated that the response of
BP/HBP degradation rate constant was sensitive to these three factors [59]. The degradation was
largely controlled by the initial BP/HBP concentration, followed by H2O2 dose and UV intensity.
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Based on RSM analysis above, the maximum degradation rate constants of BP and HBP were
optimized. The optimized conditions were as follows: a UV light intensity of 1150 µw·cm−2, an H2O2

dosage of 0.40 mmol·L−1, and an initial BP/HBP concentration of 13.8 mg·L−1. The predicted
maximum rate constants of BP and HBP degradation were 0.068 and 0.032 min−1, respectively.
The results of the further experimental test with the optimized parameters were in good agreement
with the predicted values. It was concluded that RSM analysis is a powerful strategy to investigate
and optimize the process parameters [60–62].

3.4. Degradation Mechanism of BP

Degradation products could be produced during the UV/H2O2 process. A total of 15 products
(including isomers) were identified, including 9 compounds by LTQ-Orbitrap and 6 compounds by
GC-MS, as summarized in Tables 4 and 5, respectively. Chromatogram (EIC), and MS2 spectra of BP and
its products identified by LTQ-Orbitrap are illustrated in Figures 7 and A2, Figures A3–A6, respectively.

BP was detected with an appearance time of 13.96 min and the molecular ion at 183.0804 m/z in a
positive mode (Figure 7a). In particular, one structural diagnostic ion was evidenced at 106.04 m/z,
formed from the loss of a phenyl group (-C6H5, 77 dalton(Da)).

One degradation product at [M−H]− 197.0608 m/z with an empirical formula of C13H10O2

was determined with an appearance time of 13.19 min in a negative mode and attributed to the
mono-hydroxylated BP (entitled BP-OH, Figure 7b). MS2 spectrum presents one product ion at
121.03 m/z, also attributed to the detachment of one phenyl group. Hydroxyl (OH) radicals could be
attached and added to different sites on the aromatic ring of BP. However, the specific position cannot
be distinguished owing to the limitation of the current HRMS technology.

Table 4. Molecular formula and properties of BP and its degradation products.

Code
Retention

Time (min)
Molecular
Formula

Molecular Ions
StructureTheoretical

m/z
Measured

m/z ∆ ppm

BP 13.96 C13H10O 183.0804 * 183.0806 1.10
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distinguished owing to the limitation of the current HRMS technology. 

Table 4. Molecular formula and properties of BP and its degradation products. 

Code Retention 
Time (min) 

Molecular 
Formula 

Molecular Ions 
Structure Theoretical 

m/z 
Measured 

m/z 
Δ ppm 

BP 13.96 C13H10O 183.0804 * 183.0806 1.10 

BP-OH 13.19 C13H10O2 197.0608 197.0608 0.25 

 

BP-2OH-a 15.34 C13H10O3 213.0557 213.0556 0.47 

 

BP-2OH-b 16.89 C13H10O3 213.0557 213.0555 0.94 

 

BP-3OH 14.27 C13H10O4 229.0506 229.0505 0.44 

 

Pr138-a 2.58 C7H6O3 137.0244 137.0244 0.18 
 

Pr138-b 6.42 C7H6O3 137.0244 137.0245 0.73 

 

Benzoic acid 12.43 C7H6O2 121.0295 121.0295 0.33 
 

Pr110-a 8.62 C6H6O2 109.0295 109.0296 0.91 
 

Pr110-b 12.93 C6H6O2 109.0295 109.0298 2.75 
 

* All of the molecular ions are detected in the negative mode, except BP detected in the positive mode; “Pr” is the 
abbreviation of “product”.  

Benzoic acid 12.43 C7H6O2 121.0295 121.0295 0.33
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Table 5. Degradation products of BP detected by GC/MS.

Products Molecular
Weight

CAS
Number

GC Retention
Time (min)

Molecular
Structure

Glycolic acid (2TMS *) 220 33581-77-0 5.42
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[63] and microbial oxidation in soil [64]. Moreover, one tri-hydroxylated product (BP-3OH) was also 
determined at [M−H]− 229.0505 m/z with a retention time of 14.27 min (Figure A3).  

OH radicals will attack the ketone group of BP and its addition products, which leads to the 
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Figure 7. MS2 spectra of BP and its degradation product obtained by LTQ-Orbitrap. (a) BP, (b) BP-OH.

More than one OH radical could further be added to the ring to yield di-hydroxylated or
tri-hydroxylated products [40]. Two di-hydroxylated products, named BP-2OH-a and BP-2OH-b,
were found at [M−H]− 213.0556 m/z with a retention time of 15.34 min and [M−H]− 213.0555 m/z
with a retention time of 16.89 min (Table 4, Figure A2), respectively. Both BP-2OH-a and BP-2OH-b
are the isomers of HBP. In fact, hydroxyl addition reaction is very common in AOPs and biological
oxidation processes. Pablo et al. found the occurrence of HBP during BP-3 degradation by ozonation
process [63] and microbial oxidation in soil [64]. Moreover, one tri-hydroxylated product (BP-3OH)
was also determined at [M − H]− 229.0505 m/z with a retention time of 14.27 min (Figure A3).
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OH radicals will attack the ketone group of BP and its addition products, which leads to the break
of the C–C bond adjacent to the ketone group and the generation of the formyl group. The formyl
group could be oxidized to the carboxyl group. With the successive attack by OH radicals, a series of
products containing a mono-benzene ring were produced, including Pr138-a, Pr138-b, benzoic acid,
Pr110-a, and Pr110-b (Table 4 and Figures A4–A6).

In the later degradation period of compounds containing aromatic rings, OH radicals could
cleave the aromatic ring and produce small molecular organic acids. Several reports illustrate that
the common organic acids, such as 1,2-dihydroxypropane, glycolic acid, pyruvic acid, formic acid,
and propane-dioic acid, usually appear during the degradation of ibuprofen and dimethyl phthalate by
the UV/H2O2 process [40,48,57]. In this study, six organic acids were determined, including glycolic
acid, oxalic acid, malonic acid, 2-butenedioic acid, tartronic acid, and malic acid (Table 5).

Therefore, a possible reaction pathway for the BP degradation by the UV/H2O2 process is
proposed (Figure 8). A series of OH radical irritated reactions take place during the process, including
hydroxylation, carboxylation, and ring cleavage, which result in the degradation of BP and finally the
formation of CO2 and H2O.
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3.5. Degradation Mechanism of HBP

Both BP and HBP have the homologous benzophenone-type structure. The only difference is
that HBP holds two hydroxyl groups on the aromatic rings. In this research, 13 HBP products were
detected, including seven compounds by LTQ-Orbitrap and six compounds by GC-MS, shown and
listed in Figure 9 and Tables 6 and 7. HBP was determined with the appearance time of 12.29 min, at
213.0554 m/z in negative mode with two structural diagnostic ions at 169.06 and 93.03 m/z (Figure 9a).
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Figure 9. MS2 spectra of HBP and its degradation product obtained by LTQ-Orbitrap, (a) HBP,
(b) HBP-OH.

One degradation product (called HBP-OH) at [M − H]− 229.0506 m/z with an empirical formula
of C13H10O4 was detected with an appearance time of 11.80 min (Figure 9b). Hydroxylation usually
occurs during the primary degradation stage of AOPs [65]. The OH-addition on the HBP ring results
in the product of HBP-OH with two main fragment ions at 211.04 and 93.03 m/z.

Similar to the degradation of BP, there are also the di-hydroxylated or tri-hydroxylated products
for the HBP degradation. Two di-hydroxylated products (HBP-2OH, Table 6, Figure A7) were identified
at 245.0455 m/z with retention times of 7.99 and 11.24 min, while one tri-hydroxylated product
(HBP-3OH, Table 6, Figure A8) was found at 261.0405 m/z with a retention time of 12.79 min.

The continuous attack of the ketone group by OH radicals leads to the production of compounds
containing the mono-benzene ring, including benzoic acid and Pr110-b (Table 6). Benzoic acid, as the
common degradation product, was also detected in the BP degradation above (Table 4) and BP3
oxidation by activate persulfate process [36]. Subsequently, the OH radical also can oxidize aromatic
matter to quinone-type compounds, such as Pr152 at 151.0037 m/z with the retention time of the
11.85 min (Figure A9).

Finally, OH radicals will also cleave the aromatic ring and generate small molecular compounds,
such as glycolic acid, oxalic acid, malonic acid, 2-butenedioic acid, butanedioic acid, and tartronic acid
(Table 7). Acetic acid and formic acid were also detected in another benzophenone-type compound
BP2 degradation by photo-fenton process [43].

Therefore, a reaction pathway for the HBP degradation by the UV/H2O2 process is also provided
in Figure 10. Through hydroxylation, carboxylation, and ring cleavage, HBP is further degraded and
mineralized to CO2 and water.
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Table 6. Molecular formula and properties of HBP and its degradation products.

Code
Retention

Time (min)
Molecular
Formula

Molecular Ions
StructureTheoretical

m/z
Measured

m/z ∆ ppm

HBP 12.29 C13H10O3 213.0557 213.0556 0.47
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4. Conclusions

The occurrence of benzophenone-type UV filters in wastewater and the aqueous environment has
gradually drawn the attention of researchers. For the first time, two typical UV filters, BP and HBP,
were selected to explore their degradation in water by a typical type of AOPs, the UV/H2O2 process.

1. The built RSM model is in accordance with the experimental results and helps to elucidate the
reaction factors. For both processes, the initial contaminant concentration (exerting a negative
effect) were the most important factors controlling the degradation, followed by H2O2 dose and
UV intensity (exerting positive effects).

2. A total of 15 BP and 13 HBP degradation products were detected. There exist hydroxylated
products during the BP and HBP degradation, including mono-hydroxylated, di-hydroxylated,
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and tri-hydroxylated degradation products. OH radical irritated reactions, including
hydroxylation, carboxylation, and ring cleavage, result in the degradation of BP and HBP to CO2

and H2O.
3. The research provides support for the future application of UV/H2O2 advanced oxidation

processes for the treatment of wastewater containing benzophenone-type UV filters.
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