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Abstract: Water resources are impacted by several stressors like over-population and over
consumption that compromises their availability. These stressors are expected to progressively
intensify due to climate change in most regions of the world, with direct impact on watersheds and
river systems. This study investigates the effect of different watershed pressure scenarios due to
climate change in the hydrological regime of the Sorraia River basin, Portugal. This catchment
includes one of the largest irrigated areas in the country, thus being strongly influenced by
anthropogenic activities, associated to hydrological (irrigation, flow regulation, damming) and
nutrient stressors. The Soil Water Assessment Tool has been used to simulate water flow and nutrient
dynamics in the watershed while considering inputs from two climate models and three societal
scenarios. Results have shown that the predicted rainfall reductions will have a significant impact
on river flow and nutrient concentrations when compared to baseline conditions. River flow will
expectably decrease by 75%, while nitrogen and phosphorus concentrations in river water will
expectably increase by 500% and 200%, respectively. These differences are more evident for storylines
that consider increasing pressures such as population growth and agricultural expansion marked
with unsustainable practices and increased reliance on technology. The results of this study indicate a
possible future outcome and provide effective guidelines for the formulation of water management
policies to counter the impacts of climate change and corresponding environmental pressures in the
Sorraia River basin.
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1. Introduction

Agriculture is one of the main factors responsible for variation in the landscape of a region [1].
Unsustainable agricultural practices and excessive urban expansion have drastically affected the hydro
morphological characteristics of river systems in the wake of climate change. The ever-increasing
world population and globalisation of food products is one of the major reasons for the expansion
of agroecosystems. High demands from the global food market have turned small and large-scale
farmers towards excessive mechanized farming, the overuse of fertilizers and pesticides, as well as the
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unsustainable water abstraction for irrigation purposes. Diffused pollution from these sources has
also degraded the water quantity and quality, thereby compromising vital ecosystem services and
disrupting the local and regional hydrological balance [2–5]. A study conducted in Portugal observed
that of the total water used in agriculture, about 80% is for irrigation consumption [6].

In the future, pressures such as diffuse pollution or water abstraction are predicted to further
increase [7–10], with climate change scenarios bringing great uncertainty to the water resources’
availability. According to the Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment
Report [11], the Mediterranean climate, which is comprised of two contrasting seasons, i.e., the wet
season with mild temperatures and the dry season with high temperatures, will show extreme
variations due to climate change. This region will be highly affected by extreme events like droughts,
floods and heat waves. These extreme events will greatly reduce the water availability, hydropower
potential and crop productivity of the region. Additionally, health risks and the frequency of other
stochastic events will also significantly increase.

The study area, i.e., the Sorraia River basin, also lies under the influence of the Mediterranean
climate. This basin is greatly modified by anthropogenic activities such as the construction of dams
and weirs to respond to residential, agricultural and industrial demands [12]. It has been predicted that
climate change phenomena will further degrade the hydrological balance of the basin, leading to many
socio-economic problems at both local and regional scales, further enhancing the water scarcity in the
region. Hence, it is of utmost importance to accurately assess the impact of climate change on water
resources to develop effective mitigation policies and a framework for management strategies. Better
management strategies at the river basin level will not only maximize the benefits of irrigation and
other anthropogenic modifications of the ecosystem but also minimize its impacts on water quantity
and quality. Thus, the assessment of the impacts of climate change is essential to counter the effects of
environmental stressors and improve the ecosystem equilibrium [13–17].

Hydrological models can forecast the outcomes of different management practices, thus providing
guidance for water managers in defining cost-effective measures for future application [3,18–21].
Although there are many unforeseeable events, the use of models in river systems is accepted as
a standard practice with relevant information derived from them [4,19,22]. A study carried out by
Brito et al. [22] aimed at understanding the relationship between the eutrophication process of the
downstream reservoir and soil erosion and nutrient losses related to flood events in a river basin
(southern Portugal). Additionally, Mateus et al. [19] conducted an integrated study using basin
and reservoir models to depict the influence of river basins on the eutrophication of downstream
water bodies, obtaining results that allowed to test different management practices that affect the
reservoir trophic status. Watershed modelling is also an important part of the Portuguese River
Basin Management Plans at the national level [23]. However, no such records exist that consider the
effect of climate change on water and nutrient dynamics in the Sorraia River catchment area through
hydrological modelling. This constitutes a significant gap in terms of knowledge.

The aim of this study is to assess the impacts of climate change and management practices on the
water quantity and quality of the Sorraia River using the hydrological model Soil Water Assessment
Tool (SWAT) [24]. The main objective is to predict the effects of multiple biotic and abiotic stressors at
the basin scale [3]. These stressors result from unsustainable anthropogenic activities and negatively
affect the indicators of ecological quality and service. In addition, the study also has the following
specific objectives:

(i) to simulate the baseline conditions in terms of hydrology and nutrients (N and P) in the Sorraia
River basin using the SWAT model [24];

(ii) to simulate three distinct storylines which combine alternative trends in the evolution of the
society and practices with climate change scenarios;

(iii) to compare scenario results for accuracy and efficiency.
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The storylines and management scenarios considered in this study should serve as guidelines for
defining mitigation measures in the catchment.

2. Materials and Methods

2.1. Study Area

This study was carried out in the Sorraia River (southern Portugal), the tributary of the Tagus
River with the largest basin area, with ~7730 km2 (Lat: 38.59◦ to 39.50◦; Long: −8.99◦ to −7.24◦),
and with a longitudinal length of ~155 km (Figure 1). The climate in the region is dry sub-humid,
with dry and hot summers, and mild and wet winters. Records from 14 meteorological stations [25]
for a 20-year period (1996 to 2015) showed that the annual precipitation in the region varied from 200
to 900 mm, with the average of ~500 mm. The average monthly precipitation was ~50 mm, fluctuating
up to 25 mm from April to September and 70 mm between October and March. The average annual
surface air temperature was ~15 ◦C, varying from ~9 to ~22 ◦C. The reference evapotranspiration
estimated according to Allen et al. [26] reached ~900 mm. The dominant soil types found in the region
are Cambisols, Luvisols, and Regosols [27]. Fluvisols are also found at higher concentrations in the
downstream irrigated areas.
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Figure 1. The Sorraia River Basin.

Two major reservoirs, Montargil and Maranhão, were built in the watershed during the second
half of the twentieth century as a part of the Sorraia Valley Irrigation Implementation Plan. Currently,
the Sorraia Valley is one of the largest irrigation areas in Portugal, totalizing 16,000 ha, in which corn
(Zea mays L.), rice (Oryza sativa L.) and tomato (Solanum lycopersicum L.) predominate. The land use in
the remaining area of the watershed is characterized by holm oak forest, rainfed cereals and pasture.

In terms of human population, the Sorraia watershed has a total of 153,100 inhabitants, with a
density of 20 inhabitants km−2 [28]. The population is mainly concentrated in three core cities: Ponte
de Sôr (16,700 inhabitants), Samora Correia (17,123), and Coruche (19,950). According to the River
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Basin Management Plan (RBMP [29]), hydro-morphological changes, diffuse pollution, municipal
discharges, flow regulation, and water abstraction are the main pressures in the basin.

2.2. Hydrological Modelling

2.2.1. The Soil and Water Assessment Tool (SWAT) Model

The SWAT model [24] is widely used to simulate watershed processes [18,19,30–33]. SWAT is a
semi-distributed watershed model focused on land management at a basin scale. The model splits the
watershed into sub-basins that are assumed to be homogeneous in their Hydrologic Response Units
(HRU), i.e., in terms of land use, soil and topographic characteristics. The relative straightforward
formulation used in SWAT allows the model to run more demanding simulations within a reasonable
time. The hydrology of the model is based on the daily water balance equation, as follows:

SWt = SW0 +
n

∑
i=1

(
Rday − Qsurf − Ea − Wseep − Qgw

)
(1)

where SWt is the final soil water content (mm), SW0 is the soil water content at the initial time step (mm),
Rday is the daily precipitation (mm), Qsurf is the surface runoff (mm), Ea is the actual evapotranspiration
(mm), Wseep is the percolated water (mm), and Qgw is the return flow (mm), all referring to day i,
which varies from 1 to the number of simulated days (n). In this study, the potential evapotranspiration
rates were estimated using the Penman–Monteith method [26], with Ea being then dependent on
soil water availability. Surface runoff was computed from daily precipitation using a modification
of the Soil Conservation Service Curve Number (SCS-CN) method [34]. Groundwater recharge was
estimated by combining a storage routing technique and a crack-flow model. The lateral flow was
simulated using a kinematic storage method [24].

The SWAT model can further simulate the nitrogen (N) and phosphorus (P) cycles. The N
present in the soil is represented by five different pools, considering mineral and organic forms.
The mineral N is divided into two pools: ammonia (NH4

+) and nitrate (NO3
−). The organic N is

divided into three pools: active, stable (associated to the humic substances) and fresh pool (associated
to the crop residue). Molecular nitrogen is added naturally by biological and atmospheric nitrogen
fixation. Anthropogenic activities and agricultural practices such as the use of fertilizers also act
as sources of N in the environment. After fixation, N is converted to NH4

+ in the soil and then
consumed by plants in the form of NO3

−. Mineralisation is considered by the fresh organic pool
associated with crop residues and the active pool associated with soil humus. At harvest, the remaining
fraction of crop residues is incorporated into the first soil layer. N is removed from the soil through
volatilisation, denitrification, erosion, and leaching (in the NO3

− form). The total amount of NH4
+

lost by volatilisation or nitrification is calculated considering the NH4
+ amount and environmental

factors. The SWAT code calculates the denitrification process according to the soil carbon and nitrate
source, a rate coefficient, and different environmental factors such as temperature and soil water
content. The denitrification process occurs in anaerobic conditions. In the case of the phosphorus
cycle, the model includes three inorganic P pools (solution, active, and stable) and three organic P
pools (active, stable and fresh). The fresh organic pool is associated with crop residue and microbial
biomass, while the active and stable organic pools are associated with the soil humus. The sum of
the six pools represents total soil P. P is simulated considering the supply and demand during plant
growth. Soluble and organic forms can be removed from the soil via mass flow (runoff). The amount
of soluble P removed in runoff is predicted using solution P concentration in the top 10 mm of the soil
profile, the runoff volume, and a partitioning factor. Sediment transport of P is then simulated with a
loading function [24].

In this study, the SWAT model was applied to the Sorraia basin using the ArcGIS extension from
ESRI (Redlands, CA). The model application relied on available Geographical Information System
maps for topography (SRTM), land use maps from Earth Observation (GSE Land M2.1) and soil maps
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and data from Cardoso et al. [35] (SROA). Daily discharge data provided by the reservoirs’ manager
(ARBVS—Farmers Association from the Sorraia Valley) were used in the model from 1996 to 2015.
Meteorological time series were downloaded for the basin area from the National Water Resources
Institute website (SNIRH). The input data considered for the present conditions (hereafter referred to as
the baseline) are summarized in Table 1. In order to stabilize the model conditions, the period between
1996 and 2000 was considered as the warm-up period, and the baseline simulation was defined for the
period 2001–2015.

Table 1. The input data used in the Soil Water Assessment Tool (SWAT) model application.

Data Type Source Data Description Resolution

Topography
Shuttle Radar Topography

Mission (SRTM)
NASA [36]

- 90 m

Soil type Cardoso [35] Soil physical properties 1:25,000

Land Use GSE Land M2.1 Land use classification 20 m and 300 m

Meteorology Serviço Nacional de Informação
dos Recursos Hídricos [25]

1996–2015
Precipitation, temperature,

relative humidity and wind speed
Daily time series

2.2.2. Calibration and Validation

The SWAT model was calibrated by manually modifying one parameter at a time, considering
the most sensitive parameters that determined the best results for simulating daily/monthly river
flows. The hydrograms were analysed, and the parameters that affected flow peaks and baseflow
were selected and modified until deviations between the model outputs and measured flow data were
minimised (Table 2). The previously calibrated parameters were then validated by comparing the
results of the simulations with an independent dataset. Model calibration was thus performed for the
period between 2001 and 2006, while the validation exercise was carried out from 2006 to 2015.

Table 2. The values of the calibrated parameters used in the SWAT model (parameter, description and
default according to Neitsch et al. [24]).

Parameter Description Default Calibrated Value

CN2 SCS runoff curve number
for moisture condition II. 25 to 92 80 to 92

ALPHA_BF Baseflow alpha factor
(1/days). 0.048 1

GW_Delay Groundwater delay time
(days). 31 3

SOL_AWC
Available water capacity

of the soil layer (mm
H2O/mm soil).

0.11–0.14 −40%

SOL_ZMX Maximum rooting depth
of soil profile. (mm). - 500

SOL_Z1
Depth from the soil

surface to the bottom of
the first layer (mm).

300 to 800
slope 0–3%, to 800
slope 3–8%, to 500

slope 8–9999%, to 300

SOL_Z2
Depth from the soil

surface to the bottom of
the second layer (mm).

300 to 800
slope 0–3%, to 1000
slope 3–8%, to 800

slope 8–9999%, to 500

Discharge data from two monitoring stations were used for model calibration and validation.
Moinho Novo (Lat. 39.228◦; Long. −8.029◦) and Ponte Vila Formosa (Lat. 39.216◦; Long. −7.784◦)
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were selected as they are not significantly influenced by the operation of existing hydraulic structures.
To evaluate the nutrients’ concentration, the monitoring station at Ponte de Coruche (38.956◦; −8.524◦)
was considered [25]. However, its location and the monitoring interval of measured values (usually
15 days to 1 month) hindered the representativeness of the monitoring record.

The goodness-of-fit indicators adopted for comparing model outputs with measured flow data
were the coefficient of determination (R2), the root mean square error (RMSE), the Nash-Sutcliffe model
efficiency coefficient (NSE [37]), and the Model Bias (Bias). An R2 value close to 1 indicates that the
model explains the variance of observations well. RMSE values close to zero indicate small estimation
errors and good model predictions. Bias was defined as the average difference between the estimator
and the true value. Bias values close to zero indicate no under or over-estimation of the measured
results. NSE values close to 1 indicate a perfect match of modelled discharge to the observed data,
hence, indicating that the model predictions are good. On the contrary, when NSE is very close to 0 or
negative, there is no gain in using the model.

For N and P, comparison was focused on the magnitude of the simulated and observed values
due to data limitation, considering only R2 and Bias indicators.

2.2.3. Storylines

The storylines defined in this study followed the framework developed within the
Managing Aquatic Ecosystems and Water Resources Under Multiple Stress Project-MARS [3,38].
Here, the storylines are defined as a combination of societal and climate scenarios. Three storylines
were considered by combining the work of O’Neill et al. [39] and Riahi et al. [14]. These authors
defined Shared Socioeconomic Pathways (SSP’s) as reference scenarios describing plausible alternative
trends in the evolution of society and ecosystems over a century timescale in the absence of climate
change or climate policies. Storylines also considered Moss et al. [40] who developed Representative
Concentration Pathways (RCPs) for greenhouse emissions. RCP 4.5 assume that greenhouse gas
emissions will peak around 2040 followed by a decline, while RCP 8.5 considers that emissions will
increase throughout the 21st century.

Climate data considered in this study, such as the surface air temperature and precipitation,
was extracted from the Inter-Sectoral Impact Model Intercomparison (ISI-MIP) project as it provided
the best temporal and spatial resolution for the study area. In the ISI-MIP project, the bias-corrected
time-series of surface air temperature and precipitation were downscaled at a 0.5◦ resolution [41].
Following the IPCC’s Fifth Assessment Report, the ISI-MIP project run specific climate models to
obtain data [42], which included five of the Coupled Model Intercomparison Project Phase 5 (CMIP5)
Global circulation models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and
NorESM1-M).

As established by Faneca et al. [43] and Birk et al. [44], the storylines considered in this study are
the following (Figure 2):

Storyline 1 (STL1): Techno World. It represents fast global economic growth, characterised by
a rapid technological development but with high energy demands and no real drive to enhance or
ignore the health of natural ecosystems. This world is based on a combination of SSP-5 which consider
a conventional development and low population [39] and climate scenario RCP 8.5 [40];

Storyline 2 (STL2): Consensus world. It is a world in which the actual policies continue after
2020. The growth of economy keeps to the same pace as now, but with awareness for environment
preservation. This world is based on a combination of SSP-2 which is considered as the intermediate
stage [39] and the climate scenario RCP 4.5 [40];

Storyline 3 (STL3): Survival of the fittest. It represents a fragmented world, driven by the
individual interest of countries, with fast economic growth in NW Europe but with recessions in other
regions; with minimal or no investment and effort in environmental protection, conservation and
restoration. This world is based on a combination of SSP-3, which consider a rapid technology for
fossils, high demand and high economic growth [39] and climate scenario RCP 8.5 [40].
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Figure 2. The schematic description of the modelling approach and considered scenarios (IPSL,
IPSL-CM5A-LR model; GFDL, GFDL-ESM2M model; RCPs, Representative Concentration Pathways,
STL, storylines).

The two climate models adopted for each climate scenario (Figure 2) were:
GFDL-ESM2M [45,46]: RCP 4.5 was used in Storyline 2 (hereafter referred as STL2 GFDL),

and RCP8.5 was used in Storyline 1 (STL1 GFDL) and Storyline 3 (STL3 GFDL);
IPSL-CM5A-LR [47]: RCP 4.5 was used in Storyline 2 (STL2 IPSL), and RCP8.5 was used in

Storyline 1 (STL1 IPSL) and Storyline 3 (STL3 IPSL).
GFDL and IPSL were adopted in this study as they give results close to the ISI-MIP median for

the Western Europe region [43]. These two models differ in terms of the atmospheric prognostic state
and of the spatial resolution of their atmospheric grid (2.5◦ lon. by 2.0◦ lat. for GFDL, and 2.5◦ lon.
by 3.75◦ lat. for IPSL). Further conceptual differences between the GFDL and IPSL models, and the
downscaling of variables at the basin-scale acquired from the outputs of these two models are given
in Warszawski et al. [41] and references therein. Bias-corrected time-series of air temperature and
precipitation downscaled at a 0.5◦ resolution [48] were considered. Additional bias correction for the
Sorraia basin was applied on precipitation (Figure 3) and surface air temperature (Figure 4) values
following Shrestha [49] and Shrestha et al. [50] and considering the measured data from 2006–2015.
This is a statistical downscaling method known as Linear scanning bias correction based on the average
difference between monthly observed and historical time series for the same period.

Two distinct temporal intervals were set up to run the simulations: 2030 (defined as a 10-year
average from 2025 to 2034) and 2060 (defined as a 10-year average from 2055 to 2064). Thus, the term
“climate change” refers here only to decadal changes. The period 1996–2015 was selected as a reference
for the baseline simulation (present condition).
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Figure 3. The annual average precipitation (mm) for the baseline conditions and climate scenarios:
(a) timeline 2030; (b) timeline 2060. For clarification on the modelled scenarios, please see Figure 2.
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The downscaling of the socio-economic factors and foreseen management practices change in
the Sorraia catchment was performed with the help of local water board stakeholders (Associação
de Regantes e Beneficiários do Vale do Sorraia). Therefore, each storyline was naturally translated
into quantitative data assuming that the Mediterranean climate imposes additional stress on the
agriculture [43]. This additional stress was defined in terms of management practice changes, namely
on the amount of fertilizer and irrigation applied to crops (Table 3). That assumption considered
that in a changing environment, with temperatures increasing, higher irrigation needs are required
to fulfil crop requirements. Additionally, higher temperatures lead to higher mineralisation rates
and, thus, higher use of fertilizers. It also considered that higher usage of fertilizers and irrigation
lead to larger diffuse pollutions from agricultural fields and greater environmental risk. Model
inputs were thus related to the level of agriculture intensification and the environmental protection
awareness considered in each Storyline. Fertilizers were applied to prevent nutrient stress by plants.
The percentage variation (increase or decrease) defined in Table 3 for each storyline and timeline was
applied on the baseline values and used as an input in the model.

Table 3. The input values used for simulating the storylines in the Soil Water Assessment Tool (SWAT).

Storyline Timeline Management Practices Variation (%) Baseline Amount

2030 Fertilization (kg/ha) 10+
492

541
2060 15+ 566

STL1 2030 Irrigation (mm) 10−
430

387
2060 15− 366

2030 Fertilization (kg/ha) 10−
492

443
2060 15− 418

STL2 2030 Irrigation (mm) 20−
430

344
2060 25− 323

2030 Fertilization (kg/ha) 30+
492

640
2060 35+ 664

STL3 2030 Irrigation (mm) 30+
430

559
2060 35+ 581
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3. Results and Discussion

3.1. Model Calibration/Validation

Model calibration was carried out considering the period between 2001 and 2006, and validation
was performed considering the period between 2006 and 2015. The statistical indicators obtained
after comparing the daily and monthly simulated and measured flow values at the selected monitored
stations are presented in Table 4. At Moinho Novo, the R2 value of 0.71 for monthly data shows that a
considerable proportion of variability of the observed data was explained by the model (Table 4 and
Figure 5). The RMSE value of 6 m3/month indicates a small error of model estimates, while the NSE
value of 0.71 indicates that the residual variance results were much smaller than the measured data
variance (Table 4 and Figure 5). The comparison of daily values produced, as expected, worse results,
with errors being mostly minimized during the monthly analysis due to data aggregation. For the
validation period, the indicators were found to be similar, indicating a reasonable calibration of model
parameters when considering all the uncertainties related to measurements.

Table 4. The daily and monthly flow statistics at Moinho Novo and Ponte Vila Formosa.

Statistics

Moinho Novo Ponte Vila Formosa

Calibration Validation Calibration Validation

Daily Monthly Daily Monthly Daily Monthly Daily Monthly

Obs. Average 6.05 6.71 7.57 7.07 3.17 3.31 5.68 5.61
Mod. Average 6.95 7.04 6.50 5.81 6.09 6.27 5.22 5.19

Bias 0.90 0.33 −1.07 −1.27 2.93 2.97 −0.46 −0.42
RMSE 13.1 6.00 16.6 7.51 12.61 6.04 15.21 5.93

R2 0.41 0.71 0.41 0.68 0.31 0.58 0.24 0.54
Model Efficiency 0.22 0.71 0.39 0.67 −3.05 −1.26 0.11 0.40
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Figure 5. The monthly average flow (mm) in Moinho Novo: (a) calibration period; (b) validation
period; and Ponte Vila Formosa location; (c) calibration period; (d) validation period.

At Ponte Vila Formosa, the statistical indicators found for the calibration and validation periods
were similar to those obtained at Moinho Novo. The exception was the negative NSE value computed
for daily values, which suggests that the average of observed values has a larger predictive power
than the model results. Nonetheless, the NSE statistics computed from monthly values are positive
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and the average monthly flows have a behaviour similar to the measured data (Figure 5). For N
and P, no calibration was carried out due to the data limitation with the default parameters of the
SWAT model being considered. The evaluation of model outputs focused on its ability to reproduce
the order of magnitude and the peaks of the measured values, which proved that the model is able
to offer reasonable results. For the Total N at Ponte de Coruche, the following statistical indicators
from the comparison between simulated and measured concentrations were obtained: R2 = 0.59;
Bias = 0.22 mgN L−1. For the Total P, the following statistical indicators were also obtained: R2 = 0.14;
Bias = −0.067 mgP L−1.

3.2. Scenario Analysis

3.2.1. Water Quantity

After calibration and validation, the SWAT model was used to evaluate the developed
storylines. Climate models showed a decrease in precipitation from 400 mm year−1 to an average of
264 mm year−1 on both timelines (Figure 6). As a result, the simulated scenarios showed a substantial
reduction of monthly flows for the 2030 and 2060 timelines (Figure 7). Flow reduction evidenced a
non-linear relationship between precipitation and monthly river flow averages. This resulted from the
uncertainty associated with climate models, particularly in the forecast of extremes events (Figure 6).
The monthly average flow for the baseline simulation was 42 m3 s−1 (Table 5), while the IPSL model
showed a decrease by half of this value in the timeline 2030 (to about 19 m3 s−1), and a further decrease
in the timeline 2060 (to 10 m3 s−1). More severe results were obtained with the GFDL model for
the same scenarios, predicting a decrease in the precipitation average to half of the present value,
which resulted in monthly flow averages of 4.5 m3 s−1 and 2.5 m3 s−1 for the timelines 2030 and 2060,
respectively (Table 5). Moreover, the increasing temperature trend predicted by both climate models
combined with decreasing precipitation further led to more hazardous agricultural practices for the
environment, with irrigation and fertilizer requirements increasing as considered in STL1 and STL3.
Even for the scenario with more sustainable agricultural practices (STL 2), the changes in the climate
variables had the same severe effect on river flow (Figure 5). For both climate scenarios, the decrease
in irrigation in STL2 resulted in small differences in the monthly flow average when compared with
the previous results (Table 5).
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Figure 6. The monthly average precipitation (mm) for each climate model (bars), and the number of
daily precipitation events >10 mm (−) for all period (symbols), for each timeline.

Table 5. The monthly averages for river flow (m3 s−1), total N (mg N L−1), and total P (mg P L−1) in
each scenario.

Monthly Average Baseline
STL1 STL2 STL3 STL1 STL2 STL3 STL1 STL2 STL3 STL1 STL2 STL3

2030 GFDL 2030 IPSL 2060 GFDL 2060 IPSL

River flow (m3 s−1) 42.3 4.1 4.5 4.1 18.8 18.2 18.8 2.5 2.6 2.5 8.4 9.7 9.8
Total N (mg N L−1) 0.7 3.3 2.2 3.9 1.1 0.9 1.2 5.5 2.6 6.2 1.4 1.2 1.5
Total P (mg P L−1) 0.2 0.1 0.1 0.1 0.3 0.3 0.4 0.2 0.2 0.2 0.2 0.2 0.2
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Figure 7. The monthly average of modelled river flow (m3 s−1) for each storyline and baseline. For
clarification on the modelled scenarios, please see Figure 2.

The simulated storylines focused on distinct management practices in the watershed. Changes
were associated with climate change models IPSL and GFDL developed for this purpose. All simulated
scenarios showed a significant decrease in water quantity, clearly visible in the reduction of river
flow (Figure 7). This outcome was a direct consequence of the significant decrease in precipitation
generally estimated by all climate models, especially for Mediterranean countries, due to the increased
anticyclonic circulation that yields increasingly stable conditions, and to a northward shift of the
Atlantic storm track [11,51,52]. Similarly, Bucak et al. [53] predicted flow variations between +18
and −59% for the Beyşehir watershed (Turkey), depending on the climate scenario considered.
Pascual et al. [54] reported the largest reductions (34%) in mean streamflows (for 2076–2100) to be
expected in the headwaters of two humid catchments in Catalonia (Spain), while lesser variations (25%
of mean value for 2076–2100) were to be expected in a drier area. Additionally, in all three catchments,
the most notable projected decreases in streamflow were observed in autumn (50%) and summer
(30%). The largest reductions in the Sorraia river flow were associated with agriculture activities,
namely irrigation, which, combined with climatic change, augmented the problem. Therefore, while
water availability in several Mediterranean basins is mostly conditioned by precipitation, the results of
this study in the Sorraia River basin show that other processes related to agricultural practices also
contribute to water scarcity, such as evapotranspiration and irrigation.

3.2.2. Water Quality

In the Sorraia basin, irrigated crops are traditionally sown during mid-April/May and harvested
in mid-September/October [55,56]. This leads to an increase of Total N concentration in the Sorraia
River during those periods as noticed in all storylines, especially in STL3 (Table 5 and Figure 8),
which results from the water reduction in the basin and increased use of fertilizers (STL1 and STL3).
Total N concentrations were perceptibly higher when using the GFDL climate model due to the lower
precipitation amount predicted. An increase of the total N concentration in the river during the crop
growth periods was also predicted due to nutrient runoff and leaching. The most marked increase
was observed immediately after the harvest season (Figure 8), coinciding with the mineralisation
of crop residues and the beginning of the rainy seasons. The increase of soil water content further
promoted nitrate leaching, as well as losses by the lateral flow. Therefore, precipitation reduction
played a fundamental role in the future projections of catchment dynamics.
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modelled scenarios, please see Figure 2.

The increase of Total N concentration in all storylines was drastic when compared with the present
conditions (0.7 mg N L−1) (Table 5). For the GFDL scenarios, despite the agriculture practices outlined
in STL2, there was a predicted increase of Total N concentration in the Sorraia River up to 2.2 mg N L−1

in the 2030 timeline, and up to 2.6 mg N L−1 in the 2060 timeline. For the STL1 and STL3, an average
of 3.6 mg N L−1 was computed for the timeline 2030, and an average of 5.9 mg N L−1 was computed
for the timeline 2060. For the IPSL model scenarios, the increase was not so outstanding, especially
for STL2, where the monthly averages in the timelines of 2030 and 2060 were predicted to be 0.9 and
1.2 mg N L−1, respectively. For this model, an average of 1.2 mg N L−1 was observed for the STL1 and
STL3 in the timeline 2030, and an average of 1.4 mg N L−1 was noted for the timeline 2060 (Table 5).

The projected increase of N concentration in the river resulted from the progressive use of this
nutrient as fertilizer in most scenarios, but also as a consequence of natural processes occurring in the
soils. This outcome is also visible in the more optimistic scenario (STL2), where the negative impact
of water flow reductions on water quality was also high. Nitrate was the most abundant form of N
simulated in the river (Figure 9), also contributing significantly towards this outcome were nitrate high
solubility and leaching susceptibility [57,58], mostly during the periods of higher precipitation, and
the type of fertilizers used by farmers [59].

The most pronounced increase in the nutrients concentration was found to occur during the
autumn/winter period, after the harvesting of corn in irrigated areas (September/October). The high
temperature and low soil moisture values predicted during this time of the year enhanced the
mineralization of crop residues as observed by the increase of simulated organic N in the river
(Figure 9). Nitrite was the least abundant form of N as its oxidation process occurred very fast.
The significant increase in N and P may enhance the eutrophication process, thus contributing towards
the degradation of water quality [22].
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Figure 9. The monthly evolution of the N forms (mg N L−1) for each storyline (timeline 2060 and
GFDL climate model) and baseline condition: (a) Nitrate; (b) Ammonia; (c) Organic N; and (d) Nitrite.

Table 5 and Figure 10 further describe the monthly behaviour of the Total P concentrations in
the baseline simulation and future scenarios while considering the different Storylines and climate
models. On average, most of the scenarios led to similar monthly concentrations when compared
with the present (0.2 mg P L−1). In the 2030 timeline, a decrease of the Total P concentration in the
Sorraia River to 0.1 mg P L−1 was predicted for all storylines when using the GFDL model, mainly
due to the significant decrease in the precipitation amount which reduced runoff and soil erosion,
thus decreasing the transport capacity of P in the basin. In the 2060 timeline, an increase of the Total
P concentration to 0.3 mg P L−1 in the STL 1 and STL2, and a double-fold increase (0.4 mg P L−1)
in the STL3 were predicted, in line with the literature [60]. Serpa et al. [60] found a similar decrease
of water quality in the Vale do Gaio River (Portugal), located a few kilometres south of the Sorraia
River basin, with P concentrations increasing from +29% to +93% depending on the storylines adopted.
All climate models and Storylines showed the same concentration averages for the 2060 timeline when
comparing with the present monthly average (0.2 mg P L−1). However, the major differences observed
between the results from GFDL and IPSL climate models may result from extreme precipitation events
as shown above (Figure 7).

Interestingly, the mineral P increase resulting from fertilizer use in corn fields was not obvious in
terms of water quality results. This outcome can be explained by the fact that P presents low mobility,
adsorbing to sediments and depending on rainfall and runoff events to be removed from agricultural
fields. As shown in Figures 10 and 11, P concentrations are expected to exhibit a different behaviour
from N in all storylines. However, the fact that P concentrations show a slight increase despite the
decrease in precipitation suggests that its continued application will have a significant impact on
water quality.
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Figure 10. The monthly average of the modelled Total P concentration (mg P L−1) for each storyline
and baseline: (a) 2030-GFDL; (b) 2060-GFDL; (c) 2030-IPSL; (d) 2060-IPSL. For clarification on the
modelled scenarios, please see Figure 2.
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Figure 11. The monthly evolution of the P forms (mg P L−1) for each storyline (timeline 2060 and
GFDL climate model) and baseline: (a) Dissolved P; and (b) Organic P.

Results have also shown that the decrease of water in the basin had a significant influence on the
quality of water in the river. Results for Total N and P concentrations (Figures 8 and 10) further suggest
a significant deterioration of water quality in the Sorraia River, particularly with respect to the Total N.

4. Conclusions and Future Research

The modelling approach developed in this work highlighted possible cumulative impacts of
future climatic changes in the Sorraia River basin by considering the expected changes in precipitation,
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temperature, and human activities. A significant decrease in precipitation is expected over the
watershed for the near future (between 25% and 50%). It is likely that this decrease will lead to an
increase in irrigation and fertilization needs over this basin by 35%. The water quantity is predicted to
fall approximately by up to 75%, while water quality shows an unbalanced deterioration, with nutrient
concentrations predicted to increase up to 200% for P and up to 500% for N. Such a rise in nutrient
concentration is observed to be a consequence of the increased use of fertilizers and decrease in water
availability in rivers.

The results show how societal and especially climatic changes can affect river water quantity
and quality in the study basin and can be considered as a starting point for defining appropriate
management plans to counteract such negative impacts. The SWAT model can be further explored to
test the effects of management practices and the degree of stress they introduce on the environment,
thereby contributing to a cost-effective adaptive management practice. For instance, the use of winter
crops with minimum water requirements, the implementation of no-till practices to improve soil
structure and soil infiltration rates, the use of cover crops for reducing soil water evaporation or the
establishment of more resilient cropping systems to cope with water scarcity may allow future impacts
to be minimised at the basin level.
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