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Abstract: Hydrological model parameters are generally considered to be simplified representations
that characterize hydrologic processes. Therefore, their influence on runoff simulations varies with
climate and catchment conditions. To investigate the influence, a three-step framework is proposed,
i.e., a Latin hypercube sampling (LHS-OAT) method multivariate regression model is used to conduct
parametric sensitivity analysis; then, the multilevel-factorial-analysis method is used to quantitatively
evaluate the individual and interactive effects of parameters on the hydrologic model output. Finally,
analysis of the reasons for dynamic parameter changes is performed. Results suggest that the
difference in parameter sensitivity for different periods is significant. The soil bulk density (SOL_BD)
is significant at all times, and the parameter Soil Convention Service (SCS) runoff curve number
(CN2) is the strongest during the flood period, and the other parameters are weaker in different
periods. The interaction effects of CN2 and SOL_BD, as well as effective hydraulic channel conditions
(CH_K2) and SOL_BD, are obvious, indicating that soil bulk density can impact the amount of loss
generated by surface runoff and river recharge to groundwater. These findings help produce the best
parameter inputs and improve the applicability of the model.
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1. Introduction

Hydrological models play a crucial role in simulating the hydrological process of river basins.
These hydrological models are generally composed of several parameters, whose values cannot be
directly determined by field observations but which can be calibrated through input/output records,
which inevitably contain the basin error response [1]. Among many hydrological models, the Soil
and Water Assessment Tool (SWAT) model has been widely used in many countries for its ability to
completely reflect the influence of spatiotemporal heterogeneity, such as topography, soil, and land use,
on the water cycle of the river basin [2–4]. However, the uncertainty of the SWAT model parameter
is difficult to evaluate, because the model parameters are numerous and difficult to obtain. It also
brings difficulties to decision-makers when the hydrological process is accurately described, as well
as the regional relationship between the model parameters and the watershed characteristics. Thus,
more effort is required to quantify the uncertainty in the hydrological simulation.

To date, a variety of optimization algorithms have been developed for calibration and
uncertainty analysis, and good results have been achieved [5–8]. Kouchi et al. [9] use three different
optimization algorithms (sequential uncertainty fitting 2 (SUFI-2), particle swarm optimization (PSO),
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and generalized likelihood uncertainty estimation (GLUE)), as well as eight evaluation indexes in a
SWAT model for emphasizing that the combination of target functions of each optimization algorithm
may lead to different optimal parameter sets, and have the same performance at the same time.
Trudel et al. [10] use seven different objective functions to study hydrological model calibration and the
structural uncertainty in low-flow simulations under climate change conditions. Muleta et al. [11] use
comparative analysis of parameter sensitivity in the high- and low-flow period, and found that there
was a significant difference in the parameter sensitivity between the high- and the low-flow periods,
and the same parameters were different in different periods. However, the algorithm limitations,
such as with GLUE and SUFI-2, lie in the quantitative analysis of the impact of their parameters
on system performance. In fact, model parameters describing different hydrological processes have
different individual effects on the model output. Factorial analysis can help study the individual and
interaction effects of the parameters [12]. The factorial-analysis-of-variance method is used to diagnose
the curve relationship between the parameters and the response [13–15]. Nevertheless, no previous
study has been conducted to investigate the dynamic influence of hydrological model parameters on
runoff simulation using the SUFI-2-based multilevel-factorial-analysis method.

As a case study, this study regarded the source region of the Yellow River, which is known
as the “water tower” of the Yellow River basin and contributes 35% of total annual runoff from
about 16.2% of the basin area [16]. More importantly, the Yellow River plays a key role in the water
supply for 107 million people and for about 13% of the agricultural production of the country’s total
cultivated area.

The objective of this study was to develop a SUFI-2-based multilevel-factorial-analysis method to
address the dynamic influence of hydrological model parameters on runoff simulation. The main steps
of the study included (i) the China Meteorological Assimilation Driving Datasets (CMADS), which were
used to drive the SWAT model; (ii) a multivariate regression model to conduct parametric sensitivity
analysis, which was based on the results of the Latin hypercube sampling (LHS) method; (iii) the
confidence interval of each sensitive parameter, found using the SUFI-2 algorithm; and (iv) using the
SUFI-2-based multilevel-factorial-analysis method, we quantitatively evaluated the individual and
interactive effects of parameters on the hydrologic model output. The results of the study are helpful
for improving the simulation and prediction ability of the hydrologic model for water resources.

2. Study Area

The source region of the Yellow River (Figure 1) is located in the northeast Qinghai–Tibet Plateau
between longitudes 95◦50′ E and 103◦30′ E and latitudes 30◦30′ E and 35◦0′ E, covering 12.19 × 104 km2

and occupying 16.2% of the entire Yellow River basin (75.24 × 104 km2) [17,18]. The average
temperature is about 5 ◦C, and the temperature here varies greatly between day and night. The average
annual precipitation varies between 320 and 750 mm. Precipitation in June to September accounts
for 80% of the total year. Alpine vegetation and alpine meadows are the major vegetation types,
accounting for the total area of 70% in 2010. The major soil type in the watershed is loam, and most of
the soil has poor water retention and low fertility.
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efficiency coefficient (NSE) values and R2 were found to be greater than 0.74 in calibration, and are 
greater than 0.58 in validation. Related results indicate that CMADS performs particularly well in 
runoff simulation. 

Figure 1. Locations of the Yellow River source region.

3. Methodology

This paper uses the CMADS data set to drive the SWAT model. The constructed SWAT model
employs parameters to depict the characteristics of the hydrological process. To identify the parameter
sensitivity to the runoff simulation of the SWAT model, we applied the LHS-based multivariate
regression model. Then, the SUFI-2 algorithm was used to explore the confidence interval of these
identified sensitive parameters. We employed the multilevel-factorial-analysis method to quantitatively
evaluate the individual and interactive effects of the parameters on the hydrological model output,
i.e., the simulated discharge. Finally, the physical mechanism of the parameters involved in the
hydrological process was traced.

3.1. Construction of the Soil and Water Assessment Tool Model

The inputs required for the SWAT model include a DEM (digital elevation model), land use,
and soil data sets. The DEM is the Shuttle Radar Topographic Mission (SRTM) (90) DEM, which comes
from the geospatial data cloud (http://www.gscloud.cn). The soil data were obtained from the
China Soil Data Set (v1.0), based on the World Soil Database (HSDW). The land use data
(LCC2010) of the study region were derived from the dry area scientific data center in the cold
region. The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.1
(CMADS V1.1, http://www.cmads.org), which was developed by Dr. Xianyong Meng from the China
Agricultural University (CAU), has received worldwide attention [19]. This data set is widely used
by countries throughout the world [20–26]. Meng et al. [27] chose the Manas River Basin (MRB) in
China as a research area, in order to verify the adaptability of the China Meteorological Assimilation
Driving Datasets for the Soil and Water Assessment Tool model (CMADS); the results showed that the
SWAT model could reproduce the runoff process of two stations (Kenswat and Hongshanzui) in the
research area well using data from CMADS. Zhang et al. [28] used CMADS to drive the SWAT model
for a runoff simulation in the Hunhe River Basin, and the results showed that both Nash-Sutcliffe
efficiency coefficient (NSE) values and R2 were found to be greater than 0.74 in calibration, and are

http://www.gscloud.cn
http://www.cmads.org
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greater than 0.58 in validation. Related results indicate that CMADS performs particularly well in
runoff simulation.

3.2. Parameter Sensitivity Analysis

There are many parameters in the SWAT model. Different parameters have different sensitivities
to the model simulation [29–31]. The model can eliminate the parameters that have little influence on
the model results from sensitivity analysis, and then reduce the influence of the uncertain transmissions.
This study used NSEs as an objective function, defined as

NSE = 1−

n
∑

i=1
(Qobs,i −Qsim,i)

2

n
∑

i=1
(Qobs,i −Qobs)

2
(1)

where Qsim,i is the ith simulated discharge, Qobs,i is the ith observed discharge, Qobs is the mean of the
observed data, and n is the simulation period.

According to the physical meaning of each parameter, we calibrated the SWAT model using the
same initial parameter ranges, according to the calibration protocol presented by Abbaspour [32].
The sensitivity analysis of the parameter values is generated by LHS sampling, and the value of
the target function by the multiple regression model. The calculation expression of the parameter
sensitivity is written as

g = α +
m

∑
i=1

βibi (2)

where g is the objective function value, α is the regression constant, β is the coefficient of parameters,
bi is the parameter value, and the m is the number of parameters. The t-test method is used to determine
the sensitivity of each parameter.

The following method is used to deduce the confidence interval of each parameter. First,
the sensitivity matrix calculation formula for the objective function is

Jij = ∆gi/∆bj i = 1, · · · , Cn
2 , j = 1, · · · , m (3)

where Cn
2 indicates the number of rows in the sensitivity matrix, j represents the number of parameters,

i means the group number, ∆bj is the parameter of the j rate, and ∆gi represents the parameter
sensitivity. The Hessian matrix calculation formula for the objective function is

H = JT J (4)

where H indicates the haessen matrix, J represents the matrix of the number of parameter columns.
According to Kramer’s theorem, the covariance matrix C for estimating the lower limit of the

parameter is calculated as

C = s2
g

(
JT J
)−1

(5)

where s2
g is the deviation of the result of the n simulation of the target function.

The standard variance of parameter bi and its 95% confidence interval (CI) are calculated by the
diagonal elements in C, as follows:

sj =
√

Cjj (6)

bj,lower = b∗j − tν,0.025 · Sj (7)

bj,upper = b∗j + tν,0.025 · Sj (8)
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where b∗j is the optimal solution of the parameter b, v is the degree of freedom (n −m), bj,lower is the
lower limit of the confidence interval, and bj,upper is the upper limit of confidence interval.

3.3. Parameter Uncertainty Evaluation Index

In order to judge the influence of parameter uncertainty on runoff simulation under different
levels, this paper uses the two indexes of variation rate (VR) and the relative length of the confidence
interval (RL) as the model uncertainty evaluation index. These can be expressed as

VR =
Abs|Qsim −Qobs|

Qobs
(9)

RL =
Qupper −Qlower

Qobs
(10)

where VR is the variation rate, RL is the relative length of confidence interval, Qupper is the upper limit
of the runoff simulation under the 95% confidence interval, and Qlower is the lower limit of the runoff
simulation under the 95% confidence interval.

3.4. Multilevel Factorial Analysis

The factorial analysis is a multivariable reasoning method. It performs excellently in testing the
effects of individual variables and their interactions on the dependent variable [33–35]. Factors A and
B have m and n levels, respectively. Thus, a full-factor factorial design contains all possible factor
combinations. The factor model for this factorial experiment can be expressed as

Yijk = µ + τi + β j + (τβ)ij + εijk


i = 1, 2 . . . a
j = 1, 2 . . . b
k = 1, 2 . . . n

(11)

where µ is the total average effect, εijk is a random error effect, τi is the effect of factor A at the ith
level, βj is the effect of factor B at the jth level, and (τβ)ij is the interaction effect when A is at the ith
level and B is at the jth level. There is a total of abn experiments, where n is the number of repeated
experiments. In order to test the influence of the parameter main effect and the interaction effect on
the runoff simulation, the F-statistic can be used as follows:

FA =
MSA
MSE

=
SSA/a− 1

SSE/ab(n− 1)
(12)

FB =
MSB
MSE

=
SSB/b− 1

SSE/ab(n− 1)
(13)

FAB =
MSAB
MSE

=
SSAB/(a− 1)(b− 1)

SSE/ab(n− 1)
(14)

where MSA, MSB, MSAB, and MSE are the mean squares for factors A, B, their interaction with each
other, and the error component, respectively. The SSA, SSB, SSAB, and SSE are the sum of squares for
factors A and B, their interaction, and the error component, respectively. Each mean square deviation
is the squared sum of the corresponding effects, divided by its degree of freedom. SST is the sum of
the total effect square. This can be calculated by

SSA =
1

bn

a

∑
i=1

y2
i.. −

y2
...

abn
(15)

SSB =
1

an

b

∑
j=1

y2
.j. −

y2
...

abn
(16)



Water 2018, 10, 1177 6 of 18

SSAB =
1
n

a

∑
i=1

b

∑
j=1

y2
ij. −

y2
...

abn
− SSA − SSB (17)

SST =
a

∑
i=1

b

∑
j=1

n

∑
k=1

y2
ijk −

y2
...

abn
(18)

SSE = SST − SSAB − SSA − SSB (19)

where yi.., y.i., and yij. represent the ith level of the factor A, the jth level of the factor B, and the ijth
interaction between factors A and B, respectively.

In particular, there are k factors in the 3k factorial design. Each factor has three levels, so there
is a total of 3k factor level combinations and 3k degrees of freedom. There is a total of k main effects,
each of which is two degrees of freedom. There is an interaction effect of k factors, and the degree of
freedom is 2k − 1. If n repeated tests are performed for each factor level combination, the total degree
of freedom is n3k – 1, and the degree of freedom of the error is 3k(n − 1). The sum of squares for the
main effects and interaction effects is usually obtained by the factorial analysis method.

4. Results and Discussion

4.1. Parameter Sensitivity Analysis, Calibration, and Verification of Model

Parameter sensitivity analysis is an indispensable part of the evaluation model, and it is helpful
in developing a deep understanding of the model characteristics. Hence, this paper takes NSE as the
objective function, and uses LHS-based multiple regression models to analyze the parameter sensitivity.
The t-test method is used to determine the parameter sensitivity—the higher the absolute value of t,
the stronger the sensitivity of the parameters. The related CI of the parameters was determined by
the SUFI-2 algorithm. Parameters’ descriptions and their CIs are listed in Table 1. For the most part,
specific values are given for the parameters. However, some parameters, such as the runoff curve
number, can take on a variety of values. During calibrations, these parameters may be changed by
increasing or reducing them by a certain percentage, until the calibration objective function is met.
Thus, values of these parameters have been reported as a percentage change from a specified value.
The Latin Hypercube sampling (LH-OAT) method was performed for 10 parameters, in order to screen
out the most sensitive parameters of the model, and the results are illustrated in Figure 2.
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As we can see from Figure 2 and Table 1, the most sensitive parameters for runoff simulation
are followed by SOL_BD, CN2, ESCO, CH_K2, SOL_K, SOL_AWC, SFTMP, ALPHA_BF, HRU_SLP,
and GWQMN. In order to design the experimental scheme, the four most sensitive parameters are
selected: The soil bulk density (SOL_BD) was the most sensitive parameter, followed by the Soil
Convention Service (SCS) runoff curve number for moisture conditions II (CN2), the soil evaporation
compensation coefficient (ESCO), and effective hydraulic channel conductivity (CH_K2). A detailed
interpretation of these parameters will be provided in the following section.

Table 1. Final value range of sensitivity parameters.

Parameter Description
CI Calibrated

Value t Value
Min Max

GWQMN Threshold depth of water in the shallow required for
return flow to occur (mm) 700.61 780.61 742.93 1.17

HRU_SLP Average slope steepness (m/m) 0.24 0.26 0.25 1.5
ALPHA_BF Baseflow regression constant (days) 0.00 0.20 0.02 −1.52

SFTMP Snow temperature (◦C) 3.43 3.63 3.45 −2
SOL_AWC Effective water capacity of soil layer (mmH2O/mm soil) 0.15 0.17 0.16 2.19

SOL_K Soil hydraulic conductivity (mm·hr−1) −0.32 −0.29 −0.32 −4.04
CH_K2 Effective hydraulic conductivity of channel (mm/h) 110.97 125.97 121.19 4.59
ESCO Soil evaporation compensation coefficient (mm/h) 0.73 0.75 0.73 −7.36
CN2 Initial SCS runoff curve number to moisture conditions II 0.26 0.28 0.26 −15.28

SOL_BD Soil bulk density (g/cm3) 0.45 0.47 0.46 −58.26

SWAT parameter ranges (and allowable percentage changes): 0 ≤ GWQMN ≤ 5000; 0 ≤ HRU_SLP ≤ 0.6;
0 ≤ ALPHA_BF ≤ 1;−5≤ SFTMP≤ 5; 0≤ SOL_AWC≤ 1 (−50%≤ SOL_AWC≤ 50%); 0≤ SOL_K≤ 2000 (−80%
≤ SOL_K ≤ 80%); 0.01 ≤ CH_K2 ≤ 150; 0 ≤ ESCO ≤ 1; 35 ≤ CN2 ≤ 98 (−50% ≤ CN2 ≤ 50%); 0.9 ≤ SOL_BD ≤ 2.5
(−50% ≤ SOL_BD ≤ 50%); reference [36].

On the basis of CMADS (2008–2015), this paper selected years 2008–2009, 2010–2013,
and 2014–2015 as warm-up, calibration, and validation periods, respectively. The NSE, R2, and the
absolute value of relative error (|Re|) indicators were used to evaluate the model for calibration and
validation periods. The results show that the NSE values were 0.73 and 0.81, respectively, R2 was
0.82 and 0.87, respectively, and |Re| was less than 10% for both periods. The results indicate a good
performance of SWAT in describing the runoff simulation, based on the CMADS data in the source
region of the Yellow River. Che [37] investigated the source area of the Yellow River, and used the
SWAT model to simulate the daily runoff. The results of the study showed that both NSE values and
R2 were less than 0.74 in calibration (validation), which means that CMADS data is superior to other
data in watershed runoff simulation.

Figure 3 shows the simulated daily runoff from 2010–2015 (i.e., the calibration and validation
periods) for the Tangnaihai hydrological station. Specifically, this figure indicates that the 95% CI
width of the daily runoff simulation varies with the flow amount. To further examine the above results,
three different frequencies are set, in order to identify the influence of parameter uncertainty on flow
of different levels (i.e., more than 75%, between 25% and 75%, and less than 75%).Water 2018, 10, x FOR PEER REVIEW  8 of 18 
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Figure 4 shows that when the flow at the high level, the variation rate and the relative length of
confidence interval are small; on the contrary, as the flow reaches the lower level, the variation rate
and the relative length of confidence interval are larger. Given this, we can preliminarily infer that the
physical mechanism of runoff generation dynamically changes during different periods.
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4.2. Multilevel Factorial Analysis and Dynamic Changes in Parameter Sensitivity

As mentioned, the physical mechanism of runoff generation varies at different periods. In the
SWAT model, parameters reflect the characteristics of the hydrological processes. Thus, based on the
above identified sensitive parameters, we used the analysis of variance method (ANOVA) to quantify
the response of individual and interactive parameters in the runoff simulation.

Four parameters, CN2, ESCO, CH_K2, and SOL_BD, were selected as factorial experimental
factors (denoted by A~D, respectively). Subsequently, we designed the 34 factorial design scheme
shown in Table 2.

Table 2. The 34 factorial design scheme.

Parameter
Level

Low Medium High

CN2 0.257 0.267 0.277
ESCO 0.726 0.736 0.746

CH_K2 110.97 120.96 130.97
SOL_BD 0.431 0.452 0.471

Figure 5 shows the parameter contributions for the hydrological responses. The results show that
parameter D is significant at different times, especially in the non-flood period (November to March),
when its contribution reached 0.98. The contribution of parameter A in the pre-flood period (April to
May) increased, but the effect was relatively small, and D was still dominant. The contributions of A, B,
and C during the flood period (June to September) gradually increased, whereas D gradually weakened.
The linear individual effects of A, B, and D, as well as the AC and CD interaction effects, are thus
significant for modelling runoff simulation. During the post-flood period (October), the contributions
of A, B, and C weaken, while parameter D increases.
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4.3. The Individual and Interactive Effects of Parameters on the Hydrologic Model Output in Different Periods

From the previous section, we find that the parameter sensitivity in different years shows similar
characteristics in the non-flood, pre-flood, flood, and post-flood periods. To quantitatively evaluate
the dynamic effect of the parameters on the runoff simulation, we selected 2012 as a typical year,
and three consecutive days of non-flood, pre-flood, flood, and post-flood periods in a typical year.
The objective is to explore the dynamic parameter individual and interaction effects on the runoff
simulation. For simplicity, this article only presents the first-day results of the four periods in a typical
year, and the other results are attached to Supplementary Materials.

4.3.1. The Statistically Significant Individual and Interaction Effects on Runoff Simulation in
Non-Flood Period

Table 3 presents the results of variance analysis for the simulation of daily runoff in the non-flood
period. In this paper, a p-value of less than 0.05 indicates that parameters A, B, and D have significant
effects on the model output in the non-flood period. In particular, the influence of D is more significant.
Moreover, the interaction effects of AB, AD, and BD have statistical significance.

Table 3. Results of ANOVA for the runoff simulation in the non-flood period.

Model Term Sum of Squares F Value p-Value Significance

A 28.47 16,998.37 0.00 **
B 0.76 456.16 0.00 *
C 0.00 0.00 1.00
D 12,890.57 7,695,860.81 0.00 ***

AB 0.12 34.59 0.00 *
AC 0.00 0.00 1.00
AD 2.73 814.23 0.00 *
BC 0.00 0.00 1.00
BD 0.12 34.83 0.00 *
CD 0.00 0.00 1.00

Error 0.04
Total 12,922.80



Water 2018, 10, 1177 10 of 18

For the non-flood period, the main effects of these parameters on the runoff simulation are shown
in Figure 6. From this, we see that changes in the levels of A, B, and C have a weak effect on the
runoff simulation, while changes in the level of parameter D have significant negative effects on the
runoff simulation.

In essence, during the non-flood period, D is an important parameter affecting the model
simulation, which is closely related to the high elevation and cold temperatures of the source region of
the Yellow River, characterized by low rainfall and low temperature. Moreover, lower flow values relate
to lower compensation for glaciers and snowmelt in soil water, resulting in decreased streamflow [38,39].
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Figure 7 presents the parameter interaction effects in the non-flood period of the runoff simulation.
Results show that the AD, BD, and CD interaction effects are significant in this period, while the others
have less influence on the runoff simulation. The main reason for this is that the soil bulk density
(i.e., parameter D) is the parameter that has the greatest impact on the runoff simulation.

Note that for the AD interaction plot in Figure 7 (bottom left), the red, blue, and black lines
represent parameter D at low, medium, and high levels, respectively. This plot discloses that the changes
differ across the three levels of parameter D, depending on the level of parameter A. When D is at the
high level, A has obvious negative effects. However, when D is at the middle level, the negative effect
of A is weakened. This result further indicates that A has a significant impact on the runoff simulation.
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4.3.2. The Statistically Significant Individual and Interaction Effects on the Runoff Simulation in the
Pre-Flood Period

The parameters and their interactions have statistically significant effects on the runoff simulation
(Table 4). The linear individual effects of A, B, and D on the runoff simulation are significant in the
pre-flood period, while other parameter effects (individual and interaction) have little impact on
the response.

Table 4. Results of ANOVA for the pre-flood period runoff simulation.

Model Term Sum of Squares F Value p-Value Significance

A 145.81 591,251.63 0.00 ***
B 2.36 9586.61 0.00 **
C 0.00 5.42 0.01 *
D 420.67 1,705,827.37 0.00 ***

AB 0.00 7.40 0.00 *
AC 0.00 0.94 0.45
AD 0.03 66.12 0.00 *
BC 0.00 1.39 0.25
BD 0.00 1.96 0.12
CD 0.00 0.46 0.76

Error 0.01
Total 568.88

Figure 8 presents the individual effect plot for the four parameters in the pre-flood period.
Results show that A has a positive effect on the runoff simulation, while D has a negative effect.
Nevertheless, parameters B and C have a slight effect on the flow.

The flow value reaches 112.12 m3/s when A is at the high level. In contrast, the simulated flow
value is only 96.20 m3/s. Furthermore, compared with other levels of runoff simulation, the three levels
of D lead to smaller runoff simulation values. These results are attributed to a higher compensation for
snow melt, and thus increased flow [40]. However, the slope of D is irregular, implying an obvious
nonlinear effect on the runoff simulation, owing to the complex topography and soil characteristics of
the basin.
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Figure 9 depicts the parameter interaction effects in the pre-flood period. If the slope of one
curve differs from another, there are interactive effects between the parameters. The parallel lines in
the interaction plots of parameters A, B, C, and D indicate tiny parameter interactions. Specifically,
the interaction of A and B, as well as B and C, are not apparent in Figure 9.
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In addition, the results indicate that parameter A has the largest nonlinear effect on the runoff
simulation, while the other nonlinear effects are weak. The identical results of these plots can be used
to confirm the findings in the above numerical value model.
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4.3.3. The Statistically Significant Individual and Interaction Effects on the Runoff Simulation in the
Flood Period

The results of ANOVA for the runoff simulation during the flood period are shown in Table 5.
Results indicate that parameters A, B, C, and D have significant linear main effects on the runoff
simulation. Among them, the significance of A is the strongest, followed by D, B, and C. Meanwhile,
parameters AC, AD, and CD interaction effects are of important significance.

Table 5. Results of ANOVA for the flood period runoff simulation.

Model Term Sum of Squares F Value p-Value Significance

A 31,490.77 3587.56 0.00 ***
B 3800.32 432.95 0.00 **
C 745.95 84.98 0.00 *
D 15,926.84 1814.45 0.00 ***

AB 1.53 0.09 0.99
AC 287.46 16.37 0.00 *
AD 177.23 10.10 0.00 *
BC 37.23 2.12 0.09
BD 26.79 1.53 0.21
CD 263.16 14.99 0.00 *

Error 210.67
Total 52,967.95

The influence of the main parameter effects on the runoff simulation during the flood period is
shown in Figure 10. It shows the influence of the parameters on the runoff simulation and compares
the relative size of the influence. Parameter A has the largest positive individual effect when A is at
low, middle, and high levels, when the simulated flow value is 2375.24, 2398.45, and 2420.22 m3/s,
respectively. Parameter A is a comprehensive reaction of the underlying surface characteristics,
which directly determines the size of the flow. However, parameter D has the greatest nonlinear effect.

Therefore, the smaller the soil bulk density, the weaker the ability to resist precipitation and thus
increased flow. However, with the increase of D, the ability to resist precipitation is enhanced, which aids
infiltration; however, the flow is then increased, due to a sharp decrease in soil porosity [41,42].
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Figure 11 plots three level interaction effects of the flood period for the four parameters.
Results disclose that AC, AD, and CD have noticeable interaction effects, while the others have
almost no interaction effect.

Take the plot on the bottom left, with the interaction of parameters A and D as an example.
The plot depicts the changes in D at its low, middle, and high levels, depending on the level of A,
as well as the interaction between the low level and the middle level curve of D. This reveals the
interaction of A and D has a significant influence on the runoff simulation. Therefore, the parameter
interaction must be emphasized at calibration.
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4.3.4. The Statistically Significant Individual and Interaction Effects on the Runoff Simulation in the
Post-Flood Period

Table 6 shows the ANOVA results for the runoff simulation in the post-flood period. Results reveal
that the selected parameters, A, B, and D, have a significant (p < 0.05) effect on the runoff simulation;
among them, the significance of D is the strongest. Similarly, the interaction effects of A and C have an
important impact on the runoff simulation (Table 6).

The individual parameter effects for the runoff simulation in the post-flood period are shown in
Figure 12. The result shows that the level change of D has the greatest negative effect on the runoff
simulation. In essence, the above results are attributable to the continuous precipitation decrease,
and the river runoff mainly depends on the recharge of the interflow, e.g., the greater the A value,
the less recharge in the soil. Moreover, a decrease in soil evaporation is caused by lower temperature.
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The nonlinear variation of the D curve is mainly due to the complex physical characteristics of soil.
When D is at the low level, the soil viscosity is larger, and the interflow has less recharge for the runoff.
As D reaches the high level, less precipitation and lower porosity combine to reduce runoff in the
post-flood period [43].

Table 6. Results of ANOVA for the post-flood period runoff simulation.

Model Term Sum of Squares F Value p-Value Significance

A 1267.75 258,334.54 0.00 ***
B 662.22 134,942.54 0.00 **
C 0.03 5.48 0.01 *
D 66,212.33 13,492,324.58 0.00 ***

AB 0.05 4.88 0.00 *
AC 0.00 0.35 0.84
AD 27.18 2769.41 0.00 *
BC 0.00 0.50 0.73
BD 4.98 507.67 0.00 *
CD 0.00 0.50 0.73

Error 0.12
Total 68,174.67
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The interaction effects of parameters in the post-flood period are shown in Figure 13. The results
disclose that the interaction effects of D and other parameters are negative for the runoff simulation,
particularly the interaction effects of A and C.
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4.3.5. Contributions of Parameter Individual and Interaction Effects for the Runoff Simulation in
Four Periods

Figure 14 accurately quantifies the contribution of individual and interaction parameter effects to
runoff in the four periods. The results show that the parameter contribution to the runoff simulation is
significant for the different periods.

In detail, the parameter D have the greatest impact on the runoff simulation in the non-flood
and post-flood period, contributing 0.99 and 0.97, respectively. The contribution of D to the runoff
simulation is reduced while others increase in the pre-flood period—especially A, which contributes
0.26 (i.e., 26%). However, the contribution of A to the runoff simulation is the most significant in the
flood period (0.60), implying that the infiltration-excess runoff production caused by concentrated
precipitation has a great influence on this parameter, while soil porosity and soil moisture have great
influence on D. The influence of temperature on B is also significant.
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5. Conclusions

In this study, using CMADS to drive the SWAT model, we developed a SUFI-2-based
multilevel-factorial-analysis method in order to disclose the effect of parameters in the SWAT model
on runoff simulations. Here, the SUFI-2 was used to explore the CI of identified sensitive parameters.

Subsequently, we applied the multilevel-factorial-analysis method to explore the individual and
interactive effects of parameters on the runoff simulation in different periods (i.e., non-flood, pre-flood,
flood, and post-flood). The developed method was exemplarily applied to the source region of the
Yellow River, due to its key role in water resource supply. Important conclusions drawn from this
study are as follows:

(1) The influence of parameters CN2, ESCO, CH_K2, and SOL_BD (i.e., A, B, C, and D, respectively)
on the runoff simulation is significant in different periods (Figure 2, Tables 3–6). In general,
the linear individual effects of factors A, B, and D, as well as the AD interaction effects, are thus
significant, while the others have little influence on the response.

(2) The contributions of different parameters to the runoff simulation are different in different periods
(Figure 14). The effect of soil bulk density (D) on the runoff simulation is significant in four
periods, contributing 0.99, 0.73, 0.30, and 0.97, respectively. The effect of the initial SCS runoff
curve number (A) on the runoff simulation is significant in the non-flood and flood periods,
contributing 0.26 and 0.60, respectively.
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(3) The interaction effects of parameters on runoff simulation are significant in the flood period.
Take parameters A and D as an example: The changes differ across the three levels of parameter D,
depending on the level of parameter A. The slope curve is distinctly different between parameters
A and D. This reveals the interaction of A and D has a significant influence on the runoff simulation.
Therefore, the parameter interaction must be emphasized in flood periods.

(4) In essence, the soil bulk density moisture content and infiltration-excess runoff production are
important water inputs for the hydrological system in the source region of the Yellow River.
It is further explained that soil bulk density will affect the loss of surface runoff and river
recharge groundwater.
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