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Abstract: A practical formal likelihood function (L) is developed to separate model structure errors
and observation errors by the separation of correlated and uncorrelated model residuals. L overcomes
the time-consuming problem of likelihood functions proposed by previous studies, and combines
the Mean Square Error (MSE) and first-order Auto-Regression (AR(1)) models. For comparison of
the effect of different error models, MSE, AR(1), and L are used as efficiency criteria to calibrate
the three-dimensional variably saturated ground-water flow model (MF2K-VSF) based on the soil
tank seepages of rainfall–runoff experiments. Results of L are nearly the same as those of AR(1)
due to negligible observational errors. Although all calibrated models well mimic the seepage
discharges, MF2K-VSF with MSE cannot capture the groundwater level and soil suction processes
because of the considerable autocorrelation of model residuals owing to model inadequacies (e.g.,
neglect of the soil moisture hysteresis), which obviously violates the statistical assumption of
MSE. By contrast, L accounts for the model structural errors and thus enhances the reliability of
hydrological simulations.

Keywords: formal likelihood function; model structure errors; observation errors; numeric
groundwater model; inverse modeling

1. Introduction

Numerical groundwater models (such as three-dimensional finite-difference ground-water
model (MODFLOW), three-dimensional variably saturated ground-water flow model (MF2K-VSF),
and Hydrus) are widely used for groundwater resource assessment [1,2]. Although parameters of
a numerical groundwater model have definite physical meaning and can be estimated in the field
or laboratory at a specific location, scale effects due to the aquifer heterogeneity often hinder their
accurate estimations [3–6]. Therefore, for improvement of model performance, a so-called inverse
modeling is popularly proposed to calibrate groundwater models, which iteratively adjusts the model
parameters so that model outcomes approximate, as closely and consistently as possible, the historical
record data [3,6,7].

Unlike the manual calibration method, inverse modeling impossibly uses the visual inspection of
similarities and differences between model predictions and observed data. Therefore, hydrologists have
proposed many statistical measures as model efficiency criteria instead of subjective visual judgment
to ascertain the goodness of fit of hydrologic models [8–12]. Among these goodness-of-fit indicators,
the mean squared error (MSE) (i.e., standard least squares) and its normalization (i.e., Nash–Sutcliffe
efficiency (NSE) defined by Nash and Sutcliffe [13] are most widely used [7,9,12,14–16].
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With the development of Bayesian theory (e.g., maximum likelihood Bayesian model averaging
approach [17–19]), the likelihood function is widely concerned because of the powerful theoretical
support [6,20]. The likelihood function is defined as the joint probability of model residuals.
The maximum likelihood value is in agreement with the best model parameters, which is the so-called
maximum likelihood estimation. Moreover, some statistical measures can be reevaluated from the
likelihood function viewpoint [16]. For example, numerous authors [14,21,22] pointed out that MSE
implies statistical assumptions that model errors should be independent and identically distributed
(I.I.D.) according to a Gaussian distribution with zero mean and a constant variance. However,
Beven et al. [23] believed that model residuals rarely fulfill the I.I.D. assumption in practice because
they do not only have random components but also include epistemic errors (e.g., model structure
errors) that result in the bias, correlation, and heteroscedasticity of model residuals. Therefore,
it is necessary to explicitly account for the epistemic errors (i.e., nonrandom components) before
calculation of the probability densities of model residuals [24]. The first-order autoregressive (AR(1))
scheme and the Box–Cox transformation method are popularly used to remove the correlation and
heteroscedasticity of model residuals, respectively [24–27].

Reichert and Mieleitner [28] pointed out that the model residuals come from several parts:
the model input error, the model parameter error, the model structural error, and the observed
output error. Because model parameter and input errors affect the model residual through model
structure, model structural errors in this study include the model parameter and input errors. However,
traditional methods (e.g., AR(1)) lump all errors of model structure and observation into a single
additive residual term, but neglect the distinctions of error sources. In fact, the error characteristics
of different error sources are different. For example, the model structure errors have a high degree
of temporal correlation [29], while the observational errors are usually independent [30]. Therefore,
it is unreasonable to simultaneously account for the correlation of model structural and observational
errors by the AR(1) method. Overall, a formal likelihood function could be able to distinguish errors
from model structure and observation and remove their nonrandom components [23], because I.I.D.
model residuals are convenient for estimation of their joint probability. For this purpose, Reichert and
Schuwirth [30] proposed a formal likelihood function based on the assumption that both the model
structural and observational errors follow the multivariate Gaussian distribution.

In the multivariate Gaussian distribution, the covariance matrix reflects the correlation between
any two variates, and the inverse covariance matrix should be calculated before estimation of the joint
probability of variates. However, it is time-consuming to compute the inverse matrix, e.g., the widely
used lower–upper (LU) decomposition algorithm costs about 2n3/3 floating point operations, where n
is the number of variates (i.e., the dimension of the covariance matrix) [31]. Therefore, the direct
estimation of likelihood function values proposed by Reichert and Schuwirth [30] can pose serious
numerical problems when calculating the highly dimensional inverse covariance matrix [30,32].
In other words, the likelihood function is inapplicable for the long hydrologic series. Nevertheless, a
success of inverse modeling requires sufficient observation data [33]. As a consequence, the likelihood
function introduced by Reichert and Schuwirth [30] seems unworkable in practice at the moment.

In order to overcome the numerical problems, this study attempts to simplify the likelihood
function introduced by Reichert and Schuwirth [30], and find an analytical solution of the inverse
covariance matrix to save computational time. Herein, we firstly develop a (practical) formal likelihood
function to separate model structural and observational errors based on the assumptions that (1) the
correlated residuals only originate from the model structural errors [29], (2) the AR(1) scheme can
remove the correlation of model residuals [24–27], and (3) the observational errors follow a Gaussian
distribution with an identical variance [30]. Then the new likelihood function and analytical solution
are tested by synthetically generated data. Next, we apply the (practical) formal likelihood function as
an efficiency criterion to calibrate the numerical groundwater model (MF2K-VSF) based on the soil
tank seepage data of two rainfall–runoff experiments. At last, for assessment of the effects of efficiency
criteria on the inverse modeling, the model calibration results of seepages together with soil suctions



Water 2018, 10, 1151 3 of 19

and groundwater levels for the formal likelihood function are compared with those for the traditional
efficiency criteria (i.e., MSE and AR(1) methods).

2. Methods

2.1. Equivalent Relationship between AR(1) and Multivariate Gaussian Distribution

The errors/residuals (e) between the observed and the simulated outcomes are treated as random
variables:

ei = obsi − simi (1)

where obsi and simi are observed and simulated outcomes at time step i, respectively.
In the dynamics-based groundwater model, the model outputs depend heavily on their previous

state, which results in the “memory” of model predictions. Therefore, model residuals usually exhibit
considerable autocorrelation as a result of the groundwater model inadequacies [24,29]. The first-order
autoregressive (AR(1)) scheme is widely used to remove the autocorrelation of model residuals:

εi = ei − R× ei−1 (2)

where εi is the model residual after AR(1), R is the autocorrelation coefficient of the model residuals,
and ei−1 and ei are the original model residuals at the time steps i − 1 and i, respectively.

If model residuals after AR(1) follow the Gaussian distribution, the logarithmic (log-) likelihood
function can be expressed as

L = ∑n
i = 2 ln

[
1√

2πσε

exp
(
− εi

2

2σε
2

)]
+ ln

[
1√
2πσ

exp
(
− e1

2

2σ2

)]
(3)

where n is the length of the model residual series, σε is the standard deviation of model residuals after
AR(1), and σ is the standard deviation of e1 and usually σ = σε/

√
1− R2.

Defining Λ as

Λ =



1 −R 0 0 0 0 0 0
−R 1 + R2 −R 0 0 0 0 0

0 −R 1 + R2 −R 0 0 0 0
. . .

0 0 0 0 −R 1 + R2 −R 0
0 0 0 0 0 −R 1 + R2 −R
0 0 0 0 0 0 −R 1


and E as the vector of model residuals

E = [ e1, e2, · · · , en−2 , en−1, en]
T

then Equation (3) can be simplified as

L = ln

 √
|Λ|(√

2πσε

)n exp
(
−1
2σε

2 ETΛE
) (4)

where |Λ| is the determinant of matrix Λ, and ET is the transposition of the vector E.
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Because the inverse matrix of Λ/
(
1− R2) is [34]

Σ =



1 R R2 R3 Rn−4 Rn−3 Rn−2 Rn−1

R 1 R R2 Rn−5 Rn−4 Rn−3 Rn−2

R2 R 1 R Rn−6 Rn−5 Rn−4 Rn−3

. . .
Rn−3 Rn−4 Rn−5 Rn−6 R 1 R R2

Rn−2 Rn−3 Rn−4 Rn−5 R2 R 1 R
Rn−1 Rn−2 Rn−3 Rn−4 R3 R2 R 1


Equation (4) can be expressed as

L = ln

 1(√
2π
)n√

|σ2Σ|
exp

(
−1

2
ET
(

σ2Σ
)−1

E
) (5)

where σ2Σ is the covariance matrix of model residuals.
Equation (5) reveals that the model residuals follow the multivariate Gaussian distribution with

the covariance matrix σ2Σ as the model residuals after AR(1) follow the Gaussian distribution. In other
words, if the model residuals follow the multivariate Gaussian distribution with σ2Σ, AR(1) can
remove the autocorrelation of model residuals.

2.2. A Practical Formal Likelihood Function to Separate Model Structural and Observational Errors

Based on the assumptions that both the model structural and observational errors follow the
multivariate Gaussian distribution, Reichert and Schuwirth [30] derived a formal likelihood function
to distinguish errors from model structure and observation:

L = ln

 1(√
2π
)n√

|ΣB + σe2 I|
exp

(
−

ET(ΣB + σe
2 I
)−1E

2

) (6)

where ΣB is the covariance matrix of model structure errors, σe is the standard deviation of
observational errors, I is the identity matrix, and σe

2 I is the covariance matrix of observational errors.
The mean of the observational error conditional distribution given model residuals (E) is

eobs =
(

σe
2 I
)(

ΣB + σe
2 I
)−1

E (7)

and the model structural error mean is

emod = E− eobs = ΣB

(
ΣB + σe

2 I
)−1

E (8)

The calculation of the inverse covariance matrix
(
ΣB + σe

2 I
)

is the main barrier of this likelihood
function application [30,32]. Reichert and Schuwirth [30] point out that the theoretical development of
a formal likelihood function is independent of the specific form of ΣB. In Section 2.1, σ2Σ has been
proved to be a covariance matrix of AR(1) that is able to represent the first-order autocorrelation of
model structure errors [24,26]. Therefore, in this study, we use the specific covariance matrix (σ2Σ in
Equation (5)) to replace ΣB in order to save computational time:

(
ΣB + σe

2 I
)−1

=
(

σ2Σ + σe
2 I
)−1

=
Λ

σe2

(
σε

2

σe2 + Λ

)−1

(9)
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Equation (9) has the analytical solution (see Appendix A for technical details). After substituting
Equation (9) into Equation (6) and defining b = σε

2/σe
2, the log-likelihood function (Equation (6)) is

transformed to

L = ln

( 1(√
2π
)n

√
1− R2

|b + Λ|σe2n exp

(
−ETΛ(b + Λ)−1E

2σe2

) (10)

The formal likelihood function (L; Equation (10)) is flexible. When b = 0, L becomes

L = ln

 1(√
2π σe

)n

− ETE
2σe2 . (11)

Equation (11) is equivalent to MSE [22], where model residuals only include the observational
errors. Therefore, MSE actually neglects any model inadequacies and attributes deviations between
model predictions and observed data to measurement errors.

When b approaches infinity, L (Equation (10)) becomes

L = ln

 1(√
2π
)n

√
1− R2

(bσe2)
n exp

(
−ETΛE

2bσe2

) = ln

 1(√
2π
)n

√
1− R2

σε
2n exp

(
−ETΛE

2σε
2

) (12)

Equation (12) is the same as Equation (4) of AR(1), which means that the model residuals only
include the model structural errors. In other words, the assumption of AR(1) is that the model residuals
do not include the observational errors.

When

σe =

√
ETΛ(b + Λ )−1E

n
(13)

the practical likelihood function Equation (10) reaches the maximum value:

Lmax = −n
2

ln(2π)− n
2
+

(
ln
(
1− R2)− ln(|b + Λ|)

)
2

− n
2

ln

[
ETΛ(b + Λ)−1E

n

]
(14)

The practical formal likelihood function (Equation (14)) has two statistical parameters: R which is
the autocorrelation coefficient of model structural errors, and b which is the ratio between the variance
of the random components of model structural errors and the variance of the observation errors.

2.3. Test of the Practical Formal Likelihood Function

We assume that y = sin(c × x + d) is a model, of which c and d are the parameters. When c = 1,
d = 0, R = 0.9, b = 4, and σe = 0.02, the synthetic observation values of the model can be generated using
the following equation:

y = sin (x) + emod + eobs (15)

where emod and eobs are the errors of model structure and observation, respectively. emod follows the
random distribution of Equation (5), and eobs follows the Gaussian random distribution (Equation (11)).
An example of synthetic observation data is shown in Figure 1.
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Figure 1. Comparison between the synthetically generated data and the simulated results for model
calibration criteria of mean squared error (MSE) and Likelihood.

For comparison of the computational efficiency of the analytical solution and inverse matrix
approach, different lengths of observed data series are generated by Equation (15), and the runtimes
of the two methods for different numbers of observed data are shown in Table 1. Table 1 indicates
that the elapsed time increases with the length of the data series. However, the analytical solution is
much faster than the inverse matrix approach, and the inverse matrix approach even fails to proceed
because of lack of memory when there are too many datapoints, i.e., high-dimension covariance matrix.
Therefore, the analytical solution proposed by this study is faster than the inverse matrix approach.

Table 1. Comparison of the runtime of the analytical solution and inverse matrix approach.

Number of Observation Datapoints 3142 6283 9424 12,565 15,706

Runtime (s)
Analytical Method 1.71 3.01 5.61 9.33 13.84
Matrix Inversion 30.83 518.6 2712.48 Out of memory

In order to compare the effects of different model calibration criteria, 33 synthetic observation
datapoints were generated (Figure 1), of which small samples can emphasize the difference in model
calibration results. The model calibration results of the MSE, AR(1), and L methods are shown in
Table 2, and the simulation results are presented in Figure 1. Table 2 indicates that the optimized
parameter values for L are much closer to the true values of the model (i.e., y = sin(x)) than are those
for MSE. There is an obvious tradeoff between the model efficiency criteria of MSE and L. Therefore,
L and MSE are two different criteria. Because MSE only considers the observed errors, the model
structure errors with strong autocorrelation easily affect the calibration results. By contrast, L proposed
by this study can filter the effect of model structural errors to obtain more reliable model parameters.
Because the value of b (i.e., equal to 4) is large, which means that model residuals primarily come from
model structure errors and the observation errors are negligible, the optimized results of the AR(1)
method are similar to those of the L approach.
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Table 2. Optimized results of model parameter values and corresponding criterion values of MSE
and Likelihood.

Model Parameter
y = sin(c × x + d) Criterion Values

c d (min) MSE (max) Likelihood

Synthetic data 1.000 0.000 0.0178 53.444
MSE 0.940 0.149 0.0137 51.749

AR(1) a 1.021 −0.007 0.0189 53.683
Likelihood 1.016 0.005 0.0182 53.696

a First-order autoregression.

In summary, the analytical solution is much faster than the matrix inversion method, and the
inverse model with L identifies model parameter values better than that with MSE.

3. Case Study

3.1. Material

The test data were collected from rainfall–runoff experiments within a soil tank (Figure 2) in the
State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering at Hohai University,
China. The size of the soil tank is 12 m in length, 1.5 m in width, and 1.5 m in height. In the soil tank,
we first laid a 5.0 cm thick filter layer with coarse gravel, and then filled in a 1.3 m thick soil layer
with dried and sieved sandy loam in 2004. The total thickness was equal to 1.35 m. The proportions
of soil particle size were 7.1% clay, 16.4% silt, and 76.5% sand. After dozens of rainfall experiments,
the structure of the soil approached a steady state with saturated water content of 0.40 and dry bulk
density of 1.40 g/cm3. As shown in Figure 2, a small tank was connected to the soil tank to gather the
seepage flow from the filter layer, and its seepage height was set to 6.2 cm to submerge the 5.0 cm thick
filter layer.
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Figure 2. Sketch of the rainfall–runoff experiment in the soil tank as well as the position of
measuring instruments.

We sampled some soil cores on the surface of the soil tank for measurement of the soil hydraulic
properties in the laboratory. The falling head method was used to estimate the vertical soil hydraulic
conductivity of soil cores [5,35]. The result was equal to 6.884 ± 2.268 × 10−6 m/s. A refrigerated
centrifuge (CR21GIII, Hitachi Koki Co., Ltd., Tokyo, Japan) was used to measure the soil water retention
curve. The results are presented in Table 3 and Figure 3. Note that the positive value of soil suction
means that soil is unsaturated, rather than saturated, which is opposite to the value of the water
pressure head.

Three rainfall–runoff experiments were executed. The first experiment with a rainfall intensity of
2.1 mm/min lasted 1.8 h, the second of 1.7 mm/min lasted 4.2 h, and the third of 1.4 mm/min lasted
1.4 h. Most of the rainfall became surface runoff. However, to increase infiltration, the outlet of the
surface drainage ditch was blocked in the third experiment. The seepage from the filter layer was
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observed using a highly precise tipping bucket gauge. In the third experiment, however, in order to
avoid limitation of the measurement range (from 0 to 1.3 × 10−3 m3/min) of the tipping bucket gauge,
we first manually measured the peak of seepage over the limitation and then automatically measured
the seepage using the tipping bucket gauge. Of course, the accuracy of the manual observation is
worse than that of the tipping bucket gauge. The soil suction was measured by tensiometers with
porous ceramic cups at the depths of 80, 100, and 130 cm, and the groundwater level was measured
by wells with automatic observation sensors (HOBO® U20 Water Level Logger). The position of
tensiometers and wells is shown in Figure 2. Note that the locations of tensiometers close to the outlet
of the sandbox is for avoiding the effect of groundwater. The precisions of the rainfall gauge, tipping
bucket gauge, water level logger, and tensiometer were ±1.0%, ±1.0%, ±0.1%, and ±0.5% full scale,
respectively. The automatic measurement frequencies of seepage, soil suction, and groundwater level
were all 1 min, and the manual measurement frequency of seepage was about 10 min.

Table 3. Description of model parameters with measured values and optimized results.

Parameters a Definition Measured
Calibration Result

MSE AR(1) Likelihood

Kh
Horizontal soil hydraulic
conductivity (×10−5 m/s) — 8.927 0.287 0.301

Kv
Vertical soil hydraulic
conductivity (×10−6 m/s) 6.884 5.148 4.884 4.899

α1
α for unsaturated hydraulic
conductivity (1/m) — 1.905 2.129 2.130

n1
n for unsaturated hydraulic
conductivity — 6.265 5.247 5.247

α2 α for soil water retention (1/m) 2.319 1.408 1.502 1.503
n2 n for soil water retention 2.686 3.264 3.062 3.062

Kf
Hydraulic conductivity of filter
layer (×10−3 m/s) — 1.558 2.903 2.903

Error model
R Autocorrelation coefficient — — 0.9954 0.9996

b
Ratio between the variance of
model structure and
observation errors

— — — 3.02

Criteria
(min) MSE 0.00088 0.00172 0.001691
(max) Likelihood 39,828 40,562 40,593

a Dual set of parameters used in the van Genuchten–Mualem (VGM) functions.

Water 2018, 10, x FOR PEER REVIEW  8 of 19 

 

observed using a highly precise tipping bucket gauge. In the third experiment, however, in order to 
avoid limitation of the measurement range (from 0 to 1.3 × 10−3 m3/min) of the tipping bucket gauge, 
we first manually measured the peak of seepage over the limitation and then automatically measured 
the seepage using the tipping bucket gauge. Of course, the accuracy of the manual observation is 
worse than that of the tipping bucket gauge. The soil suction was measured by tensiometers with 
porous ceramic cups at the depths of 80, 100, and 130 cm, and the groundwater level was measured 
by wells with automatic observation sensors (HOBO® U20 Water Level Logger). The position of 
tensiometers and wells is shown in Figure 2. Note that the locations of tensiometers close to the outlet 
of the sandbox is for avoiding the effect of groundwater. The precisions of the rainfall gauge, tipping 
bucket gauge, water level logger, and tensiometer were ±1.0%, ±1.0%, ±0.1%, and ±0.5% full scale, 
respectively. The automatic measurement frequencies of seepage, soil suction, and groundwater level 
were all 1 min, and the manual measurement frequency of seepage was about 10 min. 

Table 3. Description of model parameters with measured values and optimized results. 

Parameters a Definition Measured 
Calibration Result 

MSE AR(1) Likelihood 
Kh Horizontal soil hydraulic conductivity (×10−5 m/s) ― 8.927 0.287 0.301 
Kv Vertical soil hydraulic conductivity (×10−6 m/s) 6.884 5.148 4.884 4.899 
α1 α for unsaturated hydraulic conductivity (1/m) ― 1.905 2.129 2.130 
n1 n for unsaturated hydraulic conductivity ― 6.265 5.247 5.247 
α2 α for soil water retention (1/m) 2.319 1.408 1.502 1.503 
n2 n for soil water retention 2.686 3.264 3.062 3.062 
Kf Hydraulic conductivity of filter layer (×10−3 m/s) ― 1.558 2.903 2.903 

Error 
model 

R Autocorrelation coefficient ― ― 0.9954 0.9996 

b 
Ratio between the variance of model structure and 
observation errors 

― ― ― 3.02 

Criteria 
(min) MSE  0.00088 0.00172 0.001691 
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3.2. Numerical Groundwater Model

MF2K-VSF is a numerical groundwater model developed by United States Geological Survey
(USGS), which can simulate three-dimensional variably saturated flow in porous media by expanding
the saturated groundwater flow equation (used by MODFLOW) to include unsaturated flow using
Richards’ Equation [1]. The governing equation for two-dimensional variably saturated flow is

∂

∂x
[Kx(ψ)

∂h
∂x

] +
∂

∂z
[Kz(ψ)

∂h
∂z

] =
∂θ(ψ)

∂t
(16)

where ψ is the pore water pressure head, h is the total hydraulic head, θ(ψ) is the soil water content
as a function of the pore water pressure head, and Kx(ψ) and Kz(ψ) are the horizontal and vertical
hydraulic conductivities, respectively, as functions of the pore water pressure head.

The van Genuchten–Mualem model (VGM) is widely used to estimate the soil water content
and unsaturated hydraulic conductivity based on the pore water pressure head. For improving the
flexibility of VGM functions, a dual set of parameters is used [1]:

K(ψ) = Ks
{1− (α1ψ) n1−1[1 + (α1ψ)n1 ]

−m1}
2

[1 + (α1ψ)n1 ]
m1/2 (17)

θ(ψ) = θr +
θs − θr

[1 + (α2ψ)n2 ]
m2

(18)

where α1, n1, and m1 are the curve shape parameters of VGM for the unsaturated hydraulic
conductivity; Ks is the saturated hydraulic conductivity; α2, n2, and m2 are the curve shape parameters
of VGM for the soil water content; mi = 1 − 1/ni, i = 1, 2; θs is the saturated soil water content; and θr

is the residual soil water content.
In Equation (17), θs and θr are estimated by fitting the soil water retention curve using the VGM

model (Figure 3), and are identified as 0.40 and 0.10, respectively. Figure 2 shows that the soil tank can
be divided into two layers: soil/upper layer and filter/lower layer. For the filter layer, because it is
always saturated and shallow, only the hydraulic conductivity needs to be estimated (Kf in Table 3).
For the soil layer, however, six parameters (α1, n1, α2, n2, and horizontal and vertical Ks) need to be
estimated. The detailed descriptions of parameters for model calibration are given in Table 3.

In the numerical model, we perform two-dimensional (2D) simulation to save computational time,
and the 2D model is sufficient and will provide accurate results because the ratio between the length
and the width of the soil tank is large and the main flow is in the longitudinal direction. The grid
size was set to (Horizontal) 10 cm × (Vertical) 1 cm, the time step size was 1 min, and the simulation
periods of the three experiments were about 3, 5, and 6 days, respectively. The boundary conditions
(BC) were the default BC of MF2K-VSF, i.e., no-flow BC. The drain package was used to simulate the
seepages from the soil tank, and an improved lake package was used to simulate not only the rainfall
infiltration but also the soil tank surface ponding recession. The improved lake package sets the lake
cells as constant-head cells with the head of lake water level in the initial time-step, which will be
updated in the next time-step according to the estimated infiltration rate.

The soil tank seepages of the first and the second rainfall–runoff experiments were selected to
calibrate seven parameters of MF2K-VSF (Table 3). Then, the measured soil suctions and groundwater
levels and the observed data of the third rainfall–runoff experiment were used for validation of
the calibrated MF2K-VSF model. The peak seepage flows of the second rainfall–runoff experiment
(Figure 4(a2nd)) were unfortunately lost because the seepage exceeded the measurement range of the
tipping bucket gauge. However, the missing data affected the model calibration results only slightly
because two rainfall–runoff experimental datasets were used to calibrate the numerical model and the
peak seepage flows of the first rainfall–runoff experiment were captured which could overcome the
mistake of data loss. Due to the long time interval (about 5 months) between the two rainfall–runoff



Water 2018, 10, 1151 10 of 19

experiments, the soil water was always in a relatively stable state at the beginning of each experiment.
In this study, initial heads of the soil layer adopt the tensiometer measurement data.
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Figure 4. Error analysis for the simulated seepages of the MSE method. (a) Comparison between the
observed and simulated soil tank seepages. (b) Errors between the observed and simulated seepages.
(c) Partial autocorrelation coefficients of errors with 95% significance levels. Left column is for the first
experiment and right column is for the second experiment.

The Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC)
scheme was employed as the optimization tool in inverse modeling. This scheme is ideally suited
for high-dimensional and multimodal optimization problems because it follows up on the Shuffled
Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, runs multiple different
chains simultaneously for global exploration, and maintains a detailed balance condition [36]. In this
study, the likelihood functions of MSE, AR(1), and L (i.e., Equations (10)–(12), respectively) were
separately used as the model calibration criterion in DREAM. For each criterion, we selected 8 parallel
chains and a total of 40,000 model evaluations for the DREAM algorithm parameterization on the R
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platform, and ran them on the “Soroban” High-Performance Computing System at Freie Universität
Berlin. The running times of DREAM for MSE, AR(1), and L are about 14, 14, and 15 days, respectively.
The operating speeds of the MSE and AR(1) methods are faster than that of the L approach.

4. Results

For comparison of the traditional least-squares estimation [7,15] and the maximum likelihood
estimation, MSE (i.e., the standard least squares), AR(1), and L methods were selected as the
efficiency criteria of inverse modeling to estimate the parameters of the numerical groundwater
model (MF2K-VSF). The optimal values of model parameters are listed in Table 3. In this table,
the values of the autocorrelation coefficient (R) are close to 1.0, which means that there is a considerable
correlation of model residuals. The large value of the ratio (b = 3.0) demonstrates that the model
structural errors are three times larger than the observed errors. As a consequence, the calibration
results of the AR(1) method are nearly the same as those of the L approach because the observed errors
can be neglected.

Optimal values of model parameters between MSE and L are different, particularly the horizontal
hydraulic conductivity of soil and filter layers. Optimal model parameter values are different from
the measurement results (Table 3 and Figure 3) possibly because the calibrated parameters are the
“effective parameters” and represent the integrated behavior at the model element scale rather than at
the field measurement point [3,4].

For the soil layer, the horizontal and vertical hydraulic conductivity from MSE is larger than that
from L while for the filter layer, the hydraulic conductivity from the two methods presents the opposite
relationship. This may result from the correlation relationship between the two layer parameters in the
numerical model because the soil tank seepage would be compensated by the increased flow from the
filter layer as the infiltration recharges decrease from the soil layer.

Error analysis for the simulated seepages of MF2K-VSF with MSE is shown in Figure 4. In this
figure, a1st and a2nd show the seepage processes of the first two rainfall-runoff experiments; b1st and
b2nd are their corresponding residuals; and c1st and c2nd diagnose the autocorrelation of model
residuals by the partial autocorrelation plot. Figure 4(a1st,a2nd) show that MF2K-VSF with MSE
mimics the seepage processes well, but its model residuals are significantly correlated at a lag of one
minute (Figure 4(c1st,c2nd)), which violates the assumption of MSE that the model residuals should
be independent [14,21,22]. Figure 4(b1st,b2nd) shows that most large model residuals gather around
the peak seepage flow. A possible reason for this is that MF2K-VSF cannot capture the wetting and
drying processes of soil moisture at the same, because MF2K-VSF neglects the hysteresis effect of soil
moisture movement [1].

Error analysis for the simulated seepages of MF2K-VSF with L is shown in Figure 5. In this
figure, b1st and b2nd decompose the model residuals into the model structural and observational errors
according to Equations (7) and (8); and c1st and c2nd inspect autocorrelation of model structural errors
after AR(1) by the partial autocorrelation plot. Figure 5(b1st,b2nd) indicate that the model structural
errors are much greater than the observational errors, which is in agreement with the large value of
b in Table 3. The negligible observation errors are due to the high-precision gauge of the laboratory
measurement. The primary errors from the model structure indicate that the L method may have
some advantages.
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Figure 5. Error analysis for the simulated seepages of the practical formal likelihood function (L)
method. (a) Comparison between the observed and simulated soil tank seepages. (b) Decomposition
of the model residuals into model structural and observational errors. (c) Partial autocorrelation
coefficients of model structural errors after AR(1). Left column is for the first experiment and right
column is for the second experiment.

Compared with Figure 4(c1st,c2nd) and 5(c1st,c2nd) show that L obviously reduces the correlation
of model residuals. Note that it is difficult or impossible to completely remove the errors’ correlation
because of the complex error sources of model residuals, e.g., model input (such as rainfall and initial
head) errors. Nevertheless, the larger range of model residuals in Figure 5b than in Figure 4b shows
that the performance of model-simulated seepages for the MSE method is better than that for the L
approach. Possibly, the MSE method over-calibrates the MF2K-VSF model [16,20].

The groundwater levels and the soil suctions were used to validate the numerical groundwater
model. Because of the limitations (such as the precision and the representation) of instruments and the
scale effects, it is difficult to compare the measured values with the simulated values directly [3,4,6].
Therefore, a test of the linear relationship between observations and simulations was used to validate
the model calibration results in this study. Figure 6 compares the observed and simulated soil suctions
for the MSE and L methods in the first rainfall–runoff experiment. Correlation coefficient (R2) values
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of the L approach for 80, 100, and 130 cm depths are 0.845, 0.863, and 0.894, respectively. By contrast,
R2 values of the MSE method for 80, 100, and 130 cm depths are 0.735, 0.849, and 0.876, respectively.
R2 values of the L method are all much larger than those of the MSE approach, which means
that MF2K-VSF with L can mimic the soil suctions better. Figure 6 also shows that there is an
obvious hysteresis between the simulated soil suction of MF2K-VSF with MSE and the tensiometer
measurements, which demonstrates large mismatch.Water 2018, 10, x FOR PEER REVIEW 13 of 19 
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Water 2018, 10, 1151 14 of 19

To verify the calibrated groundwater model, the optimal parameters given by the L and MSE
criteria (Table 3) were used to simulate the third rainfall–runoff experiment. The simulated seepages
are shown in Figure 8. The figure shows that using the optimal model parameters estimated with the L
criterion, the simulated seepages are similar to those with the MSE criterion. Both of them can mimic
the seepage recession processes well, but the mismatches around the peaks of simulated and observed
seepages are relatively large, possibly because of increase of the observation errors as the observation
was shifted to manual measurement.Water 2018, 10, x FOR PEER REVIEW 14 of 19 
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well mimic both the wetting and drying processes.
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In the noose curve, the upper part with sparse points belongs to the wetting period because the
observed groundwater level recession (drying) period is much longer than its rising (wetting) period.
The arrows in Figure 9 indicate the direction from wetting to drying. The direction of closed loop shows
that during the wetting period, the change of simulated soil suctions is faster than that of observed
soil suctions at the beginning, but later is slower. It demonstrates that the inverse modeling with MSE
overestimates the percolation rate of soil water movement, but underestimates the drainage capacity
of the filter layer; this is in agreement with the optimized parameter values in Table 3, where the Kv

value for MSE method is greater than that for L approach, but the Kf value is less.

5. Discussions

MSE has become the standard efficiency criterion of inverse modeling to estimate soil property
parameters, especially for the dynamics-based groundwater model [7,15,37]. However, many studies
together with the results of this study show that inverse modeling with only the soil seepages/outflows
cannot yield accurate model parameter estimates [6,38–41]. In theory (i.e., excluding any model
inadequacy and input and observation errors), however, it is possible to obtain accurate estimates
via inverse modeling [42]. Therefore, mistakes in inverse modeling may be caused by the efficiency
criterion of MSE (Equation (11)) which neglects any inadequacies of the numerical groundwater
model [15,29,43]. In our case study, the model structure errors are the main error sources of model
residuals because of high autocorrelation (Figures 4c and 5b), which clearly violates the statistical
assumption of MSE. As a consequence, inverse modeling with MSE brings model structure errors
into the optimized parameters, and ultimately concludes in fallacious results, such as the soil suctions
(Figures 6 and 9) and the groundwater levels (Figure 7) [14,15,21,29,43].

The model structure errors of our numerical model may mainly originate from the soil moisture
hysteresis neglected by MF2K-VSF because the hysteresis effect is in general more pronounced in
coarse-textured soil like that used in this study [44–46]. In general, the rate of soil wetting is greater
than that of soil drying. Therefore, the soil hydraulic parameters (Equations (17) and (18)) of the
wetting and drying processes are indeed different. Because the number of observed datapoints in
the soil drying period is much greater than that in the soil wetting period in this study, the hydraulic
parameters estimated by the inverse modeling primarily reflect those of the soil drying process
(Figures 6 and 9), which would underestimate the percolation rate of soil water in the soil wetting
period [45,46]. Nevertheless, MSE neglects this deficiency of MF2K-VSF and attempts to reduce, to
a great degree, these model structural errors. Therefore, the infiltration rate (e.g., the value of Kv in
Table 3) is overestimated by MSE for capturing the seepages (especially at peak value) during the
soil wetting period. As a result, the simulated groundwater levels by MF2K-VSF with MSE decay
more rapidly than the observations (Figure 7) and the percolation rate of soil water is overestimated
(Figures 6 and 9). During the drying period, however, in order to reduce the adverse effect of the high
percolation rate, the capacity of the soil water retention (drying) is overestimated slightly (Figure 3)
and the drainage capacity (i.e., the value of Kf) of the filter layer is underestimated by MSE (Table 3;
Figures 6 and 9).

Compared with MSE, L separates the model structure and observation errors and removes the
nonrandom components of model residuals via the AR(1) method. These operations weaken the effects
of the model structural errors on the inverse modeling (Figure 5b,c). Therefore, the inverse modeling
with L (Equation (14)) not only improves the optimized parameters (Figure 3), but also well mimics
the groundwater levels (Figure 7) and soil suctions (Figures 6 and 9).

In this study, the model residuals are mainly from the model structural errors while the observed
errors can be neglected (Figures 4c and 5b). As a result, the model calibration results of the L method
are similar to those of the AR(1) approach. Therefore, the case study of soil tank rainfall–runoff
experiments cannot be used to distinguish between the AR(1) and L methods. However, the structure
of L is more reasonable than that of AR(1) (Equations (3) and (14) [30,32]). This study proves that
AR(1) is only a special case of L in neglecting the observational errors. In the future, therefore,
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the effectiveness and robustness of L will need to be confirmed in continuous hydrograph modeling
with low autocorrelation sequences, in contrast to the single-event hydrograph modeling in this study.

The L method separates the model structural and observational errors based on the separation of
correlated and uncorrelated model residuals. In the soil tank rainfall–runoff experiments, because of
the relatively homogeneous soil layer, the definite boundary conditions, and the stable initial state
(which means input errors are negligible), the L approach can account for the correlation of model
structural errors (Figure 5) and infer more reasonable results (Figures 3, 6, 7 and 9). In real-world case
studies (e.g., watershed modeling), however, because of the complex error sources of model residuals,
such as correlated input and output measurement errors, L could fail to distinguish errors from
model structure and observation. Additionally, L (Equation (14)) assumes that the model residuals
are homoscedastic (i.e., have the same variance), while the model residuals in watershed models
usually exhibit considerable heteroscedasticity (i.e., inconstant variance) owing to the large rainfalls
and stream flows [24]. Therefore, it may be necessary to remove the heteroscedasticity of residuals
(e.g., using the Box–Cox transformation method) before applying the L method [20,24,32].

6. Conclusions

Based on the idea of Reichert and Schuwirth [30], this study developed a practical formal
likelihood function (L) to separate the model structural and observational errors under the assumptions
that the model structural errors follow a multivariate Gaussian distribution and the observation errors
follow a Gaussian distribution with a constant variance. Compared with the formal likelihood function
proposed by Reichert and Schuwirth [30], L not only avoids calculating the inverse covariance matrix,
but also combines the MSE and AR(1) methods. When the ratio between the variance of the random
components of model structural errors and the variance of the model observational errors (b) equals
0, L is equivalent to MSE; when b approaches infinity, L approaches the AR(1) model. The case
study of soil tank rainfall–runoff experiments shows that the performance of simulated seepages by
MF2K-VSF with MSE is better than that with L, whereas the performance of the model validation
using the groundwater levels and soil suctions and the new rainfall–runoff experiment is worse.
The decomposition of model residuals by L reveals that the observation errors can be neglected, but
the model structural errors are large and obviously auto-correlated. This may result from the model
inadequacy of the numerical groundwater model (MF2K-VSF) owing to neglect of the hysteresis of
the unsaturated soil water movement. The considerable model structure error clearly violates the
statistical assumption of MSE and ultimately results in the fallacious inferences. By contrast, L reduces
the effects of model structural errors. As a result, it improves reliability in the simulation of other
hydrological components. Meanwhile, because of the negligible observational errors, the calibration
results of the AR(1) approach are nearly the same as those of the L method.

The results of this study were obtained from a case study of simple soil tank rainfall–runoff
experiments with a relatively homogeneous soil layer and accurate observations. For watershed
modeling in the real world, because of the complex error sources of model residuals, such as
correlated input and output measurement errors, whether L could be appropriately used for
separating model structural and observational errors and increasing reliability in simulations still
needs further investigation.
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Appendix Analytical Solution of the Inverse Covariance Matrix

The matrix b + Λ is equal to

b + Λ =



1 + b −R 0 0 0 0 0 0
−R 1 + R2 + b −R 0 0 0 0 0

0 −R 1 + R2 + b −R 0 0 0 0
. . .

0 0 0 0 −R 1 + R2 + b −R 0
0 0 0 0 0 −R 1 + R2 + b −R
0 0 0 0 0 0 −R 1 + b


(A1)

We set Ak to be the matrix with dimension k:

Ak =



1 + R2 + b −R 0 0 0 0 0 0
−R 1 + R2 + b −R 0 0 0 0 0

0 −R 1 + R2 + b −R 0 0 0 0
. . .

0 0 0 0 −R 1 + R2 + b −R 0
0 0 0 0 0 −R 1 + R2 + b −R
0 0 0 0 0 0 −R 1 + b


(A2)

We can obtain a recurrence formula to calculate the determinant of the matrix:

|b + Λ | = (1 + b)|An−1| − R2|An−2| (A3)

|Ak | =
(

1 + R2 + b
)
|Ak−1| − R2|Ak−2| k = 2, 3, 4, . . . , n− 1 (A4)

|A1 | = 1 + b (A5)

|A0 | = 1. (A6)

According to the Cramer law, the elements of the inverse matrix (b + Λ)−1 are

ai,j =
|Ai−1| Rj−i

∣∣An−j
∣∣

|b + Λ| j ≥ i (A7)

ai,j =

∣∣Aj−1
∣∣ Ri−j |An−i|
|b + Λ| i > j (A8)

where ai,j is an element of the inverse matrix with dimension n, and i and j are the row and column
numbers, respectively.

The elements of the inverse covariance matrix Λ(b + Λ)−1 are

bi,j = −Rai−1,j +
(

1 + R2
)

ai,j − Rai+1,j = −
b|Ai−1| Rj−i

∣∣An−j
∣∣

|b + Λ| j > i (A9)

bi,j = −Rai−1,j +
(

1 + R2
)

ai,j − Rai+1,j = −
b|An−i| Ri−j

∣∣Aj−1
∣∣

|b + Λ| j < i (A10)

bi,i =
−R2|Ai−2| |An−i|+

(
1 + R2)|Ai−1| |An−i| − R2|Ai−1| |An−i−1|

|b + Λ| i 6= 1, n (A11)

bi,i =
|An−1| − R2 |An−2|

|b + Λ| i = 1, n (A12)

where bi,j is an element of the inverse covariance matrix with dimension n.
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