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Abstract: Stream temperature is one of the most important factors for regulating fish behavior
and habitat. Therefore, models that seek to characterize stream temperatures, and predict their
changes due to landscape and climatic changes, are extremely important. In this study, we extend
a mechanistic stream temperature model within the Soil and Water Assessment Tool (SWAT) by
explicitly incorporating radiative flux components to more realistically account for radiative heat
exchange. The extended stream temperature model is particularly useful for simulating the impacts
of landscape and land use change on stream temperatures using SWAT. The extended model is
tested for the Marys River, a western tributary of the Willamette River in Oregon. The results are
compared with observed stream temperatures, as well as previous model estimates (without radiative
components), for different spatial locations within the Marys River watershed. The results show
that the radiative stream temperature model is able to simulate increased stream temperatures in
agricultural sub-basins compared with forested sub-basins, reflecting observed data. However,
the effect is overestimated, and more noise is generated in the radiative model due to the inclusion
of highly variable radiative forcing components. The model works at a daily time step, and further
research should investigate modeling at hourly timesteps to further improve the temporal resolution
of the model. In addition, other watersheds should be tested to improve and validate the model in
different climates, landscapes, and land use regimes.

Keywords: stream temperature; SWAT; Marys River watershed

1. Introduction

Stream temperature is an important water quality parameter that affects physical and chemical
processes in streams [1]. Higher stream temperatures in river systems represent a growing concern
worldwide and can affect the habitat and life spans of fish [2,3]. According to Eaton and Scheller [4],
some fish species will disappear from the water body, if stream temperature transcends an upper limit.
Using historical data ranging from 30 to 100 years, Kaushal et al. [5] reported that stream temperatures
have been increasing throughout the United States at a rate of 0.009–0.077 ◦C/year, with a significant
increase in the western United States. In particular, stream temperatures in the Pacific Northwest have
reached historical records—at times, they have exceeded the lethal limit of 21.1 ◦C for some aquatic
species such as salmon. For example, in the summer of 2015, the river temperature in the Columbia
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River in the State of Washington reached the level of 24.5 ◦C and led to the death of 235,000 sockeye
salmon out of the total 507,000 that passed through the Bonneville Dam [6].

Similarly, Marys River (Hydrologic Unit Code 17090003) is a tributary of the Willamette River in
Northwest Oregon and has experienced increasing temperatures over the last few years. The Oregon
Department of Fish and Wildlife (ODFW) conducted a stream survey on flow conditions between the
years of 1991 and 1993 and observed that the maximum stream temperature reached the maximum
limit of 17.8 ◦C (ODFW). However, recently, increasing levels of human activities have resulted in even
higher water temperatures. For example, high water temperatures between 21.1 ◦C and 26.7 ◦C were
observed from June to August for some tributaries of Marys River (Marys River Watershed Council),
which has resulted in several United States Environmental Protection Agency (USEPA) 303(d) listings
for temperature exceedances. These trends may be related to changing climatic drivers as well as land
use practices (e.g., harvest of timber, increasing barren lands and clear-cutting areas throughout the
watershed) and landscape changes (e.g., urban and agricultural development).

Amidst large-scale landscape and land use changes, preservation of riparian buffers can increase
stream shading, thereby helping regulate water temperature along stream reaches [7]. Stream shading
intercepts and absorbs a large portion of solar radiation before it reaches the water surface, resulting in
less thermal energy that reaches and is stored in streams, which indirectly helps to cool stream
temperatures. Brown et al. [8] conducted a study in the Alsea watershed in Oregon along the coast
range to study the impact of shading on stream temperatures before and after clear cuts in the
watershed. They found that clear-cutting resulted in stream temperature increases of 7.8 ◦C one year
after the cuts. Bond et al. [9] investigated the impact of riparian reforestation on summer stream
temperatures in the Salmon River in northern California, and they found that partial reforestation
lowered stream temperatures by 0.11–0.12 ◦C/km and by 0.26–0.27 ◦C/km for full reforestation.

Since increasing water temperatures have remained a major concern in many watersheds, many
models have been proposed to simulate stream temperatures at time scales varying from minutes
to months (see Ficklin et al. [10] for a brief review). For this paper, we specifically focus on a
semi-distributed mechanistic watershed model called the Soil and Water Assessment Tool (SWAT) [11],
which has been extensively used to evaluate the effects of landscape and land use changes on
different hydrologic components. Ficklin et al. [10] improved the original stream temperature model
within SWAT, which was a linear regression model by Stefan and Preud’homme [12] that correlates
thermal energy exchange of air temperature to water temperature. Ficklin et al. [10] developed a
daily-scale model for stream temperature prediction by integrating multiple climate and hydrological
components, including snowmelt, surface runoff, lateral flow, groundwater flow, and finally air
temperature. Several studies have found the Ficklin et al. model [10] produces more realistic
simulation results compared to the linear regression proposed by Stefan and Preud’homme [12]
(Barnhart et al., 2014; Ficklin et al., 2012; Ficklin et al., 2014 [10,13,14]). However, the model
developed by Ficklin et al. [10] does not explicitly account for the different types of radiation that
affect thermal energy of water systems, and only recent work has attempted to improve the model
by incorporating select radiative components [15]. In general, thermal energy added and removed
from any water system consists of incoming radiation that adds thermal energy to the water and
results in increasing stream temperatures. This incoming radiation mainly consists of solar radiation
coming from the sun, atmospheric longwave radiation, landcover longwave radiation, convection,
and evaporation. In contrast, backscattered radiation removes thermal energy and helps to cool
temperatures. This radiation consists of emitted longwave radiation from the water surface as well
as convection and evaporation. Convection and evaporation radiative components can either add
or remove energy from any water body depending on stream temperatures and climate conditions,
specifically air temperature, humidity, and wind speed.

This paper highlights model development to explicitly incorporate multiple thermal radiation
components into the Ficklin et al. [10] stream temperature model within SWAT. These thermal radiation
equations are used within the widely used HEATSOURCE model [16], but until now, these equations
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have yet to be incorporated into SWAT. HEATSOURCE differs from SWAT because it is a reach-based
stream temperature model, whereas SWAT is a watershed model. This means that SWAT simulates
upland processes in addition to in-stream processes. HEATSOURCE can model stream temperatures at
hourly timesteps and requires site-specific data (e.g., shading, canopy structure, stream morphology)
that is oftentimes not available over the entire spatial extent of watersheds. Conversely, SWAT simulates
hydrologic components and stream temperatures throughout a watershed using a daily time step
and utilizes generally obtainable input data, such as spatially distributed precipitation, temperature,
elevation, land use, and soil type. Users may prefer to use SWAT instead of HEATSOURCE when
site-specific data is unavailable or when the study goal is to determine the effect of alternative land
management scenarios on stream temperatures throughout large, heterogeneous watersheds.

The paper is organized as follows. First, the study area and the SWAT model setup are
described. Then, three different SWAT stream temperature models are analyzed, including Stefan
and Preud’homm [12] air temperature regression, a mechanistic model by Ficklin et al. [10], and an
extension of the Ficklin et al. [10] model in which we specifically incorporate radiative components.
We calibrate SWAT for hydrologic discharge in the Marys River watershed, and we compare the
three stream temperature models to examine their relative performance for multiple sub-basins with
different land use/land cover. We demonstrate the utility of our results by comparing simulations for
sub-basins within primarily forested and agricultural landscapes.

2. Methodology

2.1. Study Area

The Marys River watershed, shown in Figure 1, is located in the Pacific Northwest of the United
States (Hydrologic Unit Code (HUC) 17090003) and is part of the Willamette River basin (HUC 170900)
in Oregon. It is one of five major river systems located on the western side of the Willamette River.
The area of the watershed is of 782 square kilometers. The highest point of the watershed is at Marys
Peak at an elevation of 1280 meters above sea level, and the lowest point is in Corvallis, Oregon, where
Marys River drains into the Willamette River at an elevation of 76 meters above sea level. The climate
of the watershed in the winter season is mild and wet, with an average winter temperature of 5 ◦C
and rainfall during the winter ranges from 1000 mm downstream of the watershed to more than
2500 mm at the highest elevation upstream of the watershed. In general, the watershed tends to be
dry, sunny, and warm throughout the summer (Marys River Watershed Council). It has an average
summer temperature of 17.5 ◦C. High rainfall intensity results in high stream discharge during winter
and spring and mean annual flows of 12–13 m3/s. However, during the summer, flows are generally
very low, and discharge sometimes drops below one cubic meter per second. Base flow is a major
contributor to the flow of the river, where 61–70% of the total stream flow comes from groundwater
contributions [17].

The watershed is divided into three different land use categories: Forest, agricultural, and urban.
Most of the watershed (65% of the total area) consists of forest, which is largely located along the
western portion of the watershed. In these mixtures of deciduous and evergreen forests, small streams
flow over beds of gravel and cobbles with high velocities due to steep slope gradients. Flow leaving the
forested region then enters agricultural land in the Willamette Valley that consists mainly of cultivated
crops, hay, pasture, wheat, and grass seed production. The streams in this region flow on sand and silt
with mild slope gradients, resulting in decreased flow velocities. Furthermore, urban areas are situated
further downstream within the Willamette Valley (e.g., the cities of Philomath and Corvallis), and the
stream flows over mostly flat to nearly flat gradients. Stream velocities decrease significantly as Marys
River enters Philomath, Oregon, and then continues eastwards into Corvallis, Oregon, until it meets
the Willamette River at the lowest point located in the watershed.
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Figure 1. (a) Overview of Marys river watershed, and (b) land use in Oregon, USA. 
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Figure 1. (a) Overview of Marys river watershed, and (b) land use in Oregon, USA.

2.2. Soil and Water Assessment Tool (SWAT)

The Soil and Water Assessment Tool (SWAT) is a semi-distributed watershed model that is
designed to predict the impact of management on water, sediment, and agricultural chemical yields in
gauged and ungauged watersheds [11]. In this study, SWAT was used to simulate the hydrologic and
stream temperature dynamics within the Marys River watershed and to evaluate a model extension
to the stream temperature model developed by Ficklin et al. [10]. The Marys River watershed was
divided into smaller sub-watersheds using pre-defined drainage boundaries and a 10-meter digital
elevation model, and then the sub-watersheds in the SWAT model were further divided into smaller
units called hydrologic response units (HRUs) using ArcSWAT, a toolbox within ArcGIS for SWAT,
with a HRU percentage threshold of 5%. Each HRU is a unique combination of land-use, soil type,
and topographic slope and represents the basic unit for conducting mass balances and hydrologic flow
in SWAT. The area of the 46 predefined sub-basins varies from 35 square kilometers for the largest
sub-basin to 3.0 square kilometers for the smallest. The average sub-basin area is 17 square kilometers.
The watershed slope was divided into two categories: (1) A steep gradient area located mostly within
the forested regions in the western portion of the watershed, and (2) the nearly flat region located
within the Willamette valley, east of the watershed where the cities Philomath and Corvallis are located.

SWAT’s input data types include spatial GIS input files such as a Digital Elevation Model (DEM),
a land use land cover layer, and a soil layer [18]. Input data needed to delineate the watershed including
the DEM, sub-basins, and stream layers in addition to necessary land use and soil SSURGO (Soil
Survey Geographic Database) layers to build the HRUs were acquired from United States Department
of Agriculture [19]. Three weather stations were used as climate forcings: Corvallis Water Bureau
(CWB) COOP ID of (351877), Hyslop weather station, which is also known as Oregon State University
weather station (OSU) COOP ID of (351862), and finally Corvallis municipal airport (KCVO) weather
station. Weather data of the Corvallis Water Bureau (CWB) and Hyslop weather station were obtained
from National Oceanic and Atmospheric Administration (NOAA) for 2005 to 2014. Weather data
for Corvallis Water Bureau station included only precipitation and minimum and maximum air
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temperature. The Hyslop weather station and Corvallis municipal airport stations included data for
precipitation, minimum and maximum temperature, wind speed, and humidity for the period of
2005 to 2014. SWAT was used to simulate flow and stream temperature throughout the Marys River
watershed for the period 2005–2014. This includes the period 2010–2014 when observations for stream
temperature were available.

2.3. Stream Temperature Models

2.3.1. Model 1: Linear Regression

The default SWAT stream temperature model uses a linear relation between air temperature and
stream temperature developed by Stefan and Preud’homme [12] to calculate stream temperature in the
Mississippi River basin, as shown in Equation (1):

Twater = 5.0 + 0.75 × Tair (1)

Twater is the average daily water temperature (◦C), and Twater is the average daily water
temperature (◦C). Stream temperatures predicted from the above equation will always be higher
than air temperature, which is generally a fair assumption for small streams with shallow water
depths where stream temperature is primarily controlled by air temperature. However, this may
not be necessarily true for streams influenced by snowmelt, surface runoff, and groundwater
contributions [10].

2.3.2. Model 2: A Mechanistic Approach Involving Air Temperature and Hydrological Flows

Ficklin et al. [10] developed a mechanistic stream temperature model within SWAT by
combining air temperature (heat exchange) and hydrological inputs (flow mixing) including different
hydrological parameters, surface runoff, lateral flow, snowmelt, and groundwater contributions.
The Ficklin et al. [10] stream temperature model discretizes stream temperature determination into
three components: (1) Within the sub-basin, (2) contribution of upstream sub-basins to the targeted
sub-basin, and (3) finally heat exchange between air temperature and the stream.

The first part of the stream temperature calculation within the sub-basin (Equation (2)) calculates
the local temperature based on a mixing of surface runoff, lateral flow, groundwater, and snowmelt
temperatures within the sub-basin flowing to the main stream:

Tw,local =
α(0.1 Subsnow) + β(Tgw Subgw) + λ(Tair,lag Subsurq + Sublatq)

Subwyld
(2)

Tair,lag is average daily air temperature with a lag (◦C), and α, β, and λ are calibration coefficients
that relate the relative contribution of the hydrologic components to local water temperature
(dimensionless). Subsnow is the snowmelt contribution in sub-basin (m3/day), Subgw is the
groundwater contribution in sub-basin (m3/day), Subsurq is the surface runoff in the sub-basin
(m3/day), Sublatq is the lateral soil flow in sub-basin (m3/day), and Subwyld is the water yield in
the sub-basin combining all of the above hydrological inputs (m3/day).

The second part of the Ficklin et al. [10] calculates the effect of upstream sub-basin flow on stream
temperature, as shown in Equation (3):

Twaterinitial =
(Tw,upstream)(Qoutlet − Subwyld) + (Tw,local × Subwyld)

Qoutlet
(3)

Twaterinitial is the stream temperature adding the effects of flow within the sub-basin, Tw,local was
calculated previously, Tw,upstream is the water temperature of streams entering the sub-basin (◦C),
and Qoutlet is the stream flow discharge at the outlet of sub-basin (m3/day).
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The final step is to calculate the stream temperature by including the effect of air temperature:

Twater = Twaterinitial + K(Tair − Twaterinitial)(TT) if Tair > 0

Twater = Twaterinitial + K((Tair + ε) − Twaterinitial)(TT) if Tair < 0
(4)

Twater is the final stream temperature of water (◦C) for a given sub-basin, Tair is the average daily
air temperature (◦C), K is the bulk coefficient of heat transfer (1/h), TT is travel time of water through
the sub-basin (hour), and finally ε is air temperature addition coefficient (for when air temperature
drops below zero).

This mechanistic stream temperature model requires calibration coefficients α, β, γ, k, lag as
well as annual groundwater temperatures as inputs. All of the other inputs needed to run the model
are provided by SWAT. Groundwater temperature can be estimated from weather data provided as
the annual average air temperature, and it is often taken 1–2 ◦C higher than the average annual air
temperature [20].

2.3.3. Model 3: A Mechanistic Approach Involving Air Temperature, Hydrological Flows,
and Radiative Components

Changes in stream temperature are affected by heat and mass transfers [16] that are dependent
on channel morphology, hydrology, and stream vegetation, which provides shading near streams.
Vegetation especially helps in cooling temperatures by intercepting and absorbing incoming solar
radiation. The mechanistic model introduced in the last section accounts for flow transfer and mixing of
various hydrologic components, including sub-basin surface runoff, lateral flow, snowmelt, and ground
water, which oftentimes help to reduce temperatures, depending on the season. However, the model
utilizes a bulk heat coefficient to account for radiative heat exchange between the air-water interface
and does not account for land cover or vegetation near streams. The dependency of the model on
the air-water correlation of heat exchange can thereby lead to over-prediction of stream temperatures.
Water temperature change related to heat transfer is a function of several sources of radiative heat
exchange, as shown in Equation (5):

Φtotal = ΦSR + Φlongwave-atmosphere + Φlongwave-landcover+ Φconvection + Φconduction + Φevaporation (5)

where, Φtotal is the net radiation exchange and is equal to the direct and diffuse solar radiation ΦSR as
well as the longwave-atmosphere, longwave-landcover, convection, and evaporation components.

Direct and diffusive solar radiation represent the largest sources of incoming thermal energy into
streams. Longwave radiation from different sources also plays a role in increasing and decreasing
temperatures: Atmospheric and land-cover longwave radiation add energy to water volumes and
increase water temperature, while longwave radiation from the water surface emits radiation from
the water surface to the atmosphere to cool streams. Energy loss due to evaporation is considered
a larger contributor of decreasing stream temperatures when the required energy is met to change
the water phase from liquid to gas. Overall, convection or the air-water interface is considered a very
small portion of the total energy budget. Groundwater flux also helps to decrease stream temperatures
when added as a thermal input.

These radiative components have been included in the HEATSOURCE model but have not been
incorporated explicitly within spatially distributed watershed models such as SWAT. Each of the
components are defined as follows.

ΦSR = Hday − 0.5 × Hday(1 − e−k × LAI) (6)
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ΦSR is the amount of solar radiation reaching the water surface, Hday is the incident total solar
radiation per day (MJ/m2·day), k is the light extinction coefficient, and LAI is the leaf area index.
Atmospheric solar radiation is calculated as follows:

Φlongwave-atmosphere = 0.96 × εatm × σ × (Tair + 273.15)4 (7)

Φlongwave-atmosphere is the longwave radiation emitted from the atmosphere, εatm is the emissivity
of the atmosphere (unitless), σ is the Stefan-Boltzmann constant (MJ·m−2·day−1·K−4), and Tair is the
average air temperature per day (◦C). The atmospheric solar radiation depends on the emissivity of
the atmosphere (εatm), in which the percent of cloudiness and type of landuse can increase or decrease

atmospheric emissivity. The emissivity of the atmosphere is calculated as εatm = 0.767 × (ea)
1
7 ,

where ea is the vapor pressure of air (mbar) (i.e., H × es), es is the saturation vapor pressure (mbar)

(i.e., 6.1275 × e
17.27 × Tair
237.3+Tair ), and H is the relative humidity (unitless).

The longwave radiation emitted from landcover Φlongwave-landcover is dependent on the view to
the sky θVTS (unitless) and can be calculated as follows:

Φlongwave-landcover = 0.96 × (1 − θVTS) × 0.96 × σ × (Tair + 273.15)4 (8)

The last component of longwave solar radiation is the water surface longwave:

Φlongwave-water surface = εw × σ × (Ts + 273.15)4 (9)

Φlongwave-water surface surface is the longwave radiation emitted from the water surface, εw is the
water emissivity taken as 0.97, and Ts is the stream temperature (◦C). The evaporation from the water
surface is the most effective component in decreasing the thermal energy stored in water:

Φevaporation =ρ × L e × E (10)

ρ is the density of water (kg/m3), Le is the latent heat of vaporization (MJ/kg), which is calculated
as Le = 2.501 − 2.361 × 10−3 × Tair. E is the evaporation rate of the water surface (m/day) and
is calculated using a mass transfer method: f(w) × (esw − eaw), where f(w) is the wind function
a + b × w that depends on coefficients a and b (mbar−1) and the wind speed w (m/s) measured 2 m
above the water surface [16]. Finally, esw is the saturation vapor pressure of water (mbar), and eaw is
the vapor pressure of water (mbar).

The convection radiation component is calculated using the previously calculated evaporative
flux Φevaporation and Bowen’s ratio BR:

Φconvection = BR × Φ evaporation (11)

Here, BR is unitless (i.e., 0.00061 × PA × Twater − Tair
(esw − eaw)

), and PA is the adiabatic air pressure (mbar)
[i.e., 1013 − 0.1055 × z]. z is the measurement height in meters [i.e., >zd + zo]; zd is the zero-plane
displacement (m) [i.e., 0.7 × HLc], zo is the roughness height = 0.1 × HLc, and HLc is the height of
emergent vegetation (m).

The change of stream temperature due to thermal energy flux is calculated as follows:

Tw − TD =
Φtotal

ρw × Cw × dW
(12)

Here, Tw−TD(
◦C
day ) is the temperature change generated from the thermal components, Φtotal is

the net driver (MJ/m2·day), Cw (MJ/kg·C) is the specific heat capacity of water, and dw (m) is the
depth of water in the channel, which is estimated by the SWAT model.
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The final stream temperature is calculated by replacing the second term in Equation (4) by the
new generated stream temperature, as follows:

Twater = Twaterinitial + Tw − TD (13)

Note that, as mentioned above, the majority of the components are calculated within the SWAT
model automatically.

Overall, this model is useful because it utilizes all of the distributed information (mechanistically
simulated via SWAT) regarding stream temperature and its relation to hydrologic components within
a networked watershed, yet it also explicitly incorporates radiative energy exchange at the surface of
the stream.

2.4. Model Calibration/Validation Methodology

SWAT was used to simulate daily hydrologic discharge at each of the sub-basins within the Marys
River watershed from 2010–2014 in order to match observed discharge and stream temperature data.
The SWAT model was manually calibrated for stream flow between 2010–2014 using the United States
Geological Survey (USGS) (14171000) Philomath flow gauge, which is located 6.7 km southwest of
where the Marys River meets the Willamette River, covering a 394 km2.

The model was only calibrated without validation due to the availability of observations for
flow since the available observations only included a period of less than 10 years. Based on the data
availability, the model was calibrated for the period of January 2010 to December 2014.

The Nash Sutcliffe efficiency (NSE; Nash and Sutcliffe (1970)) criterion Equation (14) and Pearson’s
product moment correlation coefficient (1999; Equation (15)) were used to evaluate hydrologic model
efficiency:

NSE = 1 − ∑n
i = 1 (Oi − Si)

2

∑n
i = 1 (Oi − Oavg)

2 (14)

R2 =

 ∑n
i = 1 (Si − Savg)(Oi − Oavg)[

∑n
i = 1 (Si − Savg)

2
]0.5[

∑n
i = 1 (Oi − Oavg)

2
]


2

(15)

O is the observed value, S is the model prediction, Oavg is the overall observed mean, and Savg

is the overall simulated mean. The NSE values range from −∞ to one; a NSE value of less than
0.5 designates an ‘unsatisfactory’ model, while a NSE value above 0.75 is considered a ‘very good’
model [21]. R2 values range from zero to one, with zero indicating a nonlinear relationship between
the observed and predicted value and one indicating a perfect fit and a linear relationship between the
observed and simulated variables.

The stream temperature models were manually calibrated using root mean square error (RMSE)
values as well as percent bias (PBIAS). According to Chai et al. [22], RMSE is widely used as a statistical
metric tool to assess performance of models. RMSE can be calculated as follows:

RMSE =

√
∑n

i = 1 (Oi − Si)
2

n
(16)

Where O is observed value, S is model predicted value, and n is the total number of the points.
A RMSE value of zero indicates a perfect fit. According to Singh et al. [23], values of RMSE less than
half of the standard deviation of the measured data can be taken as acceptable for the model evaluation.

In addition to RMSE, PBIAS was also used to evaluate the models. PBIAS measures the average
tendency of the simulated data to be larger or smaller than their observed counterparts [24]. Zero is
the optimal value of PBIAS, and a low absolute value implies an accurate model. According to
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Gupta et al. [24], positive PBIAS values indicate a model underestimation bias, and negative PBIAS
values indicate a model overestimation bias. PBIAS can be calculated as follows:

PBIAS =
∑n

i = 1 (Oi − Si) × 100
∑n

i = 1 (Oi)
(17)

A set of seven calibration parameters were selected and manually modified to calibrate SWAT
for hydrology (Table 1), and five parameters were manually modified to calibrate SWAT for stream
temperature (Table 2). Observed daily stream temperature data corresponding to SWAT’s sub-basins 8,
15, and 17 were available from 2010 through 2014, while observations for sub-basin 36 extended from
2011 through 2014.

Table 1. Streamflow calibration parameters.

Parameter Name File Range Calibration Value

CANMX Maximum canopy storage (mm H2O) HRU +25 for FRSE, FRSE
SMFMX Melt factor for snow on 21 June (mm H2O/C-day) BSN 0–10 8
SMFMN Melt factor for snow on 12 December (mm H2O/C-day) BSN 0–10 1

LAT_TTIME Lateral flow travel time (days) HRU +5
CH_K2 Effective hydraulic conductivity in main channel alluvium (mm/h) RTE 0–150 +6

GWQMN Threshold depth of water in the shallow aquifer required for return
flow to occur (mm H2O) GW 0–5000 * 2.5

CN2 Initial SCS runoff curve number for moisture condition II MGT 0–100 * 0.978
ESCO Soil evaporation compensation factor BSN or HRU 0–1 −0.25

* Values are percentages of the original values.

Table 2. Basin-wide stream temperature calibration parameters.

Parameter Name Range Calibrated Values

α
Coefficient influencing snowmelt

temperature contributions (unitless) 0–1 1.0

β
Coefficient influencing groundwater
temperature contributions (unitless) 0–1 0.97

λ
Coefficient influencing surface and lateral
flow temperature contributions (unitless) 0–1 1.0

K Bulk coefficient of heat transfer (1/h) 0–1 0.025
Lag Average air temperature lag (days) 0–14 6

To compare the differences in model performance, kernel density estimates were calculated using
R software. This nonparametric technique is similar to using histograms to highlight the differences
between model simulations and observed data for the three tested models.

3. Results and Discussion

3.1. Hydrology Calibration in SWAT

As mentioned previously, SWAT was used to simulate daily hydrologic discharge at each
of the sub-basins within the Marys River watershed for 2005–2014, which included 2010–2014,
when observations for stream temperature were also available. The NSE and R2 values of the default
model’s simulated flow (no calibration) were −0.37 and 0.50, respectively, indicating an unsatisfactory
model. From Figure 2, it is clear that the uncalibrated model overpredicts the peaks during storm
events. Also, the model’s responses to each rain event are very rapid, and the water loss rates are
excessive, which results in zero flow for late summer periods.
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Figure 2. (a) Uncalibrated daily SWAT discharge simulations compared with observations (2010–2014)
from the USGS (14171000) Philomath flow gage. (b) Uses a log scale to emphasize low-flow conditions.

Manual calibration resulted in model improvement of NSE values from −0.37 to 0.72. This designates
a ‘good’ model according to Moriasi et al. [21], since it is >0.65. The R2 value of the model increased to
0.80. Figure 3 shows that the calibrated model matches both the base flow and peaks well, whereas all
of the peaks were mainly over predicted by the default model. The default model could not capture the
very low stream flows for some summer days and resulted in zero flow (Figure 2), but the calibrated
model (Figure 3) fixed the low-flow problem and improved the results. Figure 2 shows that the
maximum simulated peak for the uncalibrated model was around 500 m3/s, whereas the calibrated
model (Figure 3) reduced this value to match the peak observed around 300 m3/s. The rapid response
of the main channel to any storm event led to the over-prediction of peaks even for small rain storms
in the uncalibrated model. Also, the lateral flow travel time parameter helped to slow the response
to storm events and smoothed the hydrograph. The other major problem was associated with the
excessive loss of water in a short period of time after a rapid response to any storm; water in the
uncalibrated model was lost instantaneously and therefore resulted in zero flow for late summer days.
The effective hydraulic conductivity in the main channel (CH_K2) was used to prevent the excessive
loss from the main channel and managed to eliminate the zero flow days. Also, this parameter helped
to smooth and eliminate the transient fluctuations in the hydrograph. The SCS curve number for
moisture conditions II (CN2) was used to reduce or increase the simulated peaks to match the observed
hydrograph. The canopy interception parameter for specified land cover types (CANMX) as well as the
minimum and maximum snowmelt factors (SMFMN, SMFMX) all helped to increase the evaporation
rate. The high surface runoff surge was decreased using the soil evaporation compensation factor
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(ESCO), the SCS curve number for moisture conditions II (CN2), and the threshold depth of water in
the shallow aquifer (GWQMN).
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Figure 3. (a) Manually calibrated daily Soil and Watershed Assessment Tool (SWAT) discharge
simulations compared with observations (2010–2014) from the United State Geological Survey (USGS)
(14171000) Philomath flow gage. (b) Uses a log scale to emphasize low-flow conditions.

3.2. Stream Temperature Calibration in SWAT

After a satisfactory hydrologic calibration was performed, manual calibration was performed
for two of the three stream temperature models that will be tested in the Marys River using SWAT.
The first model is the linear regression model from Stefan and Preud’homme [12] and was not
calibrated. The second model is the Ficklin et al. [10] model, and the third model is our extension to the
Ficklin et al. [10] model. As shown in Table 2, we manually calibrated five parameters to best match
the second and third models to the stream temperature observations between 2010 and 2014. Note that
only summer stream temperature observations were available and that only a single set of calibration
parameters were used for the entire watershed.

3.3. Stream Temperature Model Comparison

After satisfactory hydrologic and stream temperature calibrations were performed, three models
were tested to simulate stream temperature in the Marys River using SWAT. The first was the linear
regression model from Stefan and Preud’homme [12], the second the Ficklin et al. [10] model, and the
third is our extension to the Ficklin et al. [10] model that incorporates HEATSOURCE radiative forcing
components to the Ficklin et al. [10] model. For the remainder of this paper, these models will be
referred to as Model 1, Model 2, and Model 3, respectively.
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Table 3 shows RMSE and PBIAS results for these three models using daily data. Kernel density
estimates for the differences between simulated and observed stream temperatures for the four
sub-basins are plotted in Figure 4.

Table 3. Comparison of root mean square error (RMSE) and percent bias (PBIAS) values for the three
tested stream temperature models (daily).

Sub-Basin Period
RMSE PBIAS (%)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

8 2010–2014 3.74 2.18 2.36 23.2 6.9 2.3
15 2010–2014 3.46 1.96 1.96 21.2 3.9 −0.5
17 2010–2014 2.6 1.88 2.72 13.4 −2.6 −8.3
36 2011–2014 2.85 2.28 3.12 13.6 −2.2 −1.0
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In general, Model 1 performed the worst among all three models (see Table 3 and Figure 4),
and Model 2 outperformed Models 1 and 3 for all sub-basins. Model 1 consistently overestimated
stream temperatures for all of the sub-basins. This is apparent in Figure 4, where the distributions of
the differences between the simulated and observed temperatures are shifted from zero for Model 1.
The coefficients of Model 1 guarantee that the simulated stream temperature will be above average
daily air temperature values when the average air temperature is less than 20 ◦C. Therefore, inclusion of
cold water from groundwater or upstream sources is not captured in this model, thus resulting in
overestimations. Model 2, which is the calibrated Ficklin et al. [10] model, showed improvements
compared to the linear model (Model 1) in both Table 3 and Figure 4, which agrees with previous
studies (Barnhart et al., 2014; Ficklin et al., 2012; Ficklin et al., 2014) [10,13,14]. This is presumably
because Model 2 incorporates hydrologic components, including groundwater upstream temperatures,
in addition to an air-heat exchange transfer coefficient. Model 3, which replaced the simple
air-heat exchange transfer coefficient from Model 2 with explicitly calculated radiative components,
shows similar distributions with Model 2 (Figure 4), yet the performance values of Model 2 are
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generally better. This is likely due to the high variability of the radiative components included in
Model 3, which will be discussed further in the next section.

3.4. Land Cover Effects on Stream Temperature

We now compare Models 2 and 3 to demonstrate that the incorporation of radiative components
is able to simulate the influence of land use and land cover on stream temperatures (e.g., forested vs.
agricultural regions). Stream temperature simulations for two sub-basins—a forested area (sub-basin 8)
and an area dominated by agriculture with low vegetation (sub-basin 36)—are shown in Figure 5.
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Model 2 simulates nearly identical stream temperatures for both forested and agricultural
sub-basins. Conversely, by including the various radiative components into the model, Model 3
simulates consistently increased stream temperatures associated with the agricultural sub-basin.
This is especially apparent during the early summer months. To examine differences in the models
further, Figure 6 compares the net radiative components of Model 3 Equation (5) with the K-component
second term in Equation (4) of Model 2.

Figure 6 shows that the net radiation as calculated using Model 3 (orange lines) changes according
to the primary land use cover for a given sub-basin in SWAT. For example, agricultural sub-basins
have larger incoming (positive) radiation contributions that help to increase stream temperatures,
whereas forested areas have small or negative radiative effects, depending on the season, due to
increased LAI, reduced solar radiation reaching the water surface, and evaporative fluxes. Model 2
uses a bulk coefficient of heat transfer in the second term of Equation (4). This reflects a convection
component of the net radiative balance, but it does account for the other radiative energy terms,
including solar radiation, atmospheric longwave, land surface longwave, water surface longwave,
and evaporation. Therefore, it is not able to capture cover-related differences in net radiation and
therefore changes in stream temperature due to landscape and land use changes.

Figure 6 also shows that the net radiative driver as calculated in Model 3 has much higher
variability than the K-component used in Model 2. We found that the high variability (i.e., noise) is
mainly due to SWAT’s estimation of solar radiation as well as the evaporation calculations, which are
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not explicitly accounted for in Model 2. This likely led to the reduced model performance exhibited
when comparing model simulations to observed data.
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Figure 7 compares these data further by plotting the observed stream temperature as well as
simulations using Models 2 and 3 for both the forested (sub-basin 8) and agricultural (sub-basin
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Figure 7. Comparison of observed and simulated stream temperatures for agricultural and forested
sub-basins. The observed data (black) show a consistent increase in stream temperatures for the
agricultural sub-basin (sub-basin 36). Model 2 does not capture consistent changes in stream
temperature associated with land cover type. Model 3 simulates increased temperatures for the
agricultural sub-basin, but it overestimates the effect compared to the observed data.
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The mean (standard deviation) differences between the stream temperature simulations for the
forested sub-basin (8) and the agricultural sub-basin (36) were −0.68 ◦C (1.30 ◦C) and −4.1 ◦C (2.34 ◦C)
for Models 2 and 3, respectively. These simulations can be compared with the difference between the
observed data for the forested and agricultural sub-basins (8 and 36): −1.07 ◦C (0.63 ◦C). Note that
Model 2 gives estimates that are closer to the observed values than Model 3; this is not surprising since
the RMSE values for Model 2 were lower than the values for Model 3 (Table 3). However, Model 2 is
symmetric about the 1:1 line shown in Figure 7 and does not capture the positive bias of agricultural
stream temperatures that is shown by the observed values as well as in the simulated values of Model
3. Model 3 captures the increases in stream temperature associated with the lack of forest cover in the
agricultural sub-basin, yet Model 3 overpredicts this effect, and the variation in the simulated values
are much greater than Model 2 or the observed data.

Overall, Model 3 may be useful for simulating the watershed-scale impacts of land use conversion
from forest to agriculture on stream temperatures; however, model improvement—potentially through
improved calibration—is needed to better match observed data. In addition, while Model 3 is able to
simulate impacts of land use on stream temperature, this advantage is produced with the trade-off
that radiative components exhibit much higher variability, and this noisy fluctuation (which can be
seen directly from Figures 5–7) further decreases RMSE values (Table 3).

4. Conclusions

This study sought to explicitly incorporate radiative forcing components into an existing
mechanistic, semi-distributed stream temperature model Ficklin et al. [10] using SWAT. Ultimately,
stream temperature is controlled by different climate components including humidity, wind speed,
evaporation, and solar radiation besides air temperature and is also heavily dependent on hydrologic
components including surface flow, groundwater, and snow melt processes. Our new model leverages
the Ficklin et al. [10] stream temperature model, which accounts for hydrological and climatological
components and discretizes the prediction of stream temperature into three parts: (1) Streamflow
within a sub-basin, (2) contributing upstream sub-basin hydrologic components, and (3) accounting
for the heat exchange between air and water surface, which can be described as a convection term.
The extended model replaces the convection K-component term within the Ficklin et al. [10] model
with a more comprehensive characterization of radiative energy terms, including solar radiation,
atmospheric longwave, land surface longwave, water surface longwave, evaporation, and finally
convection drivers. The extended model was used along with the Ficklin et al. [10] model and the
linear regression model to simulate stream temperatures within agricultural, forested, and mixed
sub-basins within the Marys River watershed. Results showed that all models performed reasonably
well, and the Ficklin et al. [10] model outperformed the others. However, the extended model
was capable of simulating differences between stream temperatures associated with agricultural
and forested watersheds that reflected observed data, although the differences were overestimated.
The reduced performance of the extended model that included radiative components might be able
to be improved by further calibration; yet, the high variability of the radiative terms is also limiting.
For example, the model relies on incoming solar radiation as well as wind velocity, which are difficult to
represent over large spatial scales and feature high variability. Alternative formulations of the radiative
components should be considered in future work. Bogan et al. [1] suggests using a shading factor
instead of a leaf area index, which may lead to more accurate results, assuming shading information
is available for the watershed of interest. In addition, alternative estimations for solar radiation,
or perhaps any of the radiative energy terms, could improve the model and should be pursued.
Overall, incorporating radiative components into the Ficklin et al. [10] stream temperature provides a
new mechanism for simulating the effects of alternative land uses on stream temperature within SWAT.
This will be especially useful for land managers and decision makers when considering alternative
land management scenarios and conservation strategies using SWAT.
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