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Abstract: Design of hydraulic structures, flood warning systems, evacuation measures, and traffic
management require river flood routing. A common hydrologic method of flood routing is the
Muskingum method. The present study attempted to develop a three-parameter Muskingum model
considering lateral flow for flood routing, coupling with a new optimization algorithm namely,
Improved Bat Algorithm (IBA). The major function of the IBA is to optimize the estimated value of
the three-parameters associated with the Muskingum model. The IBA acts based on the chaos search
tool, which mainly enhances the uniformity and erogidicty of the population. In addition, the current
research, unlike the other existing models which consider flood routing, is based on dividing one reach
to a few intervals to increase the accuracy of flood routing models. Three case studies with lateral
flow were considered for this study, including the Wilson flood, Karahan flood, and Myanmar flood.
Seven performance indexes were examined to evaluate the performance of the proposed Muskingum
model integrated with IBA, with other models that were also based on the Muskingum Model with
three-parameters but utilized different optimization algorithms. The results for the Wilson flood
showed that the proposed model could reduce the Sum of Squared Deviations (SSD) value by 89%,
51%, 93%, 69%, and 88%, compared to the Genetic Algorithm (GA), Particle Swarm Optimization
(PSO) algorithm, Pattern Search (PS) algorithm, Harmony Search (HS) algorithm, and Honey Bee
Mating Optimization (HBMO), respectively. In addition, increasing the number of intervals for flood
routing significantly improved the accuracy of the results. The results indicated that the Sum of
Absolute Deviations (SAD) using IBA for the Karahan flood was 117, which had reduced by 83%,
88%, 94%, and 12%, compared to the PSO, GA, HS, and BA, respectively. Furthermore, the achieved
results for the Myanmar flood showed that SSD for IBA relative to GA, BA, and PSO was reduced by
32%, 11%, and 42%, respectively. In conclusion, the proposed Muskingum Model integrated with
IBA considering the existence of lateral flow, outperformed the existing applied simple Muskingum
models in previous studies. In addition, the more the number of intervals used in the model, the better
the accuracy of flood routing prediction achieved.
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1. Introduction

Flood routing is fundamental to the design of structural, as well as nonstructural, flood control
measures [1]. Routing involves the calculation of changes in the magnitude, velocity, and shape of a
flood wave, as a function of time at one or several points of the river [2]. There are two types of flood
routing methods: Hydraulic and hydrological. Hydraulic methods have complex computations and are
more data-intensive, but describe the complete flood wave profile, whereas hydrological methods are
much simpler, but yield the flood hydrograph at the end of a reach [3–7]. The hydrologic methods need
only the inflow hydrograph for a river reach. A common hydrologic method is the Muskingum method,
which has several versions with parameters ranging from two to five. The two and three parameter
versions of the Muskingum methods are more popular. In recent years, optimization methods,
especially evolutionary algorithms, for estimating the Muskingum parameters have been popular [3].
A brief background of such algorithms is now given.

1.1. Background

The flood routing models mainly include two different types of modeling: the hydraulic and
hydrologic models. The hydraulic model is usually developed in a one or two-dimensional domain.
Full three water shallow models and two diffusive models were used for an urban site, and the
results had the same difference with each other because of different representation of a numerical and
hydraulic method in the model algorithm process [5]. Hunter et al [6] successfully set three explicit
hydraulic models based on the inertia, diffusive, and shallow water models for flood simulation.
The results indicated that the models with the shallow water equation were simple and could provide
good accuracy, for the prediction of depth and velocity of the flood [5]. Dottori and Todini [7] evaluated
two-dimensional models based on the diffusive wave for urban floods, and the results indicated that
the model could simulate the overall phenomenon well. Kim et al. [8] evaluated the different meshes in
diffusive models, to investigate the effect of different meshes on the flood hydrograph. Prestininzi [9]
applied the diffusive models based on the impulsive wave for inundation areas, and the results showed
the model could simulate the flood conditions even in complex topography, based on a good match
of simulated results with the observed data. Aricò et al. [10] applied diffusive wave equation based
on 2-D numerical models for a slow varying flood, and the results showed that the simulated depth
of the flood had a relatively good match with observed data. Classical, explicit finite differences in
the hydraulic models and simple Muskingum model were used to investigate the flood routing [11].
It has been reported that the applied numerical methods had numerical instability, for some case
studies. As a result, the Muskingum model showed superior performance compared to the same
applied hydraulic models [11]. It has been reported that the 2-D models could be developed, based on
the availability of enough information about topography and topology. With this information, a 2-D
hydraulic model could successfully simulate the flood characteristics for different urban conditions.
In fact, digital maps helped to identify all the required information about the boundary conditions,
and to differentiate between numerous transitions within the urban hydraulic modes [12].

In addition, it has been reported that the 2-D models had had trouble in application to particular
cases under small water depths, especially when the status comes close to wet/dry boundary
conditions, so that there is a need for specific algorithms for simulation [6]. Costabile et al. [13] reported
that the main advantages of the one-dimensional model over the 2-D models for flood routing, are a
simpler run process and low computational time where topographic data was unnecessary.

Fassoni-Andrade et al. [14] considered the development of a one-dimensional model based on the
equation of hydrological models, which include the continuity equation and mass equation, such as the
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equation of the Muskingum models [14]. It was observed that one-dimensional flow routing inertial
models, based on the explicit solution were superior to the other models. These models simplified
the Saint-Venant equation, and the main advantages of these models were good simulated results
with a simple structure. Singh and Arvamuthan et al. [15] applied two hydraulic models that were
developed based on the Kinematic and diffusion waves, in addition, the results were compared to the
Muskingum model for the flood routing. The results showed that the simulation of hydraulic models
was dependent on the kinematic wave number, so that when the value of this parameter was not
considered based on accurate computation, the results for the hydraulic model could be worse than
hydrologic models. Costabile et al. [16] reported that 2-D models could overcome the limitation of
1-D models, when the case study characterized as unsteady flow in irregular topography. The reports
showed that if the flow was not one dimensional for the urban hydraulic, the one-dimensional channel
network should be used instead of a one-dimensional model. In addition, the results showed the
significant difference between 1-D and 2-D models to simulate the velocity and depths.

However, the results showed that the complex nonlinear form characteristic, numerical stability,
high computational time, and complexity in the run process of hydraulic models, meant that the
simpler and more accurate models have high importance [13]. In fact, the hydraulic models need to
measure the flow depth and discharge based on applying stream gaging. These models are known
as complex models and difficult to use, whilst the hydrologic models need only to use the discharge
data. In addition, the hydrologic models can be effective for the initial planning level, where the
measuring system is undeveloped for accurate measurement [13]. For example, Chatila [17] simulated
flood routing based on the Muskingum model and EXTRAN hydraulic model. The hydraulic model
developed was based on finite difference. Both hydrologic models and hydraulic models, were applied
on simple and compound channels for flood routing. The results revealed that the Muskingum
model had achieved higher accuracy compared with the hydraulic model because of its flexibility
in calibration, where even the river bed geometry was not considered for this model. It has been
demonstrated that the Muskingum model could simulate the peak discharge, achieving a close fit with
the actual one, compared to the hydraulic model. Furthermore, it has been reported that hydraulic
models are dependent too many assumptions, such as reach geometry, channel slope, and flow velocity,
which causes the application of some hydraulic models to be limited to the specific case studies.

The Muskingum model is a useful and important hydrological model, due to its high accuracy and
simplicity. Hydrological models could be accomplished after estimating the value of parameters, on the
other hand, hydraulic models are required to simulate the complex boundary hydraulic conditions
that causes an increase in the computational time [17].

Therefore, this model was used as a model with free access, fast computation, highly accuracy, and
low cost. Furthermore, it can be used as a good tool, instead of complex hydraulic models, for flood
simulation. Additional background of the application of the Muskingum model and its integration
with an evolutionary algorithm, will be presented and discussed hereinafter [18].

Under a two parameter Muskingum method, Luo and Xie [19] applied the immune clonal
selection algorithm (ICSA) for flood routing in a river in China, and found that the algorithm
had faster convergence than the GA and PSO; and routed discharges had a high correlation with
observed discharges.

Geem [20] obtained the two parameters of Muskingum method using a harmony search algorithm
(HAS) for the Wilson flood in the USA, and obtained less root mean square between the predicted and
observed discharges, than for GA and PSO, and less computational time.

Nelder-Mead simplex algorithm (NMSA) was considered for flood routing, and a case study
in the USA [21]. The parameters of the Muskingum model were considered as decision variables,
and the results indicated that the RMSE (root mean square error) based on NMSA decreased by 20%,
compared to the genetic algorithm [21].

Karahan et al. [22] applied a hybrid of GA, HAS, and nonlinear programming to a three-parameter
Muskingum method for flood routing in a river, and found the hybrid algorithm more accurate.
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Orouji et al. [23] used a genetic programming algorithm (GPA) for flood routing by the
Muskingum method, and showed that GPA was more accurate than GA and PSO. The Muskingum
model by 4 parameters was considered under different case studies [23].

Four parameters were considered as decision variables, and the results indicated that the model
based on the considered parameters with the genetic algorithm decreased the RMSE and mean absolute
error (MAE) by 20% and 25%, respectively, compared to the nonlinear programming methods [24].

The hybrid PSO and harmony search algorithm was considered for flood routing [25]. The results
indicated that the new hybrid method could increase the convergence velocity of the harmony
algorithm, and decreased the error indexes, RMSE, and MAE, compared to the simple harmony
and particle swarm algorithm.

Ouyang et al. [26] applied a hybrid of PSO and GA for Muskingum flood routing and showed that
the hybrid algorithm was faster, and more accurately predicted the peak discharge and time to peak.

Under the three-parameter Muskingum method, Geem [27] found the harmony algorithm (HA) to
have higher convergence than PSO and GA. Under the four-parameter Muskingum method, the Frog
Leaping Algorithm (FLA) was found to have a lower computational error, than PSO and GA [28].
Niknazar and Afzali [29] used an improved Honey Bee Algorithm (IHBA) to optimize three parameters
of the Muskingum method, and found it to be superior to GA and PSO.

Using an Invasive Weed Optimization Algorithm (IWOA) for parameter optimization,
Hamedi et al. [2] found the five-parameter Muskingum method to be more accurate than the
four-parameter version. With PSO for parameter estimation, Moghadam et al. [30] found the four-
parameter Muskingum method to be more accurate, than the three-parameter Muskingum method
with GA and linear programming.

Using the gravitational search algorithm for parameter optimization, Kang et al. [31] found the
four-parameter Muskingum method to be accurate for flood routing. Flood routing for a case study
in China based on real code genetic algorithm was considered [3], and the results indicated that the
four-parameter Muskingum model based on genetic algorithm decreased the RMSE and MAE of the
two- and three-parameter Muskingum models.

Barati et al. [21] applied different kinds of GPA to the four-parameter Muskingum method for
flood routing, and found the fixed genetic programming to be more accurate. For flood routing using
the Muskingum-Cunge method, Wang et al. [23] found PSO to yield better results than GA.

In 2018, Lee [32] developed and applied an advanced Muskingum flood routing model by
considering continuous stream flow, utilizing weighted inflow. Several statistical indicators have
been used to evaluate the performance of the suggested model. The proposed model provided
acceptable results, compared to those obtained from previous studies. The results showed that the
vision corrected algorithm (VCA) had experienced a relatively small error index compared to the GA,
PSO, and nonlinear programming models, for different flood case studies.

The literature review showed that the evolutionary algorithm has a high ability for obtaining the
parameter values of the Muskingum model, but some algorithms have limitations, such as trapping in
local optimums, slow convergence velocity, or insufficient accuracy for the simulation [33]. For example,
the GA can trap in the local optimums or the PSO may have an immature solution due to fast
convergence [1,27]. Some evolutionary algorithms have many random parameters, and accurate
determination of these parameters is difficult. Thus, the improvement of previous algorithms or
definition of new algorithms is necessary.

1.2. Problem Statement

Flood routing is nonlinear and multimodal, with noise. The most widely used model for flood
routing is the Muskingum model. One of the main components of the Muskingum model procedure,
is the inclusion of a particular number of parameters ranging between two and five, which have
to be estimated based on the case study characteristics to be able to accurately route the flood.
There are different procedures to estimate the Muskingum model parameters. Actually, the better
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the estimation of the parameters’ value, the better the prediction of the flood routing characteristics
achieved [33–37]. Having an optimization algorithm that is able to optimize the value of these
parameters, whether two or three, is needed to enhance the ability of the Muskingum model to
identify the flood routing characteristics. Thus, a robust algorithm that leads to the global optimal
solution is needed. Bats exhibit a mysterious behavior that has long been attractive. They are able
to orientate themselves to their surroundings and food acquisition, without depending on their
eyesight. Bats consistently emit echolocation signals. Through analyzing the returning echoes
in the auditory system, bats can distinguish their environment and find preys. By continuously
watching and concentrating on the abilities of bats, scientists have suggested different bat-inspired
algorithms (i.e., bat algorithm (BA) and bat intelligence (BI) algorithm) for the solution of optimization
problems [33,34]. Bozorg-Hadad et al. [35] used BA to optimize the use of a repository to reduce
hydroelectricity energy shortage. This algorithm has been shown to have a faster convergence, than GA
and PSO. Ahmadinafar et al. [36] used a hybrid BA to exploit a 10-repository system to increase
energy production, which reduced computational time compared to other evolutionary algorithms.
Studies have shown that BA is a powerful method but it has weaknesses, such as trapped in the local
optimum or premature convergence [37,38]. Thus, it needs to be improved.

1.3. Objective

In the light of the above, the use of Muskingum model showed its success when applied in
flood routing prediction, but it has a few limitations. For example, it cannot be used for the complex
boundary condition. In addition, one of the weaknesses of the model is the consideration of the lateral
flow. In fact, most of the previous researches ignore the lateral flow while using the simple Muskingum
model. Therefore, if lateral flow exists and has high volume, the Muskingum model simulates the flood
without consideration of lateral flow [23–31], and hence, the achieved accuracy is relatively low. In fact,
simplification of the Muskingum equation was a reason to omit the effect of lateral flow for flood
routing, whilst there is lateral flow in the reach when the flood happens in nature. Although, there are a
few number of references considering the lateral flow, some of them are limited to specific case studies
with the low flow lateral condition and using Muskingum models with a simple structure [39–42].

Limited studies showed that the consideration of the lateral flow, with the help of hydraulic
models, could simulate the actual situations that close to the real conditions [12]. Osolivan et al. [17]
reported the disadvantages of the hydraulic models for flood routing in the floodplain. Their reports
showed that the initial and boundary conditions, and the resistance characteristics of main channels in
the floodplain, are neccessary for the hydraulic modeling.

The present study develops the new Muskingum model for flood routing considering lateral
flow. In addition, the Muskingum Model has been coupled with a new Improved Bat Algorithm (IBA),
to optimize the estimation of the three-parameter Muskingum model.

The objective of this study, was to couple the three-parameter Muskingum method (TPMM) with
an improved bat algorithm (IBA) for flood routing, with a multi-reach method and consideration
of lateral flow. Citing easy trapping in the extremum for bat algorithm, an improved bat method is
suggested and used to simulate flood routing. Chaos search tool is defined to enhance the uniformity
and ergodicity of the population. Adapting weight is defined to balance the local and global search
tools, for the bat algorithm. One of the advantages of the new bat algorithm is related to decreasing
the search range, based on dynamic contraction.

The innovation of the study is the use of a new bat algorithm for flood routing lateral flow.
Moreover, whilst previous studies usually considered one reach for flood routing without lateral
flow, the present study compared the effect of dividing a river into different reaches on flood routing,
and the prediction of peak discharge.
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2. Materials and Methods

2.1. Flood Routing

The Muskingum method of flood routing is based on the continuity equation and a
storage-discharge relation [30]. The present study considers the lateral flow for the flood routing for
the case studies based on a ration of inflow rate Olateral = βIt, while the other studies do not consider
the effect of lateral flow for flood regime, and thus it adds one term to the equation of the Muskingum
model with three parameters. If β coefficient equals to zero, the lateral flow has not been considered
for the flood routing.

dst

dt
= Ot − (1 + β)It (1)

St = K[X(1 + β )It + (1− X)Ot] (2)

where Ot is the output flow at time t, It is the input flow at time t, St is the storage at time t, dst
dt is

the storage time variation at time t, K is the time coefficient of storage, and X is the weighting factor
showing the effect of input and output flows on storage.

Equation (2) expresses a linear relation between storage, and input and output flows. However, a non-
linear has also been presented as:

St = K[X(1 + β )It + (1− X)Ot]
m (3)

where m is an exponent. Using Equations (1) and (3), one can obtain [21]:

Ot =

(
1

1− X

)(
St

K

) 1
m
−
(

X(1 + β)

1− X

)
It (4)

∆St

∆t
= −

(
1

1− X

)(
St

K

) 1
m
+

(
1(1 + β)

1− X

)
It (5)

Using St, ∆St, the storage later can be expressed as:

St+1 = St + ∆St (6)

Flood routing can be done using the following steps:

1. Consider initial values for parameters K, X, β, and m and enter them into the optimization
algorithm, in the form of initial population.

2. Calculate the storage based on Equation (3), assuming the equality of input and output flow.
3. Calculate the change in storage relative to time, based on Equation (5).
4. Calculate the storage based on t + 1, according to Equation (6).
5. Calculate the output flow at t + 1, based on Equation (4).
6. Repeat steps 2 to 5.

2.2. Optimization of Multi-Reach Muskingum Coefficients

The multi-reach Muskingum method is introduced to enhance the accuracy of the Muskingum
method. The river under study was divided into several smaller reaches, and for each reach,
routing was done separately. In other words, for each reach, parameters X, K, β, and m were calculated
separately, and the output hydrograph was obtained based on the input flood hydrograph and
the assumed values of X, K, β, and m for the first reach [3,21,28,31]. This output hydrograph was
considered as the input hydrograph for the second reach, and so on. For the second reach, the assumed
values of X, K, β, and m were used, and the output hydrograph was calculated. This process was
repeated for all the reaches, until the output hydrograph of the last was obtained. By comparing
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the computed hydrograph with the observed hydrograph, the error was calculated, and to reach the
minimum error, Muskingum coefficients were optimized at all reaches. Figure 1 shows the division of
the river into several reaches.
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2.3. BAT Algorithm

Bat algorithm (BA) is based on bat sound reproduction and sound reflection. The difference
in loudness that comes from the surrounding environment, allows the bat to identify the barrier
from food. Bats produce very high sound pulses and listen to their return from the objects around.
Each pulse remains only for a few milliseconds. BA is based on the following assumptions [30,39–41]:

1. All bats have a high ability to receive sound, so that they can detect food after producing
loud sounds.

2. Bats fly randomly at a velocity at place yl, capable of producing sound with f min frequency and λ

wavelength. The sound produced by bats also has loudness A0.
3. The loudness of sound, of the bats ranges from A0 to Amin.

Each sound produced by the bat has a pulse rate (r), between 0 and 1. The sound frequency speed
and position of the bats are updated as:

fl = fmin + ( fmax − fmin)× β (7)

vl(t) = [yl(t− 1)−Y∗]× fl , t = 1, 2, . . . T (8)

yl(t) = yl(t− 1) + vl(t), t = 1, 2, . . . , T (9)

where fl is the frequency of sound of bats, fmin is the minimum frequency, fmax is the maximum
frequency, β is the random coefficient between 0 and 1, vl(t) is the velocity of the bat, Y∗ is the best
position of the bat, yl(t) is the position of the bat, and T is the number of periods evaluated.

The following equation is used for local search in the bat algorithm:

y(t) = y(t− 1) + εA(t), t = 1, 2, . . . , T (10)

where ε is the random variable between −1 and 1, and A(t) is the loudness of sound. Loudness and
pulse rates are updated, according to each stage of the iteration. For example, zero sound loudness
means that the bat has found its prey and has temporarily stopped the search.

rt+1
l = r0

l [1− exp(−γt)]At+1
l = αAt+1

l (11)
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where α and γ are fixed as constant coefficients. For any value of α between 0 and 1, and γ greater than
zero, At

l → 0 and rt
l → t0

l are true. Figure 2 shows the mathematical procedure of the bat algorithm.
In addition, it should be noted that the random walk is considered as a parameter for the local search,
for the bat algorithm.
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2.4. Improved Bat Algorithm (IBA)

The initial arrangement for the initial version of the BA is defined randomly, and it can be a reason
for the uneven distribution that causes premature convergence. The chaos is a technique for improving
different algorithms, where the basic idea is related to the exchange of members in the range of (−1,1).
The logic mapping function is used for modulating the algorithms. Then individuals are inserted into
the chaos sequence, so that it should satisfy the chaos variable space. Then, linear transformation
is used to return the members to the corresponding position. The convert space is shown based on
following mathematical equation:

Li =
2
(
xa

i − a
)

(b− a)
− 1 (12)

where xa
i : the initial position of the members.

The following equation is used to show the logic mapping function:

Li+1 = 1− 2× L2
i (13)

Then, the elements and values are returned to the corresponding position by the following
linear transformation:

y0
i =

1
2(b− a )

Li +
1

2(b + a)
(14)

Furthermore, adapting weight is applied to the bat algorithm to have a good balance between
global search ability and local search ability.

yt
l = w(t) ·yt−1

l + vt
l (15)



Water 2018, 10, 1130 9 of 24

The weight is computed based on the following equation:

w(k) =
wmax·(wmax − wmin)·(Tmax − k)

Tmax
(16)

wmax: the initial weight, wmin: the final weight, and k: the current iteration number.
The final level is related to the application of dynamic contraction, for adjusting the convergence speed:

ymin,i = max{ymin,i, x∗ − rand× (ymax,i − ymin,i)}
ymax,i = min{ymax,i, x∗ − rand× (ymax,i − ymin,i)}

(17)

where ymin,i: the lower bound position, and ymax,i; the upper bound position.
The algorithm functions using the following steps:

1. Adjust the random parameters for the algorithm, such as loudness, pulsation rate, frequency,
and other parameters.

2. The individual position is computed using Equations (13)–(15), and then the objective function is
computed for each member, and the best solution is considered as Y∗.

3. The frequency and velocity are updated using Equations (7) and (8), and the position is computed
using Equation (17).

4. The randomness value is compared with rl, and if rl is less than the randomness value,
the distribution of the best position is acted based on 0.01 times the random disturbance.

5. The local search is considered for this level. If the loudness is less than rand, the loudness should
be updated and the pulsation rate should be improved using Equation (12).

6. Compute the objective function and change the range using Equation (16).
7. The convergence criterion is checked and if it is satisfied, the algorithm finishes or else the

algorithm goes to step 2.

2.5. Genetic Algorithm (GA)

In GA, the initial version of the population is composed of different solutions [40]. During an
iterative process, subsequent populations are generated to improve the objective function. At each
stage, some members from the current population are selected to generate individuals or children of
the next generation, based on the fact that the likelihood of selecting people with better performance
than others is more likely [41]. The selected individuals produce the next population based on two
genetic operators, composition and mutation. The following equations can be used for the composition
operator [33].

Popnew
i = αPopold

i + (1− α)Popold
j (18)

Popj
new = αPopold

j + (1− α)Popold
i (19)

where Popnew
i is the i-th child, Popold

i is the i-th parent, Popold
j is the j-th parent, Popj

new is the j-th child,
and α is a coefficient between 0 and 1. Moreover, mutation is based on the following equation:

Popnew
i,j = Varlow

i,j + β
(

Varhi
j,i −Varlow

j,i

)
(20)

where Varlow
i,j is the lower limit of the i-th gene in the j-th chromosome, Varhi

j,i is the upper limit of
the i-th gene in the j-th chromosome, and β is a random coefficient between 0 and 1. In composition,
the production of both new individuals is done by changing the gene. The mutation operator is used
for the change in chromosomes and transforming their genes to create diversity in the population.
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2.6. Particle Swarm Algorithm (PSO)

Initially, the process starts with a particle set. Each particle is considered as a random solution.
In the next step, searches are performed sequentially to achieve the optimal answer. The i-th particle
is associated with a position in an s-dimension space, where the value of s shows decision-making
variables of the problem [42]. The values of s variables, which determine the positions of particles are
a possible solution for the optimization problem. Each particle i is completely determined by three
vectors. Vector Xi is the current position of the particle, Yi is the best position where the particle is
iterated, and the vector of the particle velocity is shown by Vi. Then the particle position and particle
velocity vector are updated as:

Viter+1
i = wViter

i + c1rand
(

Yiter
i − Xiter

i

)
+ c2rand

(
Yiter
∗ − Xiter

i

)
(21)

Xiter+1
i = Xiter

i + Viter+1
i (22)

where Viter+1
i is the new velocity of the particle, the personal learning coefficient c2 is the global

learning coefficient, Yiter
∗ is the best solution among the solutions, and Xiter+1

i is the new position of
the particle. Moreover, w is the coefficient of inertia.

Indices of Error Measurement

1. The sum of squared deviations (SSD): SSD index is used as the objective function in the present
study. The index calculates the total of squared deviations between observed and real discharges [28,42–46]:

Minimize(SSQ) =
n

∑
t=1

(Obt −Ost)
2 (23)

where Oobt is the observed discharge, Ost is the simulated discharge, and n is the number of data.
2. The sum of absolute deviations (SAD): SAD is the total sum of total deviations between

observed and predicted discharges [20,30]:

Minmize(SAD ) =
n

∑
i=1

(Obt −Ost) (24)

3. Error of Peak discharge (EP): EP index measures the difference between predicted and observed
discharges [43–46].

EQp =

∣∣∣Opeak
observed −Opeak

routed

∣∣∣
Opeak

observed

(25)

4. Error of time to peak (ETP): The ETP index measures the difference between predicted and
observed time differences of discharge [24,37,38].

ETp =
[

Tpeak
observed − Tpeak

routed

]
(26)

Tpeak
observed is the observed discharge, and Tpeak

routed is the time related to the routed discharge.
5. Mean absolute relative error (MARE): The mean of the relative error between observed and

predicted discharges:

MARE =
1
N

n

∑
i=1

(
Qobserved

t −Qrouted
t

)
Qobserved

t
(27)

N is the number of data.
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6. Varex Q (Variance index): This indicator shows the proximity of predicted and observed
hydrographs with each other.

VarexQ =

1−

N
∑

i=1

(
Oobserved

t −Orouted
t

)
N
∑

i=1

(
Oobserved

t −Oobserved
mean

)
× 100 (28)

Oobserved
mean is the observed average discharge. The closer the coefficient is to one, the more accurate

the ability to predict the flood will be.
7. The agreement index (d) based on follow equation, shows the performance of the model well,

so that the value of index can change from 0 to 1 [45,46].

d = 1−

N
∑

i=1

(
Oobserved

i −Orouted
i

)2

N
∑

i=1

(∣∣∣Orouted
i −Oobserved

i

∣∣∣+ ∣∣∣Oobserved
i −Oobserved

i

∣∣∣) (29)

Oobserved
i : average of observed data.

3. Results and Discussion

This paper considered three case studies for flood routing. Two case studies were considered
as bench problems, which have been used by different researchers using many methods for flood
routing (Wilson and Karahan floods), and one case study was related to a river in Myanmar that had an
important flood. The Wilson flood is considered as an important case study and different researchers
tested different algorithms on this case study [2,3,28–30], and thus a comprehensive study can be
considered for this case study. The Karahan flood is considered as one of the case studies that have
been investigated by different researchers as a benchmark problem [28–31,35].

3.1. Wilson Flood

Wilson Flood [44] is one of the most important benchmark applications, to investigate the
performance of the Muskingum model and other hydrologic models. In fact, this flood pattern
was generated under experimental conditions. Different mathematical models were examined using
this flood data pattern, which received great attention from researchers in examining their models.

The data was extracted from Wilson [44]. This information includes single peak inflow and
outflow hydrographs with lateral flow. In addition, the applied algorithms in this research consider the
lateral flow, although as shown in Table 4, previous researches have ignored the lateral flow because of
low value, as shown in Table 6.

Several methods, such as the Segmented Least Square Method (SLSM), Hook and Jeeves
(HJ)method, in combination with the Conjugate Gradient (HJ + CG), HJ method, in combination
with Davidson Fletcher-Powell (HJ + DFP), nonlinear least squares (NONLER), Genetic Algorithm
(GA), Harmony Search (HS), Particle Swarm Optimization (PSO), and Honey Beaming Optimization
(HBMO), have used this flood without consideration of lateral flow. Given that evolutionary algorithms
have random parameters, sensitivity analysis was used to determine the exact values of parameters.
The evolutionary algorithms have random parameters, where the accurate values of these algorithms
are computed based on sensitivity analysis. It means that the variation of objective function is
determined versus the variation of parameter values, and when the objective function has the best
value for a parameter, the value of this parameter is introduced as the optimal. The SSD was considered
as an objective function for the current study. The frequency parameters were used to update the
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velocity and then the position of bats was computed based on velocity. When the objective function
value is minimized, the value of the different parameters is considered at its optimal value.

Tables 1–3 show the sensitivity analysis of IBA parameters, BA, GA, and PSO for flood routing in
a single reach. The objective function was considered SSD for this study.

The best population associated with IBA was 60, with the lowest SSD. Moreover, the maximum
frequency was 5, with the objective function as 5.01. The maximum loudness of sound was 0.6, with a
random walk rate of 5. Furthermore, the mutation rate for GA was 0.6, and the recombination rate
for GA was 0.7. In addition, the personal and global learning coefficient in PSO was 2, and the inertia
coefficient was 0.6. When the inertia coefficient was 0.6, the objective function had the least value
(10.82), and thus, the best value for the inertia coefficient was selected to be equal to 0.6 for the PSO.
Other parameters can be seen in the Tables 1–3.

Table 1. Analysis for the performance of Improved Bat Algorithm (IBA) algorithm (Wilson flood).

SSD

Objective
Function (cms)

Random
Walk Rate

Objective
Function (cms)

Maximum
Loudness

Objective
Function (cms)

Maximum
Frequency

Objective
Function (cms)

Population
Size

6.23 1 6.01 0.2 6.12 1 6.23 20
5.66 3 5.89 0.4 5.78 3 5.89 40
4.12 5 4.12 0.6 4.12 5 4.12 60
5.14 7 5.24 0.80 5.76 7 5.15 80

Table 2. Analysis for the performance of the Genetic Algorithm (GA) (Wilson flood).

SSD

Objective
Function Crossover Rate Objective Function

(cms) Mutation Rate Objective Function
(cms)

Population
Size

46.12 0.10 47.12 0.20 45.39 20
43.21 0.30 42.24 0.40 38.94 40
39.19 0.50 39.24 0.60 39.23 60
40.12 0.70 40.23 0.80 40.12 80

Table 3. Analysis for the performance of the Particle Swarm Optimization (PSO) (Wilson Flood).

SSD

Objective
Function (cms) w Objective

Function (cms) c2 Objective
Function (cms) c1 Objective

Function (cms) Population Size

12.22 0.2 11.21 1.6 12.11 1.6 12.24 10
10.90 0.4 10.89 1.8 11.89 1.8 10.45 30
10.82 0.6 10.80 2.0 10.82 2.0 10.80 50
11.32 0.8 11.12 2.2 11.24 2.2 11.23 70

Table 4 compares IBA with other evolutionary algorithms, for a single reach routing. The SSD
value for IBA was 4.123, with SSD being reduced by 89%, 51%, 93%, 69%, 88%, and 97% compared to
GA, PSO, PS, HS, HBMO, and SLSM, respectively. In addition, the SAD index was 7.112, reduced by 69%,
22%, 75%, 69%, 81%, and 84% relative to GA, PSO, PS, HS, HBMO, and SLSM, respectively. In addition,
EP and MARE showed the superiority of IBA to other methods. VarexQ index for IBA, compared to other
methods, showed more consistency with the predicted hydrograph. Furthermore, the performance
of IBA was better than BA, so that SSD, SAD, and other error indexes for IBA were less than BA.
For example, SSD and SAD for IBA were 4.123 and 7.112, whilst SSD and SAD for BA were 5.123 and
8.114. In addition, focusing on the peak discharge value, it could be depicted that the computed peak
discharge based on IBA (85.11) was the most nearest estimated value to the real observed one (85),
and in general, showed a worthy match with observed discharge during the whole period. In addition,
for the estimation of the peak time which was predicated based on IBA, it was same to the observed
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one 60 h. For further assessment, Table 5 shows the performance of all the models, and it could be
observed that the proposed IBA in the present study outperformed all the other models.

3.2. Multi-Interval Flood Routing (Wilson Flood)

It can be seen from Table 5 that SSD, SAD, and MARE for IBA, BA, GA, and PSO for three reaches
were less than for two reaches, and their values for two reaches were less than for the single reach.
The best results by IBA were obtained for three reach flood routing. For flood routing using single,
two, and three reaches, all evolutionary algorithms predicted the peak discharge accurately, such that
the difference with the observed value was 0. For example, SSD for IBA, for one reach was 4.123,
whilst it was 3.988 for three reaches. SSD and SAD for IBA for one, two, and three reaches were
1 and 85%, compared to other algorithms, and thus, IBA better performed than other algorithms.
The results based on Varex Q showed that the generated hydrograph based on IBA with consideration
of more value for Varex Q had a better performance than the other algorithms, and it had a high
match with the observed hydrograph. The investigation of Ep showed the value of the index had
decreased from 50% to 97% based on IBA, compared to the other methods for two and three intervals.
In addition, the value of MARE had decreased from 6% to 56% based on IBA, for the two and three
reaches. Furthermore, the agreement index (d) showed a better performance for IBA, achieving a value
closer to 1 compared to the other algorithms.

An increase in the number of reaches for evolutionary algorithms increased the accuracy of flood
routing. Figure 3 shows the performance of IBA for flood routing with one, two, and three reaches,
which is more consistent with observed discharges. Moreover, the computational time showed better
performance for the IBA, compared to the other algorithms. For example, the computational time for
the IBA based on one reach was 5 s, whilst it was 7, 8, and 9 s for the BA, PSO, and GA, respectively.

Table 4. Computed error indexes for Wilson flood.

Method K X m SSD SAD EP ETP MARE VarexQ

SLSM 0.0010 0.2500 2.3470 143.600 46.40 0.0216 0 0.0561 98.33
HJ + CG 0.0069 0.2685 1.9291 49.640 25.20 0.0059 0 0.0301 99.59
HJ + DFP 0.0764 0.2677 1.8987 45.640 24.80 0.0035 0 0.0331 99.63
NONLR 0.0600 0.2700 2.3600 41.280 25.20 0.0083 1 0.0251 99.60

GA 0.1033 0.2873 1.8282 39.230 23.80 0.0082 0 0.0311 99.70
HS 0.0833 0.2873 1.8630 36.780 23.40 0.0107 0 0.0312 99.63

PSO 0.0755 0.2981 3.681 8.820 9.771 0.0005 0 0.0261 99.93
PS 0.4891 0.2714 1.8281 62.65 29.48 0.2901 0 0.0345 99.25

HMBO 0.6304 0.3399 1.8533 36.242 37.451 0.7001 0 0.0281 99.69
BA 0.0311 0.2934 0.8235 5.123 8.112 0.0004 0 0.0312 99.96

Present study IBA 0.0312 0.2997 1.8678 4.123 7.112 0.0002 0 0.0245 99.98Water 2018, 10, x FOR PEER REVIEW  15 of 25 
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Table 5. Flood routing for Wilson flood according to three different intervals.

Method K X m β SSD SAD EP MARE VarexQ Time (s) d

IBA 0.0312 0.2997 1.8678 0.0212 4.123 7.112 0.0002 0.0245 99.98 5 0.96

BA 0.0314 0.2996 1.8923 0.0210 5.123 8.125 0.0004 0.0312 99.96 7 0.87

PSO 0.0755 0.2981 3.681 0.0199 8.820 9.771 0.0005 0.0261 99.93 8 0.76

GA 0.1033 0.2873 1.8282 0.0111 39.230 23.80 0.0082 0.0311 99.70 9 0.65

IBA K1 = 0.0378
K2 = 0.0345

X1 = 0.2267
X2 = 0.2245

m1 = 1.9435
m2 = 1.8912

β1 = 0.0124
β2 = 0.0114 4.011 7.011 0.0002 0.0231 99.98 8 0.95

BA K1 = 0.0368
K2 = 0.0355

X1 = 0.2167
X1 = 0.2457

m1 = 1.9735
m2 = 1.8812

β1 = 0.0021
β2 = 0.054 4.021 7.105 0.0003 0.0241 99.97 10 0.89

PSO K1 = 0.0871
K2 = 0.0881

X1 = 0.2676
X2 = 0.2512

m1 = 1.2311
m2 = 1.2212

β1 = 0.0034
β2 = 0.045 8.123 9.123 0.0004 0.0251 99.93 12 0.84

GA K1 = 0.0861
K2 = 0.0882

X1 = 0.2214
X2 = 0.2312

m1 = 1.1211
m2 = 1.1112

β1 = 0.0074
β2 = 0.054 38.11 22.121 0.0082 0.0281 99.70 14 0.82

IBA
K1 = 0.0871
K2 = 0.0851
K3 = 0.0812

X1 = 0.2876
X2 = 0.2745
X3 = 0.2212

m1 = 2.0121
m2 = 2.111
m3 = 2.123

β1 = 0.0174
β1 = 0.0162
β1 = 0.0151

3.988 6.989 0.0001 0.0221 99.98 15 0.90

BA
K1 = 0.0841
K2 = 0.0852
K3 = 0.0822

X1 = 0.2976
X2 = 0.2641
X3 = 0.2314

m1 = 2.1122
m2 = 2.221

m3 = 2.2231

β1 = 0.0139
β1 = 0.0111
β1 = 0.0167

4.001 6.999 0.0002 0.0231 99.97 16 0.87

PSO
K1 = 0.078
K2 = 0.0812
K3 = 0.0816

X1 = 0.4567
X2 = 0.4569
X3 = 0.4745

m1 = 5.112
m2 = 5.114
m3 = 5.116

β1 = 0.0094
β1 = 0.0082
β1 = 0.0065

7.126 8.989 0.0003 0.0241 99.94 19 0.86

GA
K1 = 0.0651
K2 = 0.0612
K3 = 0.0724

X1 = 0.3212
K2 = 0.3414
K3 = 0.3515

m1 = 6.123
m2 = 6.178
m3 = 6.115

β1 = 0.0056
β1 = 0.0065
β1 = 0.0033

37.123 21.123 0.0072 0.0271 99.72 22 0.89
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3.3. Karahan Flood

Karahan et al. [22] routed a flood using various algorithms. This study considered the 1960 flood
on the River Wye, UK. River Wye is 69.75 km from Erwood to Belmont with consideration of lateral
inflow, which was ignored in the previous studies, as shown in Table 7. In this study, the proposed
model was evaluated considering the flood routing based on lateral inflow, which occurred in this
Karahan flood. The data was extracted from Karahan [22].

This flood was also used in the present study. The population used for IBA was 50, the maximum
frequency was 5, the minimum frequency was zero, and the maximum sound loudness was 95%.
In addition, the number of chromosomes for GA was 50, the probability of mutation was 0.6, and the
recombination rate was 0.7. Furthermore, the number of particles used in the particle swarm algorithm
was 50, the inertia coefficient was 0.7, and the personal and global learning coefficients were 2. Table 6
shows a comparison of algorithms used in flood routing in a single reach. The value of SSD for IBA
was 17,120.21, which had reduced by 81%, 87%, 84%, and 10% compared with PSO, GA, HS, BA,
respectively. In addition, SAD for IBA was 117, which had reduced by 83%, 88%, 94%, and 12%
compared to PSO, GA, HS, and BA, respectively. The other error indices also showed a more favorable
performance of IBA, compared to other algorithms. The predicted peak discharge difference with
observed discharge was 0.002 cm, which was less than the other algorithms (Table 6). The time
difference between predicted and observed discharge peak time for IBA was one hour, whilst this
time for other algorithms was 6 hours, so IBA had a better performance. In addition, VarexQ for
IBA had a larger value than other methods, which indicated a better performance. The difference of
peak discharge based on IBA with observed peak was 69 cms (the closest value to the observed one),
whilst it was 135 cms, 134 cms, and 70 cms for HS, PSO, and BA, respectively.

Table 7 compares IBA, BA, GA, and PSO in flood routing (Karahan flood) for single, two, and three
reaches. SSD for IBA for three reaches was 16,098.21, which was 6 percent lower than for a single reach
with IBA. Moreover, SAD for IBA for three reaches was 102, which had decreased by 12% compared
to a single reach. Thus, IBA had an improved performance in routing with three reaches relative to
single and two intervals. This was also true for the other algorithms, as shown in Table 5. Figure 4 also
shows the superior performance of IBA based on three reaches. SSD using IBA for three reaches was
reduced by 46%, 51%, and 5.3% compared to GA, PSO, and BA, respectively. Furthermore, SAD using
IBA for three, two, and one reaches was reduced by 23–89%, compared to the other algorithms. As a
result, IBA had a better performance than BA, GA, and PSO because the error indexes had the lowest
value using the IBA, compared to the other algorithms. Examining the computation time showed that
IBA achieved the optimal value of the objective function “under any number of multi-reach interval”
faster than the other algorithms. The lowest value of the MARE index was the one associated with
the IBA, on the other hand, this value decreased by 12% and 91% when using two and three reaches,
respectively. Furthermore, the d index showed the IBA algorithm and simulated hydrographs using
IBA had a better match with the observed hydrograph. Many studies did not consider investigate
whether parameters generated by calibration could show different floods on the same river reach.
In this article, this issue was considered. The optimal parameters based on IBA and three intervals
for the flood event in December 1960, were used to obtain the output hydrograph for a flood on the
same river on the another flood event in January 1969, based on the inflow hydrograph on January
1969, and it was considered as the first scenario. Then, the output hydrograph was extracted based on
application of obtained parameters of Muskingum models for January 1969. It meant that the model
was calibrated with the 1960 storm “first scenario”.
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Table 6. Inflow and outflow for Karahan flood.

Time (h) Inflow (cms) Observed
Outflow (cms) HS [2,25] GA PSO BA Present Study

IBA

0 154 102 154 132 102 102 102
6 150 140 154 152.21 154 137.89 137.24

12 219 169 152 153.44 152.1 165.78 166.12
18 182 190 181 178.11 179.4 185.43 186.11
24 182 209 191 190.45 190.9 209.01 207.12
30 192 218 185 185.1 185.4 212.32 214.33
36 165 210 187 188.21 186.9 204.45 205.24
42 150 194 179 179.45 180.20 191.32 192.12
48 128 172 162 163.11 164.10 10.45 171.25
54 168 149 141 142.11 143.70 141.44 141.38
60 260 136 154 151.12 152.8 132.22 133.56
66 471 228 198 197.11 196.3 221.14 222.21
72 717 303 264 265.21 267.3 299.12 301.12
78 1092 366 344 349.10 351.4 387.12 385.21
84 1145 456 416 423.11 431.8 451.22 453.12
90 600 615 599 600.12 617.4 610.34 611.21
96 365 830 871 872.32 881.5 826.34 827.12
102 277 969 834 835.11 836.6 899.34 900.12
108 277 665 689 690.11 696.2 667.24 665.21
114 187 519 535 534.11 549.2 522.34 520.21
120 161 444 397 400.1 416.8 455.67 453.11
126 143 321 283 287.10 305.10 314.32 316.11
132 126 208 202 203.11 221.4 212.22 210.25
138 115 176 152 155.21 164.9 177.54 170.10
144 102 148 124 131.10 131.20 151.23 145.11
150 93 125 106 108.12 110.0 127.34 119.14
156 88 114 94 106.21 96.04 116.34 112.10
162 82 106 88 88.23 89.20 107.21 105.10
168 76 97 82 81.21 82.70 92.12 93.43
174 73 89 75 76.11 76.30 91.23 88.11
180 70 81 73 73.10 73.10 82.34 80.21
186 67 76 69 69 69.80 78.12 75.10
192 63 71 66 66 66.7 72.34 69.21
198 59 66 62 62 62.40 65.21 64
SSD - - 37,944.14 32,944.14 31,099.52 19,122.23 17,120.21
SAD 2162 1012 695 134 117
EP 0.278 0.078 0.090 0.068 0.002

ETP 6 6 6 1 1
MARE 0.33 0.10 0.09 0.02 0.01
VarexQ 83.29 84.78 98.05 98.12 99.15
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Table 7. Results of four models (i.e., IBA, BA, PSO and GA) for Karahan flood according to three different intervals.

Method K X m β SSD SAD EP ETP MARE VarexQ Time (s) d

One section

IBA 0.612 0.401 1.633 0.0142 17,120.21 117 0.002 1 0.01 99.15 6 0.94

BA 0.616 0.422 1.654 0.0136 19,122.23 134 0.068 1 0.02 98.12 9 0.93

PSO 0.586 0.365 1.545 0.0138 31,099.51 695 0.090 6 0.09 98.05 10 0.90

GA 0.456 0.322 1.824 0.0137 32,944.14 1012 0.078 6 0.10 94.078 12 0.89

Two sections

IBA K1 = 0.672
K2 = 0.524

X1 = 0.382
X2 = 0.375

m1 = 1.723
m2 = 1.645

β1 = 0.0174
β2 = 0.0154 17,091.20 115 0.002 1 0.01 99.25 8 0.93

BA K1 = 0.652
K2 = 0.521

X1 = 0.352
X2 = 0.355

m1 = 1.623
m2 = 1.642

β1 = 0.0214
β2 = 0.0124 17,114.25 122 0.058 1 0.01 99.15 11 0.90

PSO K1 = 0.112
K2 = 0.110

X1 = 0.289
X2 = 0.284

m1 = 1.623
m2 = 1.545

β2 = 0.0064
β2 = 0.0039 30,235.45 687 0.088 6 0.08 98.12 14 0.89

GA K1 = 0.78
K2 = 0.689

X1 = 0.244
X2 = 0.232

m1 = 1.611
m2 = 1.811

β1 = 0.0027
β2 = 0.0029 31,231.23 1009 0.068 6 0.10 94.79 16 0.88

Three sections

IBA
K1 = 0.692
K2 = 0.690
K3 = 0.612

X1 = 0.392
X2 = 0.391
X3 = 0.394

m1 = 1.112
m2 = 1.114
m3 = 1.116

β1 = 0.0178
β2 = 0.0162
β3 = 0.0144

16,098.21 102 0.002 1 0.008 99.56 10 0.91

BA
K1 = 0.694
K2 = 0.696
K3 = 0.622

X1 = 0.394
X2 = 0.399
X3 = 0.394

m1 = 1.115
m2 = 1.117
m3 = 1.116

β1 = 0.0074
β2 = 0.0124
β3 = 0.0134

16,999.21 108 0.0038 1 0.009 99.54 15 0.86

PSO
K1 = 0.237
K2 = 0.312
K3 = 0.321

X1 = 0.298
X2 = 0.321
X3 = 0.312

m1 = 1.311
m2 = 1.411
m3 = 1.512

β1 = 0.0044
β1 = 0.0029
β3 = 0.0020

30,230.21 667 0.081 6 0.06 99.11 17 0.84

GA
K1 = 0.900
K2 = 0.878
K3 = 0.815

X1 = 0.296
X2 = 0.294
X3 = 0.224

m1 = 1.655
m2 = 1.652
m3 = 1.651

β1 = 0.0014
β2 = 0.0012
β3 = 0.0010

30,298.11 987 0.057 6 0.09 96.12 19 0.82
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The value of SSD for the first scenario was 878 and the peak value was 280 cms, whilst the
observed peak value was 285 and there was a small difference between the observed and the simulated
peak value (Figure 5). The SSD for the second scenario was 869 and the peak value was 282 cms.
Although, the second scenario acted better than the first scenario, the results for the first scenario were
acceptable. The results were so similar because of the accurate sensitivity analysis considered for the
Muskingum model for the objective function and different parameters, such as in pervious sections.
Although the proposed model structure successfully predicted the flood routing, further research could
consider different Muskingum models based on more parameters to investigate the performance of
IBA. In addition, application of these models helps the hydraulic designers to have the accurate value
for the peak discharge and the flood characteristics, to be able to optimally design the target structure.
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3.4. Chindwin River

One of the most important Myanmar Rivers is the Chindwin River, shown in Figure 6.
This river, over the past twenty years, has experienced many floods. Due to severe flood conditions,
the construction of hydraulic structures and living conditions in the downstream areas are difficult and
there is high lateral inflow for this basin. Therefore, it is important to predict river flood conditions.
The length of the river is 114 km and the surface of the basin is 7485 km2. A historical flood considered
in this study occurred in July 2004, and the Mawliak Station recording the flood is shown in Figure 5.
Table 8 shows a comparison of different methods for the first flood with flood routing using a single
reach. Comparing IBA, BA, GA, and PSO based on routing with a single reach, SSD for IBA relative
to GA, BA, and PSO was reduced by 32%, 11%, and 42%, respectively. For routing with two reaches,
SSD for IBA was reduced by 33%, 34%, and 12% compared to PSO, GA, and BA, respectively. For three
reaches, SSD for IBA was reduced by 44%, 50%, and 37% compared to PSO, GA and BA, respectively.
The SAD index for the three routings indicated the superiority of IBA. Comparison of routing with
three, two, and one reaches indicated that three reaches improved routing. SSD in relation to routing
with two and one reaches had reduced by 39% and 20%, respectively. ETp showed that there was no
time lag in forecasting of peak flow by different algorithms. VarexQ showed that three-reach routing
was better than two and one reach routings. Additionally, MARE for IBA-based routing had reduced
by 64% and 62%, relative to one and two reach routing, respectively. Figure 7 shows that the three
reach flood routing was superior to that based on two and single reaches. The results indicated that the
IBA has the less computational time compared to the other algorithms, as shown in Table 6. In addition,
considering the attained value of the d index, it was obvious that IBA had the best performance
compared to the other algorithms.
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Table 8. The computed error indexes for Myanmar River.

Method K X m β SSD SAD EP ETP MARE VarexQ Time (s) d

One section

IBA 0.411 0.301 1.611 0.0344 8.24 2.12 0.002 0 0.015 99.22 7 0.93

BA 0.410 0.304 1.612 0.321 9.22 3.14 0.004 0 0.017 99.16 9 0.92

PSO 0.386 0.255 1.545 0.0265 12.22 3.24 0.078 0 0.095 98.15 10 0.89

GA 0.256 0.312 1.524 0.0222 14.25 4.25 0.089 0 0.102 94.78 11 0.87

Two sections

IBA K1 = 0.472
K2 = 0.424

X1 = 0.392
X2 = 0.365

m1 = 1.721
m2 = 1.635

β1 = 0.0212
β2 = 0.0139 7.99 2.10 0.002 0 0.014 99.25 10 0.91

BA K1 = 0.479
K2 = 0.428

X1 = 0.394
X2 = 0.368

m1 = 1.821
m2 = 1.433

β1 = 0.0210
β2 = 0.0131 9.11 2.89 0.003 0 0.016 99.18 12 0.90

PSO K1 = 0.102
K2 = 0.110

X1 = 0.279
X2 = 0.224

m1 = 1.622
m2 = 1.542

β1 = 0.0197
β1 = 0.0190 11.95 3.09 0.088 0 0.088 98.22 14 0.89

GA K1 = 0.78
K2 = 0.789

X1 = 0.244
X2 = 0.212

m1 = 1.610
m2 = 1.611

β1 = 0.0196
β2 = 0.0188 12.24 4.55 0.068 0 0.100 94.89 16 0.87

Three sections

IBA
K1 = 0.492
K2 = 0.491
K3 = 0.512

X1 = 0.292
X2 = 0.261
X3 = 0.294

m1 = 1.110
m2 = 1.112
m3 = 1.114

β1 = 0.0342
β2 = 0.0288
β3 = 0.0488

5.12 1.98 0.002 0 0.005 99.56 18 0.91

BA
K1 = 0.412
K2 = 0.471
K3 = 0.514

X1 = 0.291
X2 = 0.254
X3 = 0.292

m1 = 1.112
m2 = 1.114
m3 = 1.116

β1 = 0.0342
β2 = 0.0148
β3 = 0.0138

8.11 2.10 0.005 0 0.003 99.41 20 0.90

PSO
K1 = 0.236
K2 = 0.311
K3 = 0.319

X1 = 0.295
X2 = 0.320
X3 = 0.310

m1 = 0.211
m2 = 0.221
m3 = 0.212

β1 = 0.0221
β2 = 0.0212
β2 = 0.0217

9.27 2.12 0.081 0 0.0612 99.31 22 0.87

GA
K1 = 0.910
K2 = 0.876
K3 = 0.815

X1 = 0.396
X2 = 0.396
X3 = 0.324

m1 = 1.655
m2 = 1.652
m3 = 1.651

β1 = 0.0251
β2 = 0.0218
β2 = 0.0217

10.12 3.25 0.057 0 0.090 96.18 24 0.85
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Figure 7. Simulated hydrograph for Myanmar River using IBA.

To enhance further, the used structure of the proposed Muskingum model coupled with IBA showed
the highest abilities, for studying the flood plain with back water. Furthermore, such enhancement for the
Muskingum model could be successfully applied as an easy and inexpensive method for computing the
time and shape, for an overbank flood, when there is back water and inertia influences along a river
channel. In fact, with the new nature-inspired optimization algorithms, the traditional Muskingum
method could be integrated with the hydrodynamic software packages, such as HEC-RAS model.
The development procedure could be carried out by utilizing HEC-RAS software as the model input for
hydrographs and geometric characteristic, to estimate the travel times and attenuations peak, whilst the
weighted coefficient (X) value could be achieved based on the optimization model and Muskingum
model, as shown in Figure 8. As a result, the proposed model in this research showed the potential to
be suitable and appropriate for studying and analyzing flood propagation and flood mapping.
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4. Conclusions

The present study investigated the potential of utilizing a three-parameter Muskingum model
coupled with Improved Bat Algorithm (IBA) to accurately predict flood routing. Three different case
studies have been used in this study, to evaluate the performance of the proposed model. These three
case studies were the Wilson flood, Karahan flood, and Myanmar River. Seven different performance
indices were used to examine and compare the performance of the proposed model over other
algorithms. In addition, discretization of the river stream was considered to improve model accuracy.
The results showed that IBA outperformed all other algorithms and was able to reduce the SSD
by percentages ranging between 20% and 84%, compared with the other algorithms. In addition,
the achieved results using the IBA could predict the peak discharge accurately, with a value very
close to the observed one. Under the Karahan flood, IBA considerably achieved the minimum level
of error indices for a single reach, compared to other algorithms. Finally, IBA in flood routing with
three intervals had a better performance than with single and two reaches. The division of the river
into different reaches increased the accuracy of flood routing. The performance of IBA for the river
in Myanmar, also showed that the simulated hydrograph with three reaches was more accurate.
For example, the computational time for the IBA based on three intervals was 2, 4, and 6 s less than,
BA, PSO, and GA, respectively. Furthermore, the EP for the IBA was 33%, 96%, and 97% less than
BA, PSO, and GA, respectively. As a result, the proposed Muskingum model coupled with the IBA,
could be considered as a strong alternative method for predicting flood routing characteristics.
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Abbreviations

IBA Improved Bat Algorithm
GA Genetic Algorithm
PSO Particle Swarm Optimization
PS Pattern Search
HS Harmony Search
HBMO Honey Bee Mating Optimization
NMSA Nelder-Mead Simplex Algorithm
GPA Genetic Programming Algorithm
RMSE Root Mean Square Error
MAE Mean Absolute Error
HA Harmony Algorithm
FLA Frog Leaping Algorithm
(IHBA) Improved Honey Bee Algorithm
(IWOA) Invasive Weed Optimization Algorithm
(BA) Bat Algorithm
BI Bat Intelligence
TPMM Three-Parameter Muskingum method
SSD Sum of Squares
SAD Sum of Absolute Deviations
EP Error of Peak
ETP Error of Time to Peak
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