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Abstract: Potential evapotranspiration (PET) is used in many hydrological models to estimate actual
evapotranspiration. The calculation of PET by the Food and Agriculture Organization of the United
Nations (FAO) Penman-Monteith method requires data for several meteorological variables that
are often unavailable in remote areas. The China Meteorological Assimilation Driving Datasets
for the SWAT model (CMADS) reanalysis datasets provide an alternative to the use of observed
data. This study evaluates the use of CMADS reanalysis datasets in estimating PET across China
by the Penman-Monteith equation. PET estimates from CMADS data (PET_cma) during the period
2008-2016 were compared with those from observed data (PET_obs) from 836 weather stations in
China. Results show that despite PET_cma overestimating average annual PET and average seasonal
in some areas (in comparison to PET_obs), PET_cma well matches PET_obs overall. Overestimation of
average annual PET occurs mainly for western inland China. There are more meteorological stations
in southeastern China for which PET_cma is a large overestimate, with percentage bias ranging from
15% to 25% for spring but a larger overestimate in the south and underestimate in the north for the
winter. Wind speed and solar radiation are the climate variables that contribute most to the error
in PET_cma. Wind speed causes PET to be underestimated with percentage bias in the range —15%
to —5% for central and western China whereas solar radiation causes PET to be overestimated with
percentage bias in the range 15% to 30%. The underestimation of PET due to wind speed is offset by
the overestimation due to solar radiation, resulting in a lower overestimation overall.

Keywords: potential evapotranspiration; Penman-Monteith; CMADS; China

1. Introduction

Evapotranspiration (ET) is a fundamental component of the hydrological cycle and a route for
energy transfer between the earth’s surface and the atmosphere. It is important in activities such as
evaluating water resources [1], drought forecasting [2], and managing irrigation [3]. It is also important
for an understanding of the behavior of water in soil-vegetation—atmosphere interactions [4] and in
rainfall-runoff modeling.

Actual evapotranspiration is usually measured indirectly by eddy covariance (EC) [5], the Bowen
ratio method [6], lysimetry [7], and scintillometry [8]; ET cannot be observed at a large scale by
these techniques. Eddy towers and the Bowen ratio method observe over only hundreds of meters,
depending on wind speed, tower height, and canopy level. The lysimeter only functions on a scale of
several meters. The scintillometer measures sensible heat flux on the scale of kilometers [9]. Wang and
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Dickinson [10] review these observation methods and summarize different methods of modeling
ET. For studies on a catchment, regional, or global scale, ET can be estimated by remote sensing
methods [11], hydrological models, and land surface models [12,13]. The use of remote sensing
methods may be restricted by a relatively low temporal resolution, and some remote sensing methods
are only suitable in the clear sky condition [11]. Hydrological models and land surface models
can estimate ET for different spatial and temporal scales, which makes them able to support the
management and planning of water resources better than other techniques.

Potential evapotranspiration (PET) has been used in many hydrological models to estimate actual
evapotranspiration using a soil moisture extraction function [14]. PET is defined as the amount of
water that can potentially be removed from a vegetated surface through the processes of evaporation or
transpiration with no forcing other than atmospheric demand [15]. The common methods of estimating
PET can be divided into four categories: radiation-based, temperature-based, a combination of these
two, and mass transfer [16,17]. These methods differ in their input requirements and their underlying
assumptions. Some are developed for a specific climatic region [18]. The Penman—Monteith equation
has been incorporated in many hydrological models, such as SWAT [19], VIC [20], and SHE [21],
to estimate PET. Many studies have compared different PET estimation methods [18,22]. Kite and
Drooger [23] evaluated eight different methods and found the Food and Agriculture Organization of
the United Nations Penman-Monteith method (FAO-PM), which combines mass transfer and energy
balance with temperature and vegetation conductance, best models PET, and most closely matches
field observations. FAO-PM requires observed maximum temperature, minimum temperature, air
temperature, wind speed, relative humidity, and solar radiation (or solar duration) as input variables.
In China, meteorological stations are not evenly distributed spatially, and observed records of these
climate variables are difficult to obtain in some rural areas. Reanalysis datasets, which have high
precision and high spatiotemporal resolution, complement this data paucity and they have been
extensively used in hydrological modeling.

There are many widely used reanalysis products, which include climate forecast system reanalysis
(CFSR) [24], NCEP/DOE [25] and NCEP/NCAR [26] from NCEP, ERA-15 [27], ERA40 [28] and
ERA-Interim [29] from ECMWE, JRA-55 from the Japanese meteorological agency [30], and MERRA
from NASA [31]. They have provided accurate meteorological data and have shown they can overcome
the disadvantages of thinly distributed observation networks. There have been extensive evaluations of
the performance of these reanalysis products over different regions of the world [32-34]. PET estimates
derived from reanalysis products have been compared. Weiland et al. used CFSR and compared global
PET estimates from six different methods [35]. Srivastava et al. evaluated PET calculated from NCEP
and ECMWF ERA-Interim data in England [36]. Trambauer et al. compared observed evaporation for
Africa using a continental version of the global hydrological model PCR-GLOBWB with PET estimates
given by the ECMWEF reanalysis products ERA-Interim and ERA-Land, and satellite-based products
MOD16 and GLEAM [37]. These products provide global climate datasets having a relatively coarse
spatial resolution.

The newly developed China Meteorological Assimilation Driving Datasets for the SWAT model
(CMADS) covers East Asia (60°-160° E, 0°-65° N). CMADS was developed to provide meteorological
data with fine resolution. Temperature, pressure, and wind speed data were derived from hourly
observations from 2421 national weather stations and 29,452 regional weather stations. The data
were combined using the Space and Time Multiscale Analysis System (STMAS) with European
Centre for Medium-Range Weather Forecasts (ECMWF) ambient field. Precipitation data were
incorporated by combining observed data from weather stations with precipitation reanalysis data
from the NOAA with CPC MORPHing technique (CMORPH). Solar radiation data obtained from
radiance data of the International Satellite Cloud Climatology Project (ISCCP) were combined with
data retrieved from the FY-2E satellite using the discrete-ordinate radiative transfer (DISTORT) model.
Big data projection and processing methods, such as loop nesting of data, projection of resampling
models, and bilinear interpolation, were used to build the datasets [36—40]. There have been many
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similar applications in different river basins in East Asia that have achieved satisfactory results in
rainfall-runoff simulation [41-49].

The objectives of this study are: (1) to evaluate the accuracy of PET estimated by the
Penman-Monteith equation (PM) using CMADS reanalysis data by comparing it with PET estimated
by PM using observed data provided by 836 weather stations; (2) to analyze the contribution of each
reanalysis variable from the CMADS data to error in PET by controlling the variables. Several statistical
measures were chosen to evaluate the comparison between CMADS-derived PET and observed PET.

2. Materials and Methods

2.1. Data and Study Area

Meteorological data for maximum temperature, minimum temperature, wind speed at 10 m
height, relative humidity, and solar duration from 836 weather stations were collected to estimate
PET. The spatial distribution of the 836 weather stations across China is shown in Figure 1. PM is
one of the most widely used methods of calculating PET [50-54]. Details of estimating PET using PM
are given in the following paragraph. In the rest of this paper, PET values derived from the weather
station observations are referred to as PET_obs. They are taken to be the real values against which
other predicted PET values can be compared.

PET over China was also estimated using CMADS (version 1.1). The CMADS dataset spans
the period 2008-2016 at a spatial resolution of 0.25°; it covers East Asia (60°-160° E, 0°-65° N) and
provides daily data for the meteorological variables. The datasets were developed by Xianyong Meng
and are available from the website: http://www.cmads.org. In this study, we used daily maximum
temperature (T}y), daily minimum temperature (T,;,), relative humidity (RH), solar radiation (Rs),
and wind speed at 10m height (u1¢) to estimate PET using PM. PET values derived from the CMADS
datasets (PET_cma) were compared with PET_obs values and differences are referred to as under or
overestimation (PET_cma < PET_obs or PET_cma > PET_obs).

Because the gridded CMADS data observations do not spatially correspond to the weather station
observations, the CMADS grids were interpolated to the 836 stations using a polynomial interpolation
method. Temperature differences caused by elevation are also considered in the interpolation:
temperature was assumed to decrease by 0.65 °C for every 100 m increase in elevation.
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Figure 1. Spatial distribution of weather stations in China.

2.2. Penman—Monteith Equation for Potential Evapotranspiration

The Food and Agriculture Organization (FAO) Expert Consultation of Revision of FAO
Methodologies of Crop Water Requirements standardized the types and characteristics of the vegetated
surface based on the previous PET definition. The definition of vegetated surface was assumed to
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be a hypothetical reference crop with a crop height of 0.12 m, a fixed surface resistance of 70 s m~!

and albedo of 0.23 [50]. The daily potential evapotranspiration (PET, mm/day) estimated by the
Penman-Monteith equation (PM) is:

~ 0.408A(Ry — G ) + 1, trsgtia(es — ea)

T= A+y(1+40.34)uy M

where: R, is the net radiation at the crop surface (MJ] m~2 day~'); G is the soil heat flux density
(MJ m—2 day_l), which is assumed to be zero as the magnitude of G, in this case, is relatively small;
Tinean is the mean daily air temperature (°C); uy is the wind speed at 2 m height (m s™1); e is the
saturation vapor pressure (kPa); e, is the actual vapor pressure (kPa); es — ¢, is the vapor pressure
deficit (kPa); A is the slope of the relationship between saturation vapor pressure and mean daily
air temperature (kPa °C~1); 7 is the psychrometric constant which depends on the altitude of each
location (kPa °C~1).

Saturation vapor pressure is related to air temperature and can be calculated from air temperature.
The relationship is expressed in Equation (2), in which: ¢; is the mean of the saturation vapor pressure
at Tyyax and Thy;,; 6, was calculated by multiplying the average values of the saturation vapor pressure
at Ty and Ty, by the mean daily relative humidity. The FAO recommendation is to calculate the
actual vapor pressure by taking the average the product of vapor pressure at the higher temperature
and daily low humidity and the product of vapor pressure at the lower temperature and the daily high
humidity. However, only the mean relative humidity is available from the CMADS datasets, and in
the case of missing maximum and minimum relative humidity, Equation (4) was used.

17.27T
= U. 1 _— 2
ety = 0.6108exp ( T+ 237'3> 2
e +e
(Tmin (Tnmx
es = # 3)
o RHmEﬂn e(Tmin) + e(TmHX)

= 7100 ( 2 @)

where: Ty, and Ty, are daily maximum and minimum temperatures; €Tyqx) and ey are the
saturation vapor pressures at daily minimum temperature and daily maximum temperature; and
T is the temperature. Using Equation (2), the saturation vapor pressure at the daily maximum and
minimum air temperatures can be calculated by:

17.27 Tuax
— 0.61 e Tmax
(T ) = 0-618exP ( Tonax + 237.3) ©)
17.27T,,;
=0. 1 min
e,,, ) = 0-618exp (Tmin 237, 3) (6)

The mean saturation vapor pressure is calculated as the mean of the saturation vapor pressures at
the daily maximum and daily minimum air temperatures using Equation (3).

Ry, is the net radiation which is expressed as the difference between the incoming net shortwave
radiation (R,s) and the outgoing net long wave radiation (Ry;):

Ry =Ruys — Ry )

Ry is computed by:
Rps = (1 —a)Rs 8
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where: « is the albedo, which is 0.23 for the hypothetic grass reference crop; and R; is the solar radiation
which is either computed the from the daily solar duration (1), using the Angstrom-Prescott radiation
equation (see Equation (9)) for the weather station data or is obtained directly from CMADS.

Rs = (as + bs% )Ra )

where: R, is the extraterrestrial radiation which is calculated from the solar constant, the solar
declination, and the time of the year as suggested by the FAO (the recommended values a; = 0.25
and bs; = 0.5 are used in this study); n is the actual solar duration; N is the maximum possible solar
duration which is related to the latitude and can be computed using the sunset hour angle in radians;
and g is the relative solar duration. The outgoing net long wave radiation (R;;) is derived by the
Stefan—Boltzmann law.

2.3. Evaluation Method

Several statistical measures are used to compare PET_cma with PET_obs: percentage bias (PB),
the coefficient of determination (R?), the normalized root mean square error (NRMSE), and the skill
score (Sscore). PB is a basic measure used to assess average annual PET and seasonal patterns of PET
which provide an overview of the performance of the two models. For a more comprehensive analysis,
R2, NRMSE, and Sscore are used to analyze the performance of daily, monthly, and annual PET_cma.

PB, which is the ratio between CMADS bias and observations, indicates the average magnitude of
underestimation or overestimation of PET. Intuitively, PB is the average bias. It is given by:

PB = Z:ln:l <Ml — Ol)

% 100% (10)
i=1 O

where the M; are PET_cma and the O; are PET_obs.

R? shows how well PET_cma approximates the real data points (PET_obs). It indicates the
proportion of the variance in the dependent variable that is predictable from the independent variable.
Ordinary least squares regression is used to fit the line to the data. The ideal fitted line is found when
R? is very close to 1. Linear regression is suitable for a long time series. We have data for nine years, so
R? is appropriate to use for daily and monthly PET_cma. R? is given by:

SS
RP=1-__2° 11
SStot an
—\2
SStot = Y_(0;—0) (12)
i
SSres = Z(Oz - Mz’)z (13)

1

NRMSE is a normalized version of root mean square deviation. It is a dimensionless indicator, which
makes it suitable for a comparison between observations and simulations that have different scales.
Lower absolute values of NRMSE represent less residual variance. The equation is:

YO — M; )?
no”

NRMSE = (14)

Sscore indicates the common area of the probability distribution function (PDF) of PET_cma
and PET_obs. It is the cumulative minimum value of the two distributions at each binned value.
The equation is:

n
Sscore = Y_minimum (Zpy, Zo) (15)
1
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where: n is the number of bins of the PDFs where the bin sizes are 0.01 mm, 0.1 mm, and 1 mm for
daily, monthly, and annual PET; Zy; and Z are the frequency values in a given bin from PET_cma and
PET obs.

After analyzing the performance of PET_cma, control variables are used in analysis to identify the
most important factors that influence PET_cma. The variables considered are input parameters for PM:
Tmaxs Tmins R, Rs, and u1g. The control is PET_obs, which used all the input parameters with data from
the weather stations. For comparison, we singly examine each input parameter as an independent
variable using CMADS data, covering the same area and time period, for the variable instead of the
weather station data while keeping the observed weather station data for all other input parameters.

3. Results

3.1. Spatial and Seasonal Patterns of Average Annual PET

Figure 2 shows the average annual values of PET_obs and PET_cma at all the stations across China
and their histograms. There is large spatial variation in PET_obs. The northeast and midwest inland
have smaller values of PET, mainly <950 mm. The south coastal area, southwest inland and some
areas in the northwest have larger values of PET, >1150 mm. Some stations on the islands of the South
China Sea, and in southern and northwestern China, are >1550 mm. PET_cma and PET_obs agree well
spatially except for overestimation in midwest China. The multi-year average PET_obs is 1000 mm,
and the multi-year average PET_cma is 1120 mm. PET_cma is an underestimate of the observed value
of PET when PET_obs <1080 mm but it is an overestimate when PET_obs >1080 mm. The major
overestimation is when PET_obs is in the interval 750 mm to 1000 mm. However, the maximum values
of the multi-year average for PET_obs and PET_cma are close, approximately 1640 mm.
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Figure 2. Average annual PET_obs (a) and PET_cma (b) across China, with their histograms (c).
Figure 3 shows the spatial distribution of mean seasonal PET values across China for observed

(PET_obs) and reanalyzed (PET_cma) data for spring (March, April, May), summer (June, July, August),
autumn (September, October, November), and winter (December, January, February). Most areas
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in China have a mean value of PET_obs <300 mm in the spring. Average PET_obs increased in the
summer across China, almost everywhere >350 mm. Average PET_obs decreases to <320 mm in
autumn except for some south coastal stations. Average PET_obs is lowest in winter at 110 mm and is
approximately 100 mm for most stations.

CMADS data captures the general feature of the seasonal and spatial distributions of observed
PET, as shown in the center of Figure 3, but compared to mean seasonal PET_obs, mean seasonal
PET_cma is overestimated for all seasons. The bias is larger in spring and summer than that in
autumn and winter. Most stations show mean seasonal PET_obs in the range 200-300 mm (spring) and
300400 mm (summer), whereas most mean seasonal PET_cma values are in the range 300-350 mm
(spring) and 400450 mm (summer). The overestimates are seen when the PET_cam values are above
the mode of PET_obs. The highest mean seasonal PET_cma value in summer is 755 mm which is very
close to the highest mean seasonal PET_obs value. The closest PET_cma comes to PET_obs is in winter
with a mean bias value of 5 mm.
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Figure 3. Mean seasonal potential evapotranspiration estimated from weather station data (PET_obs,
(a)), CMADS datasets (PET_cma, (b)) with their histograms (c).

3.2. Evaluation of the Performance with Multiple Indicators

Figure 4 shows that the percentage bias for most stations is positive. This result indicates that
average annual PET_cma is consistently overestimated; only two stations show an underestimate.
The overall average percentage bias for the whole of China is 12.58%. Percentage bias varies spatially.
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The range 5% to 15% is the most frequent and is seen mainly in the east and north of China. In the
west of inland China, percentage bias is mainly in the range 15% to 30%. There are a few stations in
the west at high elevation with high PET_obs where percentage bias >30%.

.

Legend p L
Percent bias (100%)
® .15-.5

o 5-5

o 5-15

@ 15-30 0 0-2 0.4 0.6
i — s Percent bias

(a) (b)

Figure 4. Spatial distribution of percentage bias, indicating the accuracy of average annual PET_cma
values (a), and frequency distribution of percentage bias (b).

Figure 5 shows the spatial distribution of the percentage bias of mean seasonal PET_cma. There are
different seasonal features. Percentage bias is least in winter at 4.3% and greatest in spring at 15.7%
compared to the percentage bias of mean annual PET_obs; the spring distribution shows more stations
in southeast China with higher percentage bias (i.e., PET_cma is greatly overestimated), mainly in the
range 15% to 30%. In summer, there are more stations in the west of China with higher percentage
bias but fewer in southeast China, which is reflected in the frequency distribution showing that there
are more stations in the percentage bias ranges 0-5% and >30%. In autumn, there are more stations in
the northeast of China with percentage bias in the range —2% to 5%; the few stations with negative
percentage bias represent that PET_cma is underestimated in comparison to PET_obs. In winter,
PET _cma is overestimated in the south and underestimated in the north. The number of stations with
percentage bias in the range —5% to 5% is greater than the annual average.
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Figure 5. Spatial distribution of percentage bias showing the accuracy of mean seasonal potential
evapotranspiration (PET) estimated using CMADS datasets, PET_cma (a) and the frequency

distribution of percentage bias (b).

Percentage bias measures the trend of the average error distribution for a time series, but it cannot
be used if there is a difference in time scales. The statistical measures NRMSE, R2, and Sscore are used
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to identify the variation in PET estimates with daily and monthly time scales. R? and Sgcore can be used
to indicate differences at an annual scale, but the CMADS datasets cover only nine years, which is not
long enough for adequate linear regression. Thus, annual behavior is only measured by NRMSE as
reference. The three measures are used for all the stations. Figure 6 shows the cumulative distribution
functions (CDF) of the measures for different time scales. The CDF for NMRSE shows that the estimate
given by PET_cma is best at an annual time scale. It decreases as the time scale gets finer, but the
difference is not very large. Almost 100% of the stations are <0.4 for every time scale. Up to 80%
stations are <0.18, <0.23, and <0.27 for annual, monthly, and daily time scales, respectively. The R2
values also show similar results for monthly and daily time scales with the monthly CDF better than
the daily CDE. For 99% of the stations, monthly and daily R? values are >0.90 and >0.80. Secore Shows
that the difference between monthly and daily time scales is very small, but it has a broader range
than the other two measures. The monthly and daily Sgcore Values for most stations (99%) are >0.70

and >0.75, respectively.
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Figure 6. Cumulative distribution functions of the statistical measures NRMSE (a), RZ (b), and Sscore (c)
indicating the accuracy of monthly and daily PET_cma estimates compared to PET_obs.

3.3. Effect of Different Variables on the Bias in Estimation of the PET

Figure 7 shows the contribution of each variable to the error in estimating mean annual PET_cma.
Each is used in turn as an independent variable. PET_obs is the control variable. Percentage bias is
the error measure. To estimate PET as a dependent variable, the observed data for one input variable
of PM is replaced with reanalysis data from CMADS; all other input variables remain unchanged
(i.e., they take the observed data used in the calculation of PET_obs). Percentage bias for most areas
is in the range —5% to 5% when Ty, Ty, and Ry, were the independent variables. This indicates
that errors in Tyx, Tiin, and Ry, from the CMADS data contributed little to the bias in PET_cma.
Figure 7 shows that wind speed and solar radiation contribute to the error in PET_cma in different
ways. When wind speed is the independent variable, PET is underestimated, and percentage bias is in
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the range —15% to —5%. Most underestimated values are found in eastern China. For solar radiation,
R, PET is mainly overestimated with percentage bias in the range 5% to 30% over most of the area.
In central and western China the overestimation is greater, with percentage bias predominantly in the

range 15% to 30%.
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Figure 7. Spatial distribution of percentage bias showing the effects of maximum temperature (a),

minimum temperature (b), wind speed (c), solar radiation (d), and relative humidity (e) on the bias of
PET_cma.

Elevation is commonly an important influence on wind speed and solar radiation. For example,
topography influences wind speed when wind speed increase as air moves around a hill or along a
narrow valley. The pressure gradient, friction due to the earth’s surface, and air density also influence
wind speed. Figure 8 shows that when wind speed is the independent variable, the percentage bias
is mainly <0. Bias <—10% is seen mainly at stations with elevation <2000 m when PET_obs is in
the range 800-1300 mm. Solar radiation can be affected by atmospheric conditions, such as clouds
and pollution, and topography can also cause substantial spatial variation in solar radiation [55].
PET was overestimated for most of the stations when Rs was the independent variable. When elevation
increased, the lower boundary of percentage bias also increased. When elevation was >2000 m, the
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percentage bias of PET is >10%. Larger percentage bias, >20%, is found mainly for stations with
PET_obs in the range 750-1250 mm. Windspeed, which causes underestimation of PET, and solar
radiation, which causes overestimation of PET, offset each other, reducing the overestimation of
PET _cma.
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Figure 8. Relationship between elevation, PET_obs, and errors indicated by percentage bias for wind
speed (a) and solar radiation (b).

4. Discussion

This study evaluated the use of CMADS datasets in estimating PET across China during the
period 2008-2016. As mentioned previously, there are alternative methods and different datasets for
estimating PET. Weiland et al. [35] compared six different methods using Climate Forecast System
Reanalysis (CFSR) data and evaluated the results against global Climate Research Unit (CRU) data.
They noted that PM has high data demands and is sensitive to inaccuracies in the input data, and so
recommended a re-calibrated form of the Hargreaves equation which gave global reference PET values
that were comparable to CRU-derived values for many climate conditions. Lang [22] compared eight
PET models with PM for southwestern China and found that the Makkink and Hargreaves—-Samani
methods are good alternatives to PM. Droogers and Allen [50] compared global PET predicted by PM
and Hargreaves and recommended that the Hargreaves method be used in regions where accurate
weather data cannot be expected because the method requires fewer climate variables as input, which
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makes it less sensitive to errors in climate data. Thus, the Hargreaves method has advantages in an
area for which data is scarce, such as Africa [37].

PET is affected by many climatic factors. Liu et al. [56] analyzed the sensitivity of PET to
meteorological data in China for the period 1960-2007. They found that the particular factor which
is most sensitive differs across the country but nation-wide the most sensitive factor was, on average,
vapor pressure. They also found some correlation between factor sensitivity and elevation. Yao et al. [57]
used meteorological reanalysis datasets from the Environmental and Ecological Science Data Center for
West China and found that solar radiation was the largest contributor to change in PET, and that wind
speed most affected inter-annual variation of PET in China. Xu et al. [58] found that as well as solar
radiation, atmospheric dynamics also strongly influence PET. Vegetation degradation in many regions
of China is highly correlated with thermodynamic and physical land surface changes, which intensify
the uneven spatial distribution of PET in China [59]. Gao et al. [60] analyzed PET from 580 stations
in China for 1956-2000 and obtained similar results to ours: less solar radiation and decreased wind
speed are major causes of reduced PET in most areas; and solar radiation, wind speed, and relative
humidity have a greater effect than temperature on PET.

The overestimation of PET using the CMADS datasets is mainly due to the effect of solar radiation.
Different methods in obtaining solar radiation need to be addressed. Solar radiation was calculated
by Angstrém-Prescott radiation equation for the station data, and Solar radiation of CMADS were
obtained from radiance data of the International Satellite Cloud Climatology Project (ISCCP) with
combination of data retrieved from the FY-2E satellite using the discrete-ordinate radiative transfer
(DISTORT) model. For the satellite derived solar radiation, visible-band observations obtained from
the FY2C geostationary meteorological satellite are used to generate hourly ground-incident solar
radiation data with spatial resolution of 0.1° x 0.1°. The discrete ordinate method [61] was used
to calculate radiation transfer in the inversion algorithm for the ground-incident solar radiation
output. A 5-layer planoparallel ideal atmospheric model nonuniform in the vertical direction was
designed, which consists of five solar spectral intervals (0.2-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-4.0 um) to
calculate the scattering, absorption, and reflection of solar radiation [39]. Although satellite-derived
radiation has better spatial resolution, a study in Nigeria found that estimated solar radiation from
the radiation equation model has a better error range and fits the ground measured data better than
the satellite-derived data [62]. The ground measured, model estimated and satellite-derived solar
radiation data can complement each other.

PET is important in water resources management and hydrological modeling. Overestimation
of PET can lead to overestimating the severity of drought. Simulated discharge in hydrological
models can also be affected by overestimated PET. Parmele [63] used a Hiemstra watershed model
and two versions of the Stanford model and found that a constant bias of 20% in PET input data
has a cumulative effect and results in considerable error in the computed hydrograph peaks and
recessions. Other studies have found that parameter calibration can reduce errors from input data
to some degree [64]. Oudin et al. [65] found that systematic errors in PET predictions have a greater
impact than random errors, but that such errors are reduced by soil moisture accounting (SMA) using
the GR4J model and TOPMODEL.

5. Conclusions

The CMADS reanalysis dataset is a useful alternative to observed weather data, especially in
remote areas where observations are not easy to make. Evaluating PET calculated from the reanalysis
dataset by comparing it with China-wide observations is important for the applicability of the CMADS
dataset. This study used observed data from 836 weather stations across China to evaluate PET
estimated by PM using CMADS data (PET_cma) by spatiotemporal comparison with PET_obs.

For the average annual PET, PET_cma and PET_obs agree well in their spatial distribution for
most of China. PET_cma is an overestimation, compared to PET_obs, in western inland China with
percentage bias in the range 15% to 30%. Average annual PET_obs is 1000 mm while average annual
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PET_cma is 1120 mm. Mean seasonal PET is overestimated, in comparison to PET_obs, for all four
seasons, although the spatial distribution of PET_cma captures the general seasonal features. Average
percentage bias is least in winter at 4.3% and greatest in spring at 15.7%. Mean seasonal PET estimates
differ from mean annual PET estimates. In spring there are more stations in southeastern China for
which PET_cma greatly overestimates. The percentage bias for a number of stations is mainly in the
range 15% to 25%. In winter, there is overestimation in the south and underestimation in the north.
The statistical measures NRMSE, R%, and Sscore consistently show that the annual PET_cma values are
better than those at shorter time scales when compared with PET_obs.

Wind speed and solar radiation are the major variables that contribute to the errors in PET_cma
but they each influence estimated PET in a different way. Wind speed causes an underestimation of
PET with a percentage bias in the range —15% to —5%, with the largest errors being found in eastern
China. Solar radiation causes an overestimation in the range 15% to 30% in central and western China.
A larger percentage bias due to wind speed is found mainly at elevations below 2000 m while the larger
percentage bias due to solar radiation is spread evenly across elevations. Underestimation of PET due
to wind speed and overestimation of PET due to solar radiation are offset, reducing the overestimation
of PET.
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