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Abstract: The vulnerability of the water supply capacity of a dam is defined as the expected deficit 

volume from a typical water deficit event. In this study, a water deficit event was assumed to be a 

rectangle composed of the deficit duration and deficit intensity whose occurrence probability was 

then estimated by the bivariate frequency analysis based on the copula method. This approach is 

different from the conventional one based on the assumption of the same occurrence probability for 

all events. This proposed method was applied to the Namgang dam in Korea as an example and the 

resulting estimate of the vulnerability was compared with the conventional method. First, the ‘OR’ 

concept was found to be better than the ‘AND’ concept in the calculation of the occurrence 

probability. Additionally, based on the consideration of multicollinearity, it could be concluded that 

the occurrence probability should be estimated by considering the water deficit intensity and 

duration. For the Namgang dam, the vulnerability was determined to be 9.11 × 106 m3, which is 

about 3% of the total storage capacity. This estimated vulnerability is also about 70% of the amount 

estimated by applying the conventional method with the same occurrence probability for all water 

deficit events. 

Keywords: vulnerability assessment; water supply capacity; water deficit event; bivariate frequency 

analysis; copula model 

 

1. Introduction 

Since most of the annual total rainfall in Korea is concentrated in the rainy season from June to 

September, many multi-purpose dams have been constructed to save water resources. However, due 

to the increasing demand for domestic, industrial, agricultural, and environmental water use, several 

river basins are still exposed to the danger of a water shortage [1–5]. Many hydrologists have claimed 

that additional water resources should be secured by constructing more dams [6–9]. However, it is 

also argued that any project for securing additional water resources cannot be started before the 

quantitative evaluation of existing dams [10].  

In Korea, the concept of firm yield had been used as one of the main criteria for designing a dam. 

Based on this concept of firm yield, the water supply capacity was determined by the water budget 

analysis with the aim of a specific period of maximum drought (generally one or two years) [11]. In 

the 1970s, the inflow condition recorded during the period of the drought from 1967 to 1968 was the 

most severe one considered. In the 1980s, the concept of firm yield was still applied to the design of 

a dam, but the inflow data recorded during the last 20 years could be considered. In the 1990s, the 

concept of reliability was introduced into Korea.  

The reliability may be the most widely used evaluation criterion for the water supply capacity 

of a dam [12–16]. The term reliability is generally used in Korea and sometimes the volume reliability 
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and resiliency are estimated as references. These concepts are all easy to understand and easy to 

apply. However, the concept of vulnerability has never been used because it is rather complicated in 

its application. The vulnerability may be the most comprehensive measure for the water supply 

capacity of a dam. In addition, it can provide more detailed information about the water supply 

capacity such as the water deficit volume. 

Generally, the vulnerability indicates the extent to which a system experienced the exposure to 

a risk factor [17–20]. In a water resource area, the vulnerability is defined as the expected deficit 

volume from a typical water deficit event [12]. The vulnerability can be calculated as the sum of the 

volume of all the water deficit events multiplied by their occurrence probabilities. Unfortunately, the 

occurrence probability of a water deficit event is not easy to estimate. Thus, it is generally assumed 

to be constant. However, this assumption of constant occurrence probability results in the 

overestimation of the vulnerability since it counts the extreme events too highly. To estimate the 

occurrence probability, a multivariate frequency analysis of water deficit events is required. As can 

be imagined, a water deficit event is quantified by many components like the total deficit volume, 

deficit duration, peak deficit volume, etc.  

This study focuses on the estimation of the occurrence probability of a water deficit event by 

applying the copula method. For this frequency analysis, a water deficit event should be modeled 

rather simply but systematically. In this study a water deficit event is assumed to be a rectangle 

composed of the deficit duration and deficit intensity. The deficit volume is simply the multiplication 

of deficit duration and deficit intensity. Even though the selection problem of two variables among 

three remains, the bivariate frequency analysis can be done using the copula. Once the occurrence 

probability of a water deficit event is estimated, the vulnerability can also be estimated by applying 

its definition. This study considers the Namgang dam in Korea as an example and the resulting 

estimate of the vulnerability will be compared with that based on the conventional assumption of 

constant occurrence probability. 

2. Theoretical Background 

2.1. Risk Assessment Measures for a Water Supply System 

The reliability, resiliency, and vulnerability are regarded as representative water supply safety 

measures for a water resource system. To explain these three measures, it is important to define a 

water deficit event. As can be seen in Figure 1, these water supply safety measures are defined by the 

characteristics of water deficit events. The water deficit event in this study means the condition in 

which the actual water supply is less than the design of the water supply. The shaded area of Figure 

1 indicates an example of a water deficit event. In this figure, v(j), the shaded area indicates the deficit 

volume for the j-th water deficit event and d(j) indicates the deficit duration for the j-th water deficit 

event. 

 

Figure 1. Definition of water deficit volume (v(i)) and duration (d(i)) (the water deficit intensity is 

calculated by dividing the deficit volume by the deficit duration).  
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The reliability may be the oldest measure that has been used to assess the performance of a water 

resource systems [16]. In general, the reliability refers to the probability that the system will satisfy 

the design water supply, which can be expressed using the equation below. 

Prob [ ]X S =   (1) 

where X is the state variable of the water resource system expressed as satisfaction or failure and S is 

the satisfaction state. A way of calculating the reliability is a method of using the ratio of the period 

in which the water resource system satisfies the design water supply. The reliability calculated in this 

way is called the temporal reliability. The method of calculating the temporal reliability can be 

expressed with the equation below. 

1

( )

1

M

j

d j

T


=
= −


 (2) 

where   is the (temporal) reliability, which has the probability value from 0 to 1, M is the number 

of water deficit events, and T is the entire period to be analyzed. The temporal reliability is simple 

and convenient to calculate because it only considers the satisfaction or failure of the design water 

supply for a certain period. However, this measure fails to evaluate the details of the water deficit 

event. For example, the temporal reliability cannot provide any quantitative information about the 

degree of damage. 

The resiliency is another measure to evaluate how quickly the water resource system returns to 

the satisfactory state after it has entered the failure state. The resiliency can be expressed as the 

conditional probability of the satisfactory state at the current time step given the failure state at the 

previous time step. The resiliency is defined by Equation (3). 
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where   is the resiliency as a conditional probability and tX  is a state variable at time t. To 

calculate the resiliency, the probability must be calculated that the system is in the failure state (F) at 

time t−1 and in the satisfactory state (S) at time t. This probability can be calculated by using tZ , 

which is defined using the equation below. 
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Thus, the probability that the system is in the failure state at time t − 1 and in the satisfactory 

state at time t can be calculated by 
1

1 T

t

t

Z
T =

 . As the probability of being failed at time t − 1 (the 

denominator of Equation (3)) equals 1 −  , the degree of resiliency is expressed by using the equation 

below. 
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Lastly, the vulnerability is used to estimate the extent of the deficit volume from a typical water 

deficit event. Based on the definition of Hashimoto et al. [12], the vulnerability can be calculated as 

the sum of the volume of all the water deficit events multiplied by their occurrence probabilities. The 

vulnerability is expressed using the equation below. 
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where   is the vulnerability, which has the same unit of water deficit volume (m3), and e(j) is the 

probability of occurrence of the j-th water deficit event. In this scenario, it should be remembered that 

the sum of e(j) is equal to one, i.e., 
1

( ) 1
M

j

e j
=

= . 

In real practice, the reliability has been most frequently used since it is easy to calculate and easy 

to understand. On the other hand, neither the resiliency nor the vulnerability have been used that 

much. The resiliency shows just one aspect of the water resource system similar to the reliability. 

Even though the vulnerability considers both the volume and occurrence probability of water deficit 

events, the calculation of the occurrence probability has been a difficult problem. As a simplification, 

the occurrence probability has been generally assumed as e(j) = 1/M [15,21,22]. Thus, the estimated 

vulnerability cannot be the true value of representing the given water resource system. 

This study focuses on the vulnerability of a water resource system. Since a water deficit event is 

defined by its several components, like the deficit volume, deficit duration, etc., the calculation of its 

occurrence probability cannot be based on univariate frequency analysis. In this study, the copula 

method was introduced to solve this problem of estimating the occurrence probability. The 

vulnerability analysis result from a copula-based method will become more relevant information for 

the management of existing dam and decision-making of new dam construction. 

2.2. Bivariate Frequency Analysis Using the Copula 

2.2.1. Basic Concept of the Copula  

Sklar [23] introduced the copula as a mathematical concept for the formation of a multivariate 

distribution function. The copula has been applied to derive one joint probability density function 

based on various PDFs [24–26]. By applying copula, any kind of PDF can be combined to one joint 

PDF. As a result, joint PDF representing the characteristics of various PDFs can be derived. The 

fundamental equation explaining the copula can be expressed by using the equation below. 

1 2 1 1 2 2( ,  ,  ...,  ) [ ( ),  ( ),  ...,  ( )]n n nH x x x C F x F x F x=  (7) 

where H is the cumulative probability that is calculated using the joint PDF, C is the copula, and 

( )i iF x  is the cumulative probability that is calculated using the i-th PDF. Equation (7) shows that the 

copula can be used to combine n PDFs into a single joint PDF. 

There are three major copula families: the Archimedean copula, the elliptical copula, and the 

Marshall–Olkin copula [27]. In this study, the Archimedean and elliptical copula families were 

selected for analysis. The reason for the selection is that copula belongs to these two families, which 

is easy to construct and is known for its wide applicability [24]. A total of four copula models were 

considered in this study including the Clayton model [28], the Frank model [29], the Gumbel–

Hougaard model [30], and the Gaussian model [31]. Among them, the Clayton model, the Frank 

model, and the Gumbel–Hougaard model are classified as the Archimedean copula. Additionally, 

the Gaussian model is classified as the elliptical copula.  

Table 1 summarizes the joint PDFs of these copula models. In Table 1,   is the parameter for 

copula model. 1u  and 2u  are the cumulative probabilities calculated by the marginal PDF of each 

two target variables [32].   is the cumulative distribution function of the standard gaussian 

distribution. 
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Table 1. Joint PDF of copula models considered in this study. 

Copula Model Joint PDF 

Clayton 
1/

1 2 1 2( ,  ) ( 1)C u u u u  − − −= + −  

Frank 
1 2

1 2

(exp( ) 1)(exp( ) 1)1
( ,  ) ln[1 ]

exp( ) 1

u u
C u u

 

 

− − − −
= − +

− −
 

Gumbel–Hougaard 
1/

1 2 1 2( ,  ) exp( (( ln( )) ( ln( ))  ) )C u u u u  = − − + −  

Gaussian 
1 1

1 2

2 2
( ) ( )

1 2 22

1 2
( ,  ) exp( )

2(1 )2 1

u u s w sw
C u u dsdw



 

− − 

− −

+ −
= −

−−
   

2.2.2. Parameter Estimation 

In this study, Kendall’s  , which is known as the rank correlation of the data, was used to 

calculate the parameter of the copula model. The parameter of the copula model in this study can be 

easily estimated using the Kendall’s   because this study considered the copula models with only 

one parameter. The equation for Kendall’s   of the two target variables can be expressed with the 

equation below [25]. 

2

n n

n

P Q

C


−
=  (8) 

where n is the number of data, ( , )i iX Y  and ( , )j jX Y  are data pairs for i j , nP  is the number of 

cases where ( )( ) 0i j i jX X Y Y− −  , nQ  is the number of cases where ( )( ) 0i j i jX X Y Y− −  , and 2nC  

is the number of combinations for the selection of the two variables among n elements.  

The parameter   of the copula, then, was estimated by using the relationship between 

parameter   and Kendall’s  . Table 2 summarizes the relationships for the copula models that are 

considered in this study. 

Table 2. Relationship between the Kendall’s   and the parameter  . 

Copula Model Relationship between Kendall’s   and the Parameter   

Clayton 
2





=

+
 

Frank 1
1

0

( )4
1 4 ,  D ( )

1t

D t
dt

e


 

 
= − + =

−  

Gumbel–Hougaard 
1

1


= −  

Gaussian 
2

arcsin 


=  

Each copula model has a valid range for the parameter   and only the parameter   estimated 

in that range is significant. The valid range for the Clayton model is [0,  )  and the valid range for 

the Gumbel–Hougaard model is [1,  ) . In the case of the Gaussian model, the valid range is [ 1,  1]−

. For the Frank model, the valid range is ( ,  )−   except for the origin [24]. 

2.2.3. Determination of the Optimal Copula Model 

Among four copula models considered in this study, the optimal copula model was determined 

based on an Akaike information criterion (AIC) test statistic [33]. Although the AIC is not appropriate 

for the goodness-of-fit test, it could be used to determine the best model among many options. For 

example, Zhang and Singh [32] explained how to select the best copula model among many options 

by comparing AIC of each copula. 

The AIC test statistic quantifies the difference between the empirical cumulative probability and 

the cumulative probability calculated from the copula model. The empirical cumulative probability 
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for given data can be calculated using the Gringorten plotting position formula [34]. The Gringorten 

plotting position formula can be expressed by using the equation below.  

Number of (  and ) 0.44
( ,  ) ( ,  )

0.12

i i

i i i i

x x y y
H x y P X x Y y

n

  −
=   =

+
 (9) 

In Equation (9), ( ,  )i iH x y  is the empirical cumulative probability of the data ( ,  )i ix y . 

The difference between the empirical cumulative probability and the cumulative probability of 

the copula model is quantified with the mean squared error (MSE) [35]. The MSE for AIC is defined 

using the formula below. 

2

1

1
{ ( ) ( )}

n

e o

i

MSE x i x i
n =

= −  (10) 

In Equation (10), ex  is the cumulative probability from the copula model and ox  is the 

empirical cumulative probability. Lastly, the AIC test statistic can be calculated using the formula 

below. 

log( ) 2(number of fitted parameters)AIC n MSE= +  (11) 

In this case, the copula model with the lower AIC test statistic is evaluated as the better copula 

model for the given data. Therefore, the optimal copula model for the given data is the model with 

the lowest AIC value [33]. 

However, having the lowest AIC does not guarantee the absolute goodness-of-fit of the copula 

model. To verify the absolute goodness-of-fit of the copula model, the Kolmogorov–Smirnov (K–S) 

test was conducted on the optimal copula. In the K–S test, the goodness-of-fit of the model is 

evaluated based on the maximum absolute difference between the empirical cumulative probability 

and the cumulative probability calculated from the copula [36]. The absolute goodness-of-fit of the 

optimal copula model is examined by comparing the difference with the critical value of the K–S test 

at a certain significance level. In this study, the significance level of 5% was used for the critical value 

of the K–S test. 

2.2.4. Occurrence Probability Calculated by the Copula Model 

First, the occurrence probability can be calculated by considering the case where one or two 

variables exceed the threshold value. This occurrence probability is expressed as orP . In addition, the 

occurrence probability can be defined by the probability that both variables exceed the threshold 

value. This case is generally notated by andP . The orP  and andP  for the data ( ,  )i ix y  can be 

calculated using the following equations. 

, 1 ( ,  )or X Y i iP F x y= −  (12) 

, 1 ( ) ( ) ( ,  )and X i Y i X Y i iP F x F y F x y= − − +
 

(13) 

where ,  ( ,  )X Y i iF x y  is the joint cumulative probability of the copula model and ( )X iF x  and ( )Y iF y  

are the cumulative probabilities of ix  and iy , respectively. 

3. Study Area and Data 

The Nam river is a major tributary of the Nakdong river, which covers the southeastern part of 

the Korean Peninsula. The Namgang dam is located 80 km from the confluence point of the Nakdong 

river (Figure 2a). Figure 2b shows the river network and outlet of the Namgang dam basin and Figure 

2c is the Digital Elevation Model (DEM) of the Namgang dam basin (Figure 2c) where the highest 

point is marked as the “Jiri mountain.” The basin area of the Namgang dam is 3466 km2 and the main 

channel length is 108 km. Even though it has a large basin area, the total storage capacity (3.1 × 108 

m3) and annual water supply capacity (5.7 × 108 m3) of the Namgang dam are relatively small. For 
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reference, the basin area of the Kurobe dam is 188.5 km2, which is about 5% of that for the Namgang 

dam. However, the total storage capacity of the Kurobe dam is about 1.9 × 108 m3, which is about 61% 

of that for the Namgang dam. 

 
(a) Location of the Namgang dam basin. 

 
 

(b) River network and outlet of the 

Namgang dam basin. 

(c) DEM of the Namgang dam basin. 

Figure 2. Location of the Namgang dam basin and its characteristics. 

This study used the daily water supply time series from the Namgang dam from 1981 to 2012. 

The water deficit event is defined as the consecutive day in a water deficit condition when the dam 

water supply is less than the design water supply. In this study, all the water deficit events were 

considered for further analysis and a total of 45 water deficit events were collected.  

A water deficit event can be quantified by the deficit duration, deficit volume, mean deficit 

volume (or, deficit severity), peak deficit volume, and more. Since the structure of a water deficit 

event is rather complicated, a simplified structure is generally introduced. The simplest way of 

representing a water deficit event may be to use a rectangular pulse. The rectangular pulse has been 

widely used for modeling rainfall events [37–42], as well as drought events [43]. This study also 

adopted this simplification to represent a water deficit event with its deficit duration, deficit volume, 

and deficit intensity (i.e., the deficit volume divided by its deficit duration).  

Table 3 summarizes the basic statistics (mean, standard deviation, and range) of these 

components of the water deficit events considered in this study. The means of the deficit duration, 

deficit volume, and deficit intensity were calculated as 15.0 day, 13.5 × 106 m3, and 12.3 × 106 m3/day, 
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respectively. The standard deviations are all proportional to the means with their coefficient of 

variations of approximately (0.57, 0.66, and 1.25) for the deficit duration, deficit volume, and deficit 

intensity, respectively. The ranges of those components were also summarized as (1 to 161) day for 

the deficit duration, (0.1 to 118.9) × 106 m3 for the deficit volume, and (0.1 to 2.7) × 106 m3/day for the 

deficit intensity. 

Table 3. The mean, standard deviation, and ranges of three components of the water deficit events 

observed at the Namgang dam. 

Variable Mean Standard Deviation Range 

Deficit duration 

(day) 
15.0 26.5 1–161 

Deficit volume 

(106 m3) 
13.5 20.4 0.1–118.9 

Deficit intensity 

(106 m3/day) 
1.0 0.8 0.1–2.7 

Figure 3 shows the box-plot for the basic components of water deficit events observed at the 

Namgang dam. In Figure 3, each of the outliers outside the 1.5 inter quartile range is marked by the 

‘X’ symbol. There were three outliers for the deficit duration (Figure 3a) including one for the deficit 

volume (Figure 3b) and no outlier was found for the deficit intensity (Figure 3c). All these outliers 

are from three water deficit events among which one event was extreme. The effect of these three 

events was also found to be big enough to severely distort the basic statistics. Therefore, in this study, 

they were excluded in the fitting procedure of the PDFs. After selecting the PDFs, the goodness-of-fit 

test was also repeated with all the water deficit events including those three rare events. The 

vulnerability assessment was also conducted with all the water deficit events including those three 

rare events. 

   
(a) Deficit duration (b) Deficit volume (c) Deficit intensity 

Figure 3. Box-plots of three components of water deficit events observed at the Namgang dam. 

4. Results 

4.1. Probability Density Functions 

To calculate the occurrence probability using the copula model, the PDF for each variable of the 

water deficit event must be determined. In this study, the exponential distribution was chosen for the 

deficit duration and deficit volume and the log-Gumbel distribution was chosen for the deficit 

intensity. The reason for selecting the exponential distribution is that the occurrence characteristic of 

water deficit events is known to follow the Poisson process. In addition, it was also considered that 

the deficit duration and deficit volume data were positively skewed and more than 50% of the data 

were distributed near zero. On the other hand, the log-Gumbel distribution for the deficit intensity 
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was determined based on the comparison of the data histogram and several PDFs. In this study, 

normal distribution, log-normal distribution, gamma distribution, generalized extreme value 

distribution, Gumbel distribution, and log-Gumbel distribution were considered as options. 

For parameter estimation of the PDF, the maximum likelihood method was applied. Figure 4 

compares the histogram and the PDF for each component of the water deficit event. Each PDF in 

Figure 4 was tested for goodness-of-fit by the 2  test. The exponential distribution for the deficit 

duration was found to have 0.19 of the 2  statistic, which is far smaller than the criterion for the 5% 

significance level. The exponential distribution for the deficit volume was also found to have a 

smaller 2  statistic of 1.34. In the case of the log-Gumbel distribution for deficit intensity, the 2  

statistic was calculated as 4.29. This is larger than that for the deficit duration and deficit volume but 

still smaller than the criterion for the 5% significance level. In conclusion, all distributions were found 

to be valid under the 5% significance level. As mentioned earlier, all the water deficit events were 

considered in this goodness-of-fit test. 

 
(a) Deficit duration (exponential distribution). 

 
(b) Deficit volume (exponential distribution). 
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(c) Deficit intensity (log-Gumbel distribution). 

Figure 4. Comparison of data histograms and PDFs for three components of water deficit events 

observed at the Namgang dam. 

4.2. Optimal Copula Model for the Water Deficit Events 

The Kendall’s   is necessary for estimating the parameter of the copula models that are 

considered in this study. The Kendall’s   was estimated as 0.67 for the deficit volume and the 

deficit duration, 0.26 was estimated for the deficit intensity and the rainfall duration, and 0.52 was 

estimated for the deficit volume and the deficit intensity. For all bivariate data pairs, the positive 

correlation was estimated. Among the three, the strength of correlation for the deficit volume and the 

deficit duration was highest while that for the deficit volume and the deficit intensity was lowest. 

Figure 5 shows the scatter plot of three bivariate data pairs excluding the three outliers. 

 
(a) Deficit intensity and duration 

 
(b) Deficit volume and duration 
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(c) Deficit volume and intensity 

Figure 5. Scatter plots for the three pairs of components of water deficit events observed at the 

Namgang dam (a) deficit intensity and duration; (b) deficit volume and duration; (c) deficit volume 

and intensity. 

The parameter   of the copula model was then estimated using the relationship between the 

Kendall’s   and the parameter  , which is given in Table 2. The parameter   for the Clayton, 

Frank, Gumbel-Hougaard, and Gaussian copula models, respectively, were determined, which is 

shown in Table 4. Every parameter   was found to be in the valid range of the four copula models.  

Table 4. The parameter   estimated for each data pair with different copulas. 

Copula Model 
Deficit Volume and 

Duration 

Deficit Intensity and 

Duration 

Deficit Volume and 

Intensity 

Clayton 3.97 0.70 2.13 

Frank 11.22 5.36 9.01 

Gumbel–Hougaard 2.99 1.35 2.06 

Gaussian 0.87 0.40 0.72 

The MSE and the AIC were estimated for selecting the optimal copula model for each case of the 

bivariate data pair (Table 5). Since the MSE and AIC values are all penalty measures, the lower value 

indicates the more favorable models. As a result, the Clayton model was selected as the optimal 

copula model for the deficit volume and deficit duration, the Gaussian model was selected for the 

deficit intensity and the deficit duration, and the Frank model was selected for the deficit volume and 

the deficit intensity. 

Table 5. The MSEs and AICs calculated for three bivariate data pairs of the water deficit events 

observed at the Namgang dam. 

 Data Pair Clayton Frank 
Gumbel–

Hougaard 
Gaussian 

MSE 

Deficit volume and 

duration 
0.00351 0.00398 0.00404 0.00440 

Deficit intensity and 

duration 
0.0287 0.00397 0.0313 0.0313 

Deficit volume and 

intensity 
0.0349 0.00401 0.0378 0.0378 

AIC 

Deficit volume and 

duration 
−108.488 −106.005 −104.051 −105.728 

Deficit intensity and 

duration 
−67.370 −106.052 −65.703 −114.095 

Deficit volume and 

intensity 
−63.599 −105.839 −62.000 −102.689 
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Figure 6 compares the empirical cumulative probability and cumulative probability calculated 

by the optimal copula model. In this figure, the x-axis represents the cumulative probability 

calculated by the optimal copula while the y-axis represents the empirical cumulative probability. 

The dotted lines in this figure indicate the critical value of the K–S test based on the 5% significance 

level. As can be seen from Figure 6, the discrepancies for all optimal copulas lie within the upper and 

lower limits of the 5% significance level (0.203 for n = 45 and   = 0.05). The goodness-of-fit for all 

optimal copulas were verified under the 5% significance level. 

 
(a) Clayton copula model for deficit volume and duration. 

 
(b) Gaussian copula model for the deficit intensity and duration. 

 
(c) Frank copula model for the deficit volume and intensity. 

Figure 6. K-plots and K–S test criteria for three optimal copula models considered for the water deficit 

events observed at the Namgang dam. 

4.3. Occurrence Probability 

Using the copula model determined for each pair of two variables constituting the water deficit 

event, the occurrence probability of each water deficit event was estimated. Both the ‘AND’ and ‘OR’ 

concepts were applied in this calculation. Figure 7 compares the estimated occurrence probabilities 
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of each water deficit event for both the ‘AND’ and ‘OR’ concepts. The occurrence probability in Figure 

7 is divided by the sum of the exceedance probabilities of all the water deficit events estimated by 

applying the determined copula model to satisfy the concept of vulnerability. The mean value of the 

exceedance probabilities of all the deficit events was 0.621 in the ‘AND’ case and 0.357 in the ‘OR’ 

case. The dotted line in Figure 7 indicates the occurrence probability considered in the conventional 

method. Since the number of events is 45, the occurrence probability is calculated to be 1/45 = 0.022.  

Figure 7 clearly shows the difference between the ‘AND’ and ‘OR’ cases. Since the occurrence 

probability in the ‘AND’ case is calculated by way of multiplication of both the occurrence 

probabilities of two variables, the resulting occurrence probability of a water deficit event can be 

much smaller or much bigger depending on the occurrence probability of each variable. Exactly the 

opposite behavior can be expected for the ‘OR’ case. In this case, the occurrence probability of a water 

deficit event is calculated as a way of summation and it is generally higher than that of one variable. 

For example, when considering the deficit volume and duration, in the ‘AND’ case, the occurrence 

probability of a water deficit event with deficit volume 35.0 × 106 m3 that occurred in 1977 was 

estimated to be 0.00011. On the other hand, in the ‘OR’ case, the occurrence probability of the same 

event was calculated to be 0.0016, which is obviously much higher than that in the ‘AND’ case.  

As can be seen from Figure 7a, the variation of estimated occurrence probabilities in the ‘AND’ 

case became wide enough to reach 0.068. On the other hand, as can be seen from Figure 7b, the 

variation of the estimated occurrence probabilities in the ‘OR’ case was much smaller than that in the 

‘AND’ case. The maximum occurrence probability was estimated to be only 0.037. As a result, in the 

calculation of the vulnerability, the role of extreme events becomes minimal in the ‘AND’ case but 

can be much bigger in the ‘OR’ case. However, at this point, it is not clear if either of the ‘AND’ or 

‘OR’ case is appropriate for the estimation of the vulnerability, which will be discussed in the 

following section.  

 
(a) ‘AND’ case. 

 
(b) ‘OR’ case. 
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Figure. 7. Comparison of normalized occurrence probabilities estimated for three different pairs of 

two variables constituting the water deficit events observed at the Namgang dam including for (a) 

the ‘AND’ case and (b) the ‘OR’ case. 

It was also found that the selection of the data pair constituting the water deficit events has a 

significant influence on the results of the occurrence probability. Theoretically, the occurrence 

probabilities calculated from the same deficit event have to be identical. However, due to the 

uncertainty in the process of estimating the parameter of the copula and calculating the occurrence 

probability, the three occurrence probability results show important differences. For example, in the 

‘AND’ case, the occurrence probability of the water deficit event with a deficit volume of 33.0 × 106 

m3, which occurred in 1978, was 0.00098 when considering the deficit volume and duration but 0.038 

when considering the deficit intensity and duration and 0.0017 when considering the deficit volume 

and intensity. This problem was a little alleviated in the ‘OR’ case even though the difference was 

still significant. For example, the occurrence probability of the water deficit event of the same event 

in 1978 was 0.0056 when considering the deficit volume and duration, but it was 0.0087 when 

considering the deficit intensity and duration and 0.0067 when considering the deficit volume and 

intensity. 

4.4. Vulnerability  

Table 6 compares the vulnerabilities estimated for the three different cases of selecting the data 

pair and two different cases of estimating the occurrence probability. As mentioned in the previous 

section, the difference between ‘AND’ and ‘OR’ cases when estimating the occurrence probability 

was also very clear in the calculation of the vulnerability. In the case of considering the ‘AND’ 

concept, the occurrence probability of an extreme event becomes extreme. As a result, the effect of 

these extreme events on the vulnerability estimation becomes very limited. Due to this reason, the 

vulnerability was estimated to be very small in the ‘AND’ case and the difference among the three 

cases of selecting the data pair was also small. The smallest one was just 3.16 × 106 m3 for the data pair 

of the deficit intensity and duration while the largest one was 3.38 × 106 m3 for the data pair of the 

deficit volume and intensity. These estimated vulnerabilities are all on the level of 25% of that based 

on the conventional method of using the same occurrence probability (i.e., 13.54 × 106 m3). 

On the other hand, the ‘OR’ case resulted in quite reasonable results of vulnerability estimation. 

Since the extreme events were all significantly considered in estimating the vulnerability, the 

vulnerability was estimated to be much higher than that in the ‘AND’ case. Additionally, depending 

on the selected data pair, the estimated vulnerability was significantly different. It was 5.34 × 106 m3 

for the data pair of the deficit volume and duration, but it was 9.11 × 106 m3 for the data pair of the 

deficit intensity and duration. These estimated vulnerabilities are at the level of (40% to 70%) of that 

based on the conventional method. 

Table 6. Vulnerabilities estimated for three different pairs of two variables and two cases of 

calculating the occurrence probability, i.e., ‘AND’ and ‘OR’ cases. 

Data Pair ‘AND’ Case ‘OR’ Case 

Deficit volume and duration 3.27 × 106 m3 5.34 × 106 m3 

Deficit intensity and duration 3.16 × 106 m3 9.11 × 106 m3 

Deficit volume and intensity 3.38 × 106 m3 8.30 × 106 m3 

Conventional method 13.54 × 106 m3 

Lastly, it is necessary to select one of the three results summarized in Table 6. The vulnerability 

is estimated by considering that the deficit volume and duration is 5.34 × 106 m3, that the deficit 

intensity and duration is 9.11 × 106 m3, and that the deficit volume and intensity is 8.30 × 106 m3. Since 

the vulnerability was calculated differently for the three different pairs of the two variables 
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considered even though any pair of the two variables defined the same water deficit event, it is 

necessary to select any one of them for further remediation of the dam water supply plan. For this 

selection problem, the concept of multicollinearity can be used as an indicator.  

The multicollinearity is defined as the lack of independence or the presence of interdependence 

among independent variables in the regression analysis [44,45]. The interdependent and independent 

variables can lead to low quality of the resulting parameter estimates [46,47]. Additionally, the effect 

of the multicollinearity distortion increases with the increasing degree of correlation [48,49]. This 

problem is generally evaluated by quantifying the variance inflation factor from a variable [50,51]. 

The variance inflation factor is used as a measure to quantify the level of the multicollinearity in a 

multiple regression analysis. 

Furthermore, the above results in Table 6 could be expected by comparing the variance inflation 

factors estimated for the three components considered in this study. The variance inflation factor of 

the deficit duration was estimated as 3.46 and the deficit volume was estimated to be 5.87. In the case 

of the deficit intensity, the variance inflation factor is 2.89. It is generally assumed that, in the case 

that the variance inflation factor is higher than five, the multicollinearity problem becomes serious 

[52–55]. Based on this result, it could be concluded that the occurrence probability considering the 

deficit intensity and duration (i.e., the case excluding the deficit volume) is more reasonable than the 

other two cases. The vulnerability estimated by considering the deficit intensity and duration, 9.11 × 

106 m3, becomes the most reasonable value for the Namgang dam.  

5. Conclusions 

This study proposed a method to estimate the occurrence probability of a water deficit event by 

applying the copula method. In this study, a water deficit event was assumed to be a rectangle 

composed of the deficit duration and deficit intensity. The deficit volume is simply the product of the 

deficit duration and deficit intensity. By selecting two variables among three, the bivariate frequency 

analysis was performed using the copula. The vulnerability was then estimated by multiplying the 

water deficit volume by its occurrence probability. This study considered the Namgang dam as an 

example and the resulting estimate of the vulnerability was compared with the conventional 

assumption of constant occurrence probability. The results are summarized below. 

First, the exponential distribution was selected for the deficit duration and deficit volume and 

the log-Gumbel distribution was selected for the deficit intensity. The goodness-of-fit tested by the 

test has also validated the use of these PDFs. Additionally, based on the MSE and the AIC, the Clayton 

model was selected as the optimal copula model for the deficit volume and deficit duration. The 

Gaussian model was selected for the deficit intensity and the deficit duration and the Frank model 

was chosen for the deficit volume and the deficit intensity. The K-S test confirmed these selections of 

the copula model.  

Second, the occurrence probability of each water deficit event was estimated by using the copula 

model determined for each pair of two variables constituting the water deficit event. Both the ‘AND’ 

and ‘OR’ concepts were applied in this calculation and they were found to be very different from 

each other. In particular, the occurrence probability in the ‘AND’ case was estimated to be much 

smaller or much larger (i.e., wide variation) than that in the ‘OR’ case. It was also found that the 

selection of the data pair constituting the water deficit events had a significant influence on the 

occurrence probability. This problem was serious in the ‘AND’ case but was rather small in the ‘OR’ 

case even though the difference was still significant.  

Third, the difference between the ‘AND’ and ‘OR’ cases when estimating the occurrence 

probability was also considered in calculating the vulnerability. In considering the ‘AND’ concept, 

the occurrence probability of an extreme event becomes extreme (i.e., a small occurrence probability). 

As a result, the effect of these extreme events on the vulnerability estimation becomes very limited. 

Due to this reason, the vulnerability was estimated to be very small in the ‘AND’ case and the 

differences among the three cases of selecting the data pair were also small. On the other hand, the 

‘OR’ case resulted in quite reasonable results of vulnerability estimation. Since the extreme events 

were all significantly considered in estimating the vulnerability, the vulnerability was assessed to be 
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much higher than that in the ‘AND’ case. The estimated vulnerabilities in the ‘AND’ case were on the 

level of 25%, but, in the ‘OR’ case, they were about 40% to 70% of that based on the conventional 

method.  

Lastly, based on the concept of multicollinearity, it could be concluded that the occurrence 

probability considering the deficit intensity and duration is more reasonable than the other two cases. 

This conclusion was made by considering the variance inflation factor, which is a measure to evaluate 

the effect of the multicollinearity of a variable. The variance inflation factor was estimated as 2.89 for 

the deficit intensity, 3.46 for the deficit duration, and 5.87 for the deficit volume. It is generally 

assumed that the multicollinearity problem becomes serious in the case that the variance inflation 

factor is higher than five. As a final result in the application of the Namgang dam, the vulnerability 

was determined to be 9.11 × 106 m3, which is about 3% of the total storage capacity of 3.1 × 108 m3. 

This estimated vulnerability is also about 70% of that estimated by applying the same occurrence 

probability to all water deficit events. 

The vulnerability analysis result from the copula-based method will become more relevant for 

the management of existing dam and decision-making of new dam construction. In addition, since 

this method is based on the copula model, any kind of marginal distribution for an analysis variable 

can be applied. Therefore, a vulnerability assessment method from this study can be broadly applied 

on a water-deficit event with various types of variables. 

More case studies with various types of water resource systems need to be conducted to 

generalize the vulnerability assessment method in this study. Therefore, for further study, several 

vulnerabilities results from the global/domestic basin will be analyzed and compared. 
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