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Abstract: Rainfall interception is an important process of the water cycle that can have significant 

influence on surface runoff and groundwater storage. Since rainfall interception measurements are 

rare and time consuming, rainfall interception estimation can be made indirectly using different 

meteorological variables. Experimental data of rainfall interception for birch and pine trees was 

measured at an experimental plot located in an urban area of Ljubljana, Slovenia in this study. A 

copula model was applied to predict the rainfall interception using meteorological variables, 

namely air temperature and vapour pressure deficit data. The copula model performance was 

compared to some other models such as decision trees, multiple linear regressions, and exponential 

functions. Using random sampling, we found that the copula model where Khoudraji-Liebscher 

copula functions were used yielded slightly smaller root mean square error (RMSE) and mean 

absolute error (MAE) values than other tested methods (i.e., RMSE and MAE results for birch trees 

were 24.2% and 18.2%, respectively and RMSE and MAE results for pine trees were 25.0% and 

19.6%, respectively). The results demonstrate that the copula-based proposed method and other 

tested models could be used for the prediction of rainfall interception at the considered plot and in 

the wider surroundings. Furthermore, these models could also be applied for the prediction of 

rainfall interception for these two tree species in other locations under similar vegetation and 

meteorological conditions. 

Keywords: copula functions; rainfall interception; modelling; pine tree; birch tree; vapour pressure 

deficit; air temperature; decision trees 

 

1. Introduction 

Rainfall interception by vegetation is recognized as an important process of the hydrological 

cycle by researchers worldwide, influencing surface runoff in a great manner, irrespective of whether 

they are conducted in natural or urban forests (e.g., [1–6]). Rainfall partitioning can be divided into 

three main components, namely throughfall, stemflow, and interception loss. Throughfall is a portion 

of precipitation that either reaches the ground directly without touching the canopy or reaches the 

ground at a later time by dripping from the saturated canopy. Stemflow is a portion of intercepted 

precipitation that reaches the ground by flowing down the branches and stem. Interception loss is a 

portion of rainfall that is intercepted by the vegetation and evaporated back into the atmosphere, 

never reaching the ground. The process of rainfall partitioning is influenced by different 

meteorological (e.g., rainfall amount, intensity, raindrop size, raindrop velocity, air temperature, air 

humidity, wind speed) and vegetation variables (e.g., tree type, canopy characteristics, stem 

roughness, leaf area index) [4,7–14]. Rainfall amount, duration and intensity are often recognised as 

the most influential meteorological variables since they decrease rainfall interception [4,14,15–17]. 

However, throughfall and stemflow, both of which also decrease rainfall interception, continue after 
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the end of the rainfall event [13,18]. In this extended period, the evapotranspiration, highly influenced 

by air humidity and air temperature, plays a significant role in the rainfall partitioning process 

[4,15,19]. 

Rainfall interception measurements are quite complicated and time consuming as they take 

years of fieldwork [14,20,21]. However, meteorological variables such as air temperature and relative 

air humidity measurements that are needed to calculate the vapour pressure deficit are usually 

available from national meteorological stations, or they can be measured using fairly simple and 

cheap equipment. Thus, from a practical point of view, a model that can be used to predict rainfall 

interception loss for specific vegetation and climatic conditions using only climatic data is needed. 

However, at least some experimental measurements are needed to construct the model. More 

specifically, all vegetation periods (e.g., at least one leafed and one leafless period) should be recorded 

in order to detect the seasonal variability in rainfall interception. Different statistical methods  

(e.g., [9,12,17,22]) and other model types (e.g., [4,23–26]) have already been used and developed to 

evaluate the influence of different variables on rainfall interception, and also to predict it. Some 

models are quite complex, requiring a large number of parameters. For example, the Gash 

interception model [27] requires parameters such as canopy cover fraction, canopy storage capacity, 

rainfall necessary to saturate the canopy and others (e.g., [4,25,27]). Moreover, as input parameters, 

throughfall and stemflow data need to be considered (e.g., [4,25,27]). Furthermore, the Gash model 

[27] was developed based on the Rutter model [28] and requires less data than the initial model 

version [25]. Similarly, the two-layer stochastic model requires estimation of several parameters and 

consideration of additional input variables [23,24]. To simplify rainfall interception evaluation and 

modelling, we decided to try copula models, which were not yet applied to the rainfall partitioning 

data. 

De Michele and Salvadori [29] were the first to introduce copula functions for applications in 

hydrology. Since then, the number of papers that apply copula functions to different hydrological 

problems has increased. For example, a Web of Science database search using the “copula” topic in 

the Water Resources category indicates that in 2016 and 2017, more than 70 papers per year were 

published including this keyword, while in 2010, only 29 papers were published. Salvadori and De 

Michele were first to carry out multivariate frequency analysis via copula functions [30] and different 

multivariate design strategies were first discussed by Salvadori et al. [31]. Moreover, copula functions 

have been used several times for rainfall analysis and modelling. Some examples of this include: for 

rainfall frequency analysis in order to estimate reliable design rainfall (e.g., [32–37]), for 

disaggregation of rainfall data (e.g., [38,39]), to construct intensity-duration-frequency (IDF) curves 

for different purposes (e.g., [40–42]), for rainfall generation and modelling (e.g., [43–45]), for drought 

analyses and characterisation of drought properties (e.g., [46–57]), and for other rainfall related 

analyses (e.g., [58–64]). However, one should bear in mind that research dealing with copula 

functions is also very intense in the Statistics Probability category (e.g., more than 250 papers were 

published in 2017 in this category according to the Web of Science database). This means that the 

topic is also relevant from the statistical and mathematical perspective, and that consequently, with 

the development of the research area, we can expect even more applications of copulas in the future. 

The main aim of this study was to compare the performance of the copula model for the 

estimation of the rainfall interception loss using air temperature (T) and vapour pressure deficit 

(VPD) data with some other estimation techniques, namely exponential function, multiple linear 

regression, and decision trees. The idea was not to use rainfall measurements in the model 

construction, but rather other meteorological variables because in some cases, rainfall data is not 

available and relative humidity and air temperature can also be measured using easily available 

digital sensors, which means that fieldwork is not needed. The performance of the above-mentioned 

models is evaluated using 175 rainfall events from an experimental plot in Slovenia where birch and 

pine trees are present. The specific aims of the study are as follows: (i) to fit the copula and some 

other models to the data; (ii) to compare the performance of tested methods and (iii) to compare the 

evaluation results with respect to two different tree species (birch and pine tree). 
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2. Materials and Methods 

2.1. Rainfall Partitioning Measurements 

Rainfall in the open, throughfall and stemflow were measured in a park in the city of Ljubljana, 

Slovenia (46.04° N, 14.49° E) [13,14,65]. The typical climate for the area is temperate continental with 

well-defined seasons. The mean long-term (1986–2016) total annual rainfall is approximately  

1380 mm and the average annual temperature is 11 °C, which varies between ‒3 °C in the winter and 

24 °C in the summer [66]. The study plot has an area of approximately 600 m2 and is covered with 

grass (Figure 1). In the western part of the plot, a group of birch trees (Betula pendula Roth) and a 

group of pine trees (Pinus nigra Arnold) grow. There is no overlapping between the two groups of 

trees. Measurements of interception by two different tree species in our study were conducted in an 

urban area. Therefore, the basic research on rainfall interception was focused on the benefits of urban 

trees as part of green infrastructure [14,67]. One of the benefits of such urban trees is the storm water 

reduction [67]. Although trees have an important role in regulating urbanised hydrology systems, 

there is still little known about the best trees to choose. Since, in addition to meteorological variables, 

vegetation variables also have a large influence on the interception, each new research on additional 

tree species is an important contribution to the field. 

The height of birch trees is on average 15.7 m (±1.0 m) with a total projected crown area of  

42.3 m2 and an average diameter at breast height of 17.9 cm. The pine trees are on average 12.6 m 

(±0.6 m) high, have a total projected crown area of 22.7 m2 and an average diameter at breast height 

of 19.0 cm (±2.3 cm). The birch tree canopy is characterized by upwards branch inclination (51° on 

average from the stem to the branch) and a leaf area index (LAI) of 0.8 in leafless and 2.3 in the leafed 

period (measured with a LAI-2200 plant canopy analyser). The pine tree branches are inclined 

downwards (on average 98° from the stem to the branch) and the LAI values are on average equal to 

3.8 (±0.7). Birch trees have smoother bark with a storage capacity of 0.7 mm, while the bark of pine 

trees is rougher and more absorptive, with a 3.5 mm bark storage capacity [14]. 

 

Figure 1. Location of Slovenia on the map of Europe, and a photo from the measuring plot showing 

the measuring equipment used. 
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The measurements were conducted from 1 January 2014 to 30 June 2017. The rainfall in the open 

was measured with a tipping bucket (0.2 mm/tip) rain gauge (Onset RG2-M) with an automatic data 

logger (Onset HOBO Event). The equipment was located in the clearing at the study plot, 10 m from 

the nearest tree. In the observed period, a total of 413 rainfall events were detected. After further 

analysis, 175 rainfall events were taken into account, as snow events and events with incomplete data 

were excluded.  

Throughfall was measured with through- and funnel-type gauges in order to consider 

throughfall spatial variability (Figure 1). Under each group of trees, two through gauges (catch area 

of 7.5 m2) were positioned from the tree stem towards the edge of the canopy. One was connected to 

a tipping bucket flow gauge (Unidata 6506G; 50 mL/tip) and an automatic data logger (Onset HOBO 

Event), while the other was connected to a manually-read polyethylene barrel (60 L capacity), 

collected after each event. Under each group of trees, ten manually-read funnel-type gauges (catch 

area of 78.5 cm2) were also randomly placed and moved around during the three and half years of 

measurements [65].  

Stemflow was measured for one representative tree in each group. Around the stem, a halved 

rubber hose was spirally wrapped, capturing the water flowing down the stem. In the case of pine 

trees, it was collected in manually-read 1.5 L container, while in the case of birch trees, the rubber 

hose was connected to a tipping bucket (Onset RG2-M, 0.2 mm/tip) with an automatic data logger 

(Onset HOBO Event). The contribution area of the tree canopy was used to convert stemflow volume 

to its depth [17,68,69]. 

Rainfall interception loss (I) was expressed as the difference between the gross rainfall (i.e., 

rainfall in the open) (P), throughfall (TF) and stemflow (SF), describing the amount of rainfall not 

reaching the ground (e.g., [4,14,16,19]): 

I = ((P – TF − SF)/P) × 100. (1) 

2.2. Meteorological Variables 

According to the rainfall and throughfall measurements with an automatic data logger at the 

study plot, rainfall amount, duration, and intensity were determined for each rainfall event. Events 

were separated by at least a 4 h dry period. Based on the defined beginning and end of the rainfall 

event, the minimum air temperature (TMIN), maximum air temperature (TMAX), average air 

temperature (T) and average relative humidity (RH) per event were also calculated. We have used 

the half-hour data (air temperature and relative humidity) measured at the location of the Ljubljana-

Bežigrad meteorological station in the Ljubljana city area [66], located 3 km from the study plot. 

According to the Slovenian Environment Agency, its measurements are representative for the whole 

city and its neighborhood due to its special location in the Ljubljana basin [70]. The FAO Penman-

Monteith methodology was applied for the vapour pressure deficit (VPD) calculations [71]. The 

following equations were used to derive the vapour pressure deficit (VPD), calculated as es-ea (es is 

saturation vapour pressure and ea is actual vapour pressure) using the minimum air temperature 

(TMIN), maximum air temperature (TMAX) and average relative humidity (RH) data derived using half-

hourly data from the beginning to the end of each rainfall event: 

𝑒𝑠  =
[e0(𝑇𝑀𝐼𝑁) + e0(𝑇𝑀𝐴𝑋)]

2
 (2) 

e0(𝑇𝑀𝐼𝑁)  = 0.6108 × exp (
17.27 × 𝑇𝑀𝐼𝑁

𝑇𝑀𝐼𝑁 + 237.3
) (3) 

e0(𝑇𝑀𝐴𝑋)  = 0.6108 × exp (
17.27 × 𝑇𝑀𝐴𝑋

𝑇𝑀𝐴𝑋 + 237.3
) (4) 

𝑒𝑎  = 𝑒𝑠 × 𝑅𝐻/100 (5) 

Figure 2 shows the relationship between air temperature, vapour pressure deficit and 

interception loss for birch (Ib) and pine (Ip) trees for the 175 events that were analysed in this study. 
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Events measured in the leafless and leafed period are indicated with red and black colour, 

respectively. About 20% of all considered events were measured in the leafless period, and 80% in 

the leafed period. The correlation between Ib and T, and Ip and T, is similar for the leafless and leafed 

periods. On the other hand, the correlation between Ib and VPD, and Ip and VPD, is higher for events 

measured in the leafless period than for events measured in the leafed period (Figure 2). Furthermore, 

correlation between T and VPD was higher during the events that were measured in the leafed period 

compared to the events measured in the leafless period (Figure 2).  

 

Figure 2. Graphical presentation of the relationship among interception loss for pine trees (Ip), vapour 

pressure deficit and air temperature (T) (upper panel) and interception loss for birch trees (Ib), vapour 

pressure deficit and air temperature (T) (lower panel). Events measured in the leafless and leafed 

period are indicated with red and black colour, respectively.  

2.3. Copulas 

Before fitting the copula model, the independence of consecutive events was examined. The 

Ljung-Box test was used for this purpose, whereas the Box.test function that is implemented in the R 

software was used [72]. Copulas are functions that connect joint multivariate probability distributions 

with univariate marginal distribution functions [73]. A detailed description of copula functions in 

general and their main characteristics is available in [74–77]. The definition of the Khoudraji-

Liebscher copula functions applied in this study can be found in [78,79]. These copulas were first 

introduced and discussed in hydrology by [80,81], and are applied in this study based on the 

conclusions made by Bezak et al. [82], who have applied Khoudraji-Liebscher copula functions for 

the estimation of suspended sediment loads. The symmetric Archimedean copulas C1 and C2 were 

used (Equation (6)) for the estimation of the interception loss based on the vapour pressure deficit 

(VPD) and air temperature (T) data for the birch and pine trees, respectively. The suitability of this 

copula function was tested using the procedure described below, and several tests results are 
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presented in Section 3.2. For the three-dimensional case study that was analysed here, the cumulative 

distribution function is as follows [78,79]: 

𝐶𝜃1,𝜃2
 =  𝐶1(𝑢1

1−𝛼1 , 𝑢2
1−𝛼2 , 𝑢3

1−𝛼3)𝐶2(𝑢1
𝛼1 , 𝑢2

𝛼2 , 𝑢3
𝛼3) (6) 

where α1, α2, α3 ∈ [0,1] are shape parameters, 𝐶1 and 𝐶2 are the two copula functions, and 𝜃1 and 𝜃2 are 

the parameters of these two copula functions (u1 = FVPD(VPD), u2 = FI(I) and u3 = FT(T)). 

The parameters of the copula functions were estimated using the maximum pseudo-likelihood 

method [83,84]. As 𝐶1 and 𝐶2  are symmetric, Joe, Frank, Clayton and Gumbel-Hougaard copula 

functions were used (Table 1). Thus, in total, 16 different combinations of Khoudraji-Liebscher 

copulas were tested. More information about the selected Archimedean copula functions can be 

found in [76]. The exchangeability was tested using the exchTest function that is part of the R software 

copula package (symmetric copulas can be used when variables are exchangeable) [72,84]. Moreover, 

the Cramér-von Mises test Sn was applied to test the adequacy of different copula models [85]. 

Furthermore, the xvCopula function implemented in the R software copula package was used to select 

the most suitable copula for the estimation of the interception loss [84,86]. The k-fold cross-validation 

was applied to estimate the xvCopula results, which means that samples were divided into k equal 

sized samples. k-1 sub-samples were used as training data and one sub-sample was used for 

validation. This procedure was repeated k times to obtain model selection criterion results (each of 

the k sub-samples was used once for validation). In order to deal with ties in the data, the so-called 

“first” method was applied in the process of data ordering (i.e., this method uses a permutation with 

increasing values at each index set of ties [72]). The non-parametric distribution function defined by 

Hutson [87] and Serinaldi [88] was applied as a marginal distribution function. The term “copula 

model” is used for the combination of the non-parametric distributions and Khoudraji-Liebscher 

copulas in the next part of the paper. 

Table 1. Definitions of the selected symmetric trivariate Archimedean copulas that were used as 

𝐶1 and 𝐶2 in Equation (6). 

Copula 𝑪𝜽(𝒖𝟏, 𝒖𝟐, 𝒖𝟑) 

Joe 1 − {(1 − 𝑢1)𝜃 + (1 − 𝑢2)𝜃 + (1 − 𝑢3)𝜃 − (1 − 𝑢1)𝜃(1 − 𝑢2)𝜃(1 − 𝑢3)𝜃}
1/𝜃

 

Frank −
1

𝜃
ln {1 +

(exp(−𝜃𝑢1) − 1)(exp(−𝜃𝑢2) − 1)(exp(−𝜃𝑢3) − 1)

(exp(−𝜃) − 1)2
} 

Clayton {𝑢1
−𝜃 + 𝑢2

−𝜃 + 𝑢3
−𝜃 − 2}

−1/𝜃
 

Gumbel-Hougaard exp {−((− ln 𝑢1)𝜃 + (− ln 𝑢2)𝜃 + (− ln 𝑢3)𝜃)
1/𝜃

} 

2.4. Other Models Used for Estimation of Rainfall Interception and Performance Criteria 

The copula model described in Section 2.3 was compared to several other models. Similarly to 

Bezak et al. [82], we also tested the exponential model (EXP) with two parameters (only the vapour 

pressure deficit variable was used as input in this model) and the multiple regression model (MLR) 

(VPD and T were used) considering three parameters. The parameters were estimated using the least-

square method. The EXP method was selected due to its simplicity compared to other tested methods. 

The R software usdm package and vifstep function were used to test for multicollinearity [72,89]. 

Additionally, we also tested the decision tree model. Decision trees are one of the data mining 

techniques that can be used to construct a model for the prediction of target variables based on 

selected influential variables. We used continuous numeric values of interception loss as the target 

variable and air temperature and vapour pressure deficit as influential variables. Constructed 

decision trees are composed from nodes and leaves [90]. Additional information about tree structure 

is defined within tree nodes (i.e., usually the mean and variance of instances related to one specific 

node and values that are used to divide different nodes). Moreover, each leaf is associated with the 

predicted value of the target variable. The tree depth was limited to five levels and we did not split 

subsets smaller than five. The final number of nodes and leaves was not the same for the two tree 

species (birch and pine), and the fitted models are presented in Section 3. Using these regression 
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models and information about nodes, one can calculate rainfall interception based on VPD and T 

variables. The Orange software [91] was applied for the construction of the decision tree.  

For the evaluation of the tested models (copula, exponential, multiple linear regression and 

decision tree), random sampling was used. The training set size was 75% and test set size was 25%. 

The random sampling procedure was repeated 20 times (n = 20). Root mean square error (RMSE) and 

mean absolute error (MAE) criteria were used to compare the model results. Additionally, to check 

the sensitivity of the RMSE and MAE results regarding the training and test set size, we also repeated 

the previously described procedure using 50% of events for training and 50% for validation. For the 

copula model, 10,000 possible Ib and Ip values were generated based on known pairs of variables T 

and VPD (for the test set). Similarly to Bezak et al. [82], we used the median value of 10,000 

realizations as the estimated rainfall interception value for birch and pine trees. 

3. Results and Discussion 

3.1. Rainfall Interception and Influencing Variables 

From three and a half years of measurements, we selected 175 rainfall events with complete data 

for further analysis. The total rainfall amount for these events was 2049 mm and average intensity 

was 2.0 mm/h (±2.4 mm/h). The largest event in terms of rainfall amount was detected between 14 

and 15 June 2016, with a total rainfall amount of 93 mm and a duration of 21.5 h. Table 2 shows the 

descriptive statistics for the analyzed variables used in this study. On average, birch trees intercepted 

40% (±27%) of rainfall per event (Table 2). The interception loss was equal to 100% for 12 events with 

less than 1.4 mm of rainfall in the open (Figure 3). This was expected, since for the events with a 

rainfall amount smaller than the canopy storage capacity (1.1–3.5 mm for birch trees), the total rainfall 

amount is intercepted [14]. Furthermore, for three events, throughfall under birch trees exceeded the 

amount of rainfall in the open, which resulted in negative values of rainfall interception (Table 2). 

This phenomenon is usually attributed to so called “drip points”, where rain drops concentrate at the 

edge of the canopy e.g., [4,65]. Pine trees intercepted on average 68% (±25%) of rainfall per event 

(Table 2). The entire rainfall amount in the open was intercepted during 29 events with less than 2.6 

mm of rainfall (canopy storage capacity for pine trees varied between 0.9 and 2.9 mm) (Figure 3). In 

total, birch trees intercepted 484.8 mm of rainfall (24%) and pine trees intercepted 926.5 mm of rainfall 

(45%). Compared to similar deciduous trees, the rainfall interception of birch trees was in the range 

of 20% and 29% of rainfall measured in oak and birch deciduous forest in the UK [92], 25% and 28% 

measured in mixed Mediterranean deciduous forest in Slovenia [4] and between 16% and 25% 

measured in a temperate deciduous forest in Maryland, USA [93]. Interception losses by pine trees in 

the present study are similar to 41% of gross precipitation measured in mature coniferous forest in 

British Columbia, Canada [94], 52% rainfall intercepted by Douglas-fir and 61% intercepted by 

western red cedar in an urban area of North Vancouver, Canada [95]. 

Table 2. Descriptive statistics (minimum, maximum, mean, median and coefficient of variation (CV)) 

for average air temperature (T), average relative humidity (RH), vapour pressure deficit (VPD) and 

rainfall interception by birch (Ib) and pine (Ip) trees. 

Variable Min Max Mean Median CV 

T 3.0 °C 28.1 °C 13.4 °C 13.4 °C 38.5 

RH 53.0% 99.3% 85.6% 88.0% 10.6 

VPD 0.01 kPa 1.79 kPa 0.26 kPa 0.18 kPa 102 

Ib −9% 100% 40% 33% 67.4 

Ip 3% 100% 68% 71% 36.9 
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Figure 3. Rainfall interception by birch (Ib) and pine (Ip) trees according to the amount of rainfall in 

the open. 

Air humidity and temperature were also recognized as two important influencing variables on 

all three components of rainfall partitioning in other studies [4,9,12,14]. 

3.2. Selection of the Most Suitable Copula Function 

The main idea of the copula application was to estimate the rainfall interception loss using only 

meteorological variables, namely T and VPD data. Before fitting any model to the data 

autocorrelation, the marginal data was tested. Ljung-Box test results were 3.8 (p-value 0.07), 0.001  

(p-value: 0.99), 2.1 (p-value: 0.15) and 0.25 (p-value: 0.62) for Ib, Ip, T and VPD, respectively. This 

means that there was no significant autocorrelation in the data, which indicates that data 

transformation is not needed. Table 3 shows the calculated Kendall’s correlation coefficients values 

for the following pairs of variables: I-T, I-VPD and T-VPD for birch and pine trees, respectively. Using 

the Fisher r-to-z transformation, we also tested the significance of the difference between two 

correlation coefficients for birch and pine trees. The calculated test statistics and p-values were −0.75 

(p-value 0.45), 1.08 (p-value 0.28) and 0.11 (p-value 0.90) for I-T, I-VPD and T-VPD, respectively. This 

means that the calculated correlation coefficients were not significantly different for all three pairs of 

variables with the selected significance level of 0.05. In the process of the copula model construction, 

we focused on the Khoudraji-Liebscher copula functions where we used symmetric Archimedean 

copulas C1 and C2 from Equation (6) [78–82]. Moreover, exchangeability test results for birch trees 

were 0.09 (p-value 0.05), 0.07 (p-value 0.85) and 0.03 (p-value 0.98) for Ib-T, Ib-VPD and T-VPD, 

respectively. On the other hand, the exchangeability results for pine trees were 0.12 (p-value 0.84), 

0.19 (p-value 0.77) and 0.03 (p-value 0.98) for Ip-T, Ip-VPD and T-VPD, respectively. This means that 

variables are exchangeable and the copulas shown in Table 1 can be used as C1 and C2 functions.  

Table 3. Kendall’s correlation coefficients between pairs of the following variables: interception loss 

(I), air temperature (T) and vapour pressure deficit (VPD) for birch and pine trees calculated using 

175 events. p-value is shown in brackets. 

Pairs Birch Tree Pine Tree 

I-T 0.16 (0.002) 0.08 (0.10) 

I-VPD 0.30 (8.9 × 10−9) 0.19 (0.001) 

T-VPD 0.48 (2.2 × 10−16) 0.48 (2.2 × 10−16) 
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Different combinations of Khoudraji-Liebscher copulas were tested where Joe, Clayton, Gumbel-

Hougaard and Frank copulas were applied as C1 and C2 (Section 2.3). Thus, in total, 16 combinations 

were tested for both trees using the Cramér-von Mises test. For birch trees, the following 

combinations of C1-C2 could not be rejected with the selected significance level of 0.05: Gumbel-

Hougaard-Joe, Gumbel-Hougaard-Gumbel-Hougaard, Joe-Gumbel-Hougaard, Joe-Joe, Frank-

Gumbel-Hougaard, Clayton-Gumbel-Hougaard and Clayton-Joe. For all these combinations, the 

model selection criteria that is based on k-fold cross-validation was used (Section 2.3), and the 

following results (i.e., the cross-validated log likelihood defined by [84,86]) were 50.88, 52.95, 60.62, 

51.17, 45.27, 59.54 and 37.81 for the Gumbel-Hougaard-Joe, Gumbel-Hougaard-Gumbel-Hougaard, 

Joe-Gumbel-Hougaard, Joe-Joe, Frank-Gumbel-Hougaard, Clayton-Gumbel-Hougaard and Clayton-

Joe combinations, respectively. Based on the presented results, the Joe-Gumbel-Hougaard copula was 

selected as the most suitable for the birch tree data (the maximum model selection criterion result 

was obtained for this combination). For this copula function, the estimated copula parameters 

(𝜃1 and 𝜃2) were 2.59 and 1.74, and the shape parameters (α1, α2, α3) were 0.24, 0.92 and 0.07. For the 

complete copula model (non-parametric distribution function and Joe-Gumbel-Hougaard copulas as 

C1 and C2), we also visually checked the fit between the measured data and data generated using the 

previously mentioned model (Figure 4). 

 

Figure 4. Graphical fit for birch trees between measured data (red crosses) and 10,000 random 

realizations (grey circles) using the copula model where the Joe copula was selected as C1 and the 

Gumbel-Hougaard copula was selected as C2. 

A similar procedure was also carried out for the pine tree data. Using the Cramér-von Mises test, 

the following combinations of Archimedean copulas as C1 and C2 could not be rejected with the 

selected significance level of 0.05: Gumbel-Hougaard-Joe, Gumbel-Hougaard-Gumbel-Hougaard, 

Joe-Gumbel-Hougaard, Joe-Joe, Frank-Joe, Clayton-Gumbel-Hougaard and Clayton-Joe. 

Furthermore, the most suitable copula was selected using the model selection criteria presented in 

Section 2.3. The calculated results (i.e., the cross-validated log likelihood defined by [84,86]) were 

17.29, 17.84, 31.55, 21.81, 13.35, 30.61 and 21.04 for the Gumbel-Hougaard-Joe, Gumbel-Hougaard-

Gumbel-Hougaard, Joe-Gumbel-Hougaard, Joe-Joe, Frank-Joe, Clayton-Gumbel-Hougaard and 

Clayton-Joe combinations, respectively. Similarly, as for the birch trees, the same combination of 
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Archimedean copula functions were used as C1 and C2 (Joe-Gumbel-Hougaard was used because the 

maximum model selection criterion result was obtained for this combination). The estimated copula 

parameters for 𝜃1 and 𝜃2  were 2.73 and 1.86, respectively. Furthermore, the estimated shape 

parameters were 0.21, 0.99 and 0.06 for the α1, α2 and α3, respectively. Figure 5 shows the graphical 

comparison between generated data for pine trees using the fitted copula model and measured data. 

 

Figure 5. Graphical fit for pine trees between measured data (red crosses) and 10,000 random 

realizations (grey circles) using the copula model where the Joe copula was selected as C1 and the 

Gumbel-Hougaard copula was selected as C2. 

3.3. Comparison of Copula Results with Other Models 

In the next step of the study, we compared copula model performance with some other methods 

that are described in Section 2.4. Firstly, the parameters of the EXP and MLR methods were estimated. 

The EXP and MLR models of rainfall interception for birch trees (Ib) were Ib = exp(4.2) × VPD0.32 and 

Ib = 31.34 + VPD × 41.62 − T × 0.15, respectively. Moreover, the EXP and MLR models of rainfall 

interception for pine trees (Ip) were Ip = exp(4.39) × VPD0.10 and Ip = 67.47 + VPD × 24.92 − T × 0.41, 

respectively. The variance inflation factor (VIF) and the test for multicollinearity (implemented in the 

usdm package [89] that is part of the R software [72]) were used to check if there is any collinearity 

issues in the data. The results indicate that no input variable has a collinearity problem (VIF values 

were 1.05, 1.94 and 2.0 for Ip, T and VPD, respectively; VIF values were 1.17, 1.93 and 2.12 for Ib, T 

and VPD, respectively). A VIF value larger than 10 would indicate that a model has a collinearity 

issue [72,89]. In the next step, a decision tree was fitted to the data. In total (at all five levels), 25 nodes 

and 13 leaves were determined for birch trees and 27 nodes and 14 leaves were determined for pine 

trees (Figure 6). According to the decision trees, the most influential variable on rainfall interception 

by both considered tree species was VPD as it was the top split variable in both cases (Figure 6). 

However, the splitting values differ significantly for pine and birch trees. More specifically, much 

lower splitting values of VPD were determined in the case of pine trees (0.08 kPa) than in the case of 

birch trees (0.40 kPa). These values were determined in the process of decision tree calibration and 

can be seen in Figure 6. Additionally, rainfall interception is, on average, lower with lower VPD 

values for both tree species. 
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(a) (b) 

Figure 6. Decision trees for rainfall interception by birch (a) and pine (b) trees; only the first three 

levels are presented. Values shown in boxes indicate mean and variance of instances related to this 

specific node. Numbers written outside boxes indicate values that are used to divide different nodes. 

According to all models, higher VPD values in general increase rainfall interception regardless 

of the tree species. This finding is in accordance with Staelens et al. [9], who demonstrated that vapour 

pressure deficit significantly increased rainfall interception by a single beech throughout the year. 

However, in the case of stemflow, a high negative correlation with VPD was observed for yellow 

poplar and American beech [12]. According to the results of the MLR model, increasing air 

temperature decreased rainfall interception, whereas the results of the decision trees showed a 

different response of rainfall interception to changes in air temperature according to the VPD values. 

According to the decision trees, the rainfall interception for both considered tree species was 

negatively correlated with temperature for VPD higher than 0.32 kPa and 0.40 kPa for pine and birch 

trees, respectively. Previous analysis with the regression trees also showed that the interception by 

pine trees decreased with an increase in the temperature [14]. However, larger stemflow amounts 

and negative rainfall interception at low temperatures were observed for a single beech [9], while 

warm wind and increasing air temperature in a Mediterranean deciduous forest decreased 

throughfall and therefore increased rainfall interception [4]. Some differences in the observed rainfall 

interception in response to the air temperature may be also the consequence of a different number of 

the variables considered in the studies. 

Table 4 shows results of the RMSE and MAE model evaluation criteria that were used to 

compare the tested models. The results indicate relatively similar behaviour of the tested models, 

where the differences among models are relatively small compared to the accuracy of the models. 

However, a slightly better performance according to the RMSE and MAE criteria was observed for 

the copula model. Better results could be obtained with the inclusion of additional variables in the 

models. However, additional variables would also increase the number of parameters used (e.g., one 

additional variable would increase the number of parameters for the MLR method from three to four, 

and for the copula method from five to six). The number of parameters for the decision tree is mainly 

constrained by the selected minimum tree depth and other parameters. On the other hand, in the 

exponential model, it is not possible to include additional variables. Furthermore, the exponential 

function also yielded similar results than the other tested models despite its simplicity (two 

parameters, one input variable). Interestingly, for the decision tree model, RMSE and MAE results 

were slightly higher than for the copula model despite a larger number of parameters being involved. 

Moreover, besides firstly applied random sampling (the training set size 75% and test set size 25%), 

which was used in the study, we also calculated RMSE and MAE results using 50% of events for 

calibration and 50% for validation. The calculated results were slightly worse than using procedure 

shown in Table 4. However, the maximum differences were up to 6% (i.e., 6% higher RMSE and MAE 

values were obtained). Moreover, we were also not able to detect any significant differences among 

the tested methods. This could indicate that the results presented in Table 4 are not sensitive to the 

relationship between the size of the training and test sets. 
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Table 4. Performance criteria results (root mean square error (RMSE) and mean absolute error (MAE)) 

for the different tested models (random sampling (n = 20, training set 75%, test set 25%) was used to 

calculate the results for birch and pine trees). 

 Birch Tree Pine Tree 

Model RMSE [%] MAE [%] RMSE [%] MAE [%] 

Copula 24.21 18.16 24.95 19.62 

Exponential function 24.70 19.62 24.64 20.27 

Multiple regression model (MLR) 25.29 20.14 24.94 20.58 

Decision tree 26.92 20.88 27.75 22.11 

4. Conclusions 

The presented paper shows the results of rainfall interception modelling using only 

meteorological variables usually available from national meteorological stations, namely air 

temperature and vapour pressure deficit data. The interception loss is an important process of the 

hydrological cycle and has an important influence on the surface runoff and groundwater storage, 

among others. Since rainfall interception measurements are complicated and very time consuming, 

a methodology that can be used to model rainfall interception for specific vegetation and climatic 

conditions using only climatic data is needed. However, at least some experimental measurements 

are needed to calibrate the model. More specifically, all vegetation periods (e.g., at least one leafed 

and one leafless period) should be recorded in order to detect the seasonal variability in rainfall 

interception. Based on the presented results, the following conclusions can be made: 

1. The Khoudraji-Liebscher copula model, which has previously been used in a relatively similar 

application by Bezak et al. [82], can be successfully applied for the estimation of rainfall 

interception based on air temperature and vapour pressure deficit data. 

2. The performance of the copula model is relatively similar to the performance of other tested 

methods. However, according to the RMSE and MAE criteria, slightly better results are obtained 

using copula functions compared to the other tested methods in this study. The performance of 

the models could be further improved with the inclusion of other additional variables in the 

models; however, this would generally increase the complexity of the models. For the EXP 

method, additional variables cannot be added. For the MLR and copula models, one additional 

variable would mean one additional parameter. For the decision tree method, the number of 

parameters is not only connected with the number of variables used, but also with other settings 

such as maximal tree depth.  

3. The copula method yielded similar performance for both birch and pine trees despite the fact that 

the correlation (Table 3) between I-T and I-VPD was smaller for pine trees compared to birch 

trees. However, correlations between I-T and I-VPD for birch and pine trees were not significantly 

different with a significance level of 0.05. The constructed models could also be applied for the 

prediction of rainfall interception under similar vegetation and meteorological conditions in 

other locations where these two tree species are present. In the case of a longer data series, a 

different model could be constructed for the leafless and leafed periods. 
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