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Abstract: We present a simplified overview of land-atmosphere feedbacks at interannual timescales
over tropical South America as structural sets of linkages among surface air temperature (T), specific
humidity at 925 hPa (q925), volumetric soil water content (Θ), precipitation (P), and evaporation (E),
at monthly scale during 1979–2010. Applying a Maximum Covariance Analysis (MCA), we identify
the modes of greatest interannual covariability in the datasets. Time series extracted from the MCAs
were used to quantify linear and non-linear metrics at up to six-month lags to establish connections
among variables. All sets of metrics were summarized as graphs (Graph Theory) grouped according
to their highest ENSO-degree association. The core of ENSO-activated interactions is located in the
Amazon River basin and in the Magdalena-Cauca River basin in Colombia. Within the identified
multivariate structure, Θ enhances the interannual connectivity since it often exhibits two-way
feedbacks with the whole set of variables. That is, Θ is a key variable in defining the spatiotemporal
patterns of P and E at interannual time-scales. For both the simultaneous and lagged analysis,
T activates non-linear associations with q925 and Θ. Under the ENSO influence, T is a key variable
to diagnose the dynamics of interannual feedbacks of the lower troposphere and soil interfaces
over tropical South America. ENSO increases the interannual connectivity and memory of the
feedback mechanisms.

Keywords: soil moisture; feedbacks; tropical South America; interannual variability

1. Introduction

The humid tropics receive a large amount of net radiation and water vapor, and consequently,
intense heat and humidity fluxes dominate the interactions between soil and the lower atmosphere [1].
The excess of net radiation is balanced through latent and sensible heat fluxes [2–4]. By controlling
the partition of these fluxes, soil moisture modulates diverse land-atmosphere feedbacks (LAFs);
similarly, the rates of change between dry and wet conditions in the soil necessarily impact surface
temperatures [5,6].

The study of LAFs has been approached from physical models and numerical experiments [7–13];
analysis of observations and models with statistical tools [3,14–17]; and traces of moisture
trajectories [18,19], among others. An important body of literature has focused on the role of vegetation
and land uses in the dynamics of LAFs [20–24], and the conditions under which LAFs determine the
stability of the lower atmosphere [25–27].
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Tropical South America (TropSA) and, in particular, the Amazon River basin, is a relevant setting
for the study of LAFs on a broad range of spatiotemporal scales, given the importance of recycled
precipitation over the region [28–35]. Regionally, a recycling pattern connects evapotranspiration in
the Amazon with precipitation in La Plata River basin [36–39]. Another recycling pattern is located
in the east of the Andes in TropSA owing to the blocking orographic effect on moisture transport at
low levels [40,41]. In addition, several studies have identified the ways in which LAFs are associated
with the South American Monsoon (SAM) [36,42,43], and the important role of LAFs over TropSA
in connecting the Tropical Pacific with the Tropical North Atlantic sea surface temperatures (SST)
anomalies at interannual timescales [44–47].

A synthesis of the most recurrent links involved in LAFs (Figure 1) is provided by Brubaker and
Entekhabi [48] separating state and process variables. In that work, the state variables are temperature
and humidity content at both the lower atmosphere and soil, while process variables are evaporation,
precipitation, latent and sensible heat fluxes, albedo, and cloudiness in conjunction with net radiation.
Within this framework, evapotranspiration is the most heterogeneous process involved in LAFs since
it connects soil moisture with the other state variables (Figure 1).

Figure 1. Conceptual scheme of interconnections among the main variables involved in the studied
land surface-atmosphere feedbacks (LAF), adapted as a graph from [48] and hierarchized by a number
of connections of each variable. The state (process) variables are denoted as circles (diamonds) nodes.

According to Figure 1, soil moisture regulates the entire LAF system through its direct linkage to
evapotranspiration and precipitation [30,49,50]. Besides, soil moisture also influences soil temperature
through albedo and latent heat flux [51], and at the same time non-linear vegetation-induced turbulence,
determined by vegetation stature and cover fraction, significantly influences ET-soil moisture
relationships [52]. Another important feedback is the influence of soil temperature, in connection with
air temperature, sensible heat flux, and evaporation [48].

The scheme of relationships between state and process variables shown in Figure 1 is a hierarchical
adaptation using Graph Theory of the original figure presented by Brubaker and Entekhabi [48]).
Graph Theory is a specific branch of mathematics that studies the interconnections between objects.
An interpretation of couplings, feedbacks, and interactions via Graph Theory to further understand
LAFs was proposed in previous studies [42]. According to such interpretation, the concept of feedback
with graphs coincides with the type of bidirectional link established in Figure 1 between evaporation
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and soil moisture; on the contrary, the precipitation-soil moisture link is defined as a coupling or
a hierarchical interaction whereby one variable dominates over the other. The structure of links
shown in Figure 1, derived from graph theory, provides a clearer understanding of the processes and
mechanisms involved in LAFs [53–56].

The aim of this paper is to explore new ideas and tools to advance our understanding of land
surface-atmospheric feedbacks in TropSA at interannual timescales. To achieve this goal, we propose
to integrate classical analyses of climatic fields with more recent methods of information theory
and Graph Theory. Our approach involves linear and non-linear analysis, including metrics such
as causality between variables. An explicit goal of this paper is to study the essential role of such
feedbacks to understand the mechanisms involved in water and heat anomalies in TropSA associated
with El Niño-Southern Oscillation (ENSO) [44,57].

The study is organized as follows. Data and methods are presented in Section 2. In Section 3,
we define spatiotemporal patterns of maximum covariance between pairwise selected variables over
TropSA during the period 1979–2010, and, in order to estimate the interannual linear and non-linear
connectivity of the set of variables, we use metrics such as correlation and causalities among the
representative time series of the estimated maximum covariance patterns (Sections 3.2 and 3.3). Using
the same time series, we select the patterns with the highest influence of ENSO. Finally, with these
patterns, we evaluate the structure of relations variables using elements of graph theory (Section 3.3).

2. Materials and Methods

2.1. Data

We focus our study on tropical South America (15◦ N–20◦ S and 82◦ W–40◦ W, Figure 2) taking
some of the variables proposed by Brubaker and Entekhabi [48] to the study of LAFs. Our analysis
involves the interactions among surface air temperature (T), specific humidity at 925 hPa (q925), and
soil moisture (Θ) (as state variables), precipitation (P) and evaporation (E) (as process variables) [7].

Precipitation comes from the Global Precipitation (GPCC) Full Data Product version 7 (ftp:
//ftp.dwd.de/pub/data/gpcc/html/fulldata_v7_doi_download.html) [58]; the GPCC monthly
precipitation fields are suitable to study hydrological and atmospheric linkages at regional scales
on land. From the ERA-Interim Reanalysis [59], we use monthly fields of T, q925, and E, the latter
represented by the Instantaneous Moisture Flux. Volumetric Soil Water content (Θ) is obtained from
the ERA-Interim/Land Reanalysis V.2 [60,61]. This latter product is focused on those land processes
not well represented in the ERA-Interim Reanalysis and is just available for the period 1979–2010 [62],
which justifies this time span for our study. The monthly climatic fields were originally downloaded at
1◦ × 1◦ spatial resolution.

To extract the interannual variability, we removed the annual cycle from all data sets by a simple
standardization procedure (subtracting the monthly mean and scaling by the monthly standard
deviation). Data from the ERA-Interim reanalysis require a split climatology associated with systematic
discontinuities in the water balance due to changes in the sensor channel of the Microwave Special
Sensor (SSM/I) [63]. Thus, we estimated separate means and standard deviations for the periods
1979–1991, 1992–2002, and 2003–2010 to estimate monthly anomalies.

We also use the Niño 3.4 index to represent the dynamics of ENSO over the tropical Pacific Ocean
at interannual timescales, and monthly fields of SST from the Hadley Center (HADISST) to map the
statistically significant correlations between hydro-climatic fields over TropSA.

2.2. Maximum Covariance Analysis

Since we aim at studying the spatiotemporal covariance between all possible pairs of variables,
10 possible combinations are possible. The covariance represents the interaction between each pair
of variables at interannual timescales. We use the matrices of standardized data X and Y during the
384 common months in the period 1979–2010. Then, we estimate the covariance matrix, CXY, as:

ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata_v7_doi_download.html
ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata_v7_doi_download.html
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CXY =
1

n− 1
XYT (1)

Figure 2. Study region with major river basins included in the analysis: Amazon, Tocantins, Orinoco,
and Magdalena. The Intertropical Convergence Zone (ITCZ), and the South Atlantic Convergence
Zone (SACZ) are important climate modulators of the region.

CXY was factorized employing a singular value decomposition (SVD) to extract those patterns
explaining the maximum covariance fraction between X and Y at the interannual timescale.
This method is also known as Maximum Covariance Analysis (MCA) [54,64,65]. Through the MCA,
CXY can be decomposed as:

CXY = U[mxm]Σ[mxq]V
T
[qxq] = ∑min(m,q)

i=1 uiσivT
i = u1σ1vT

1 + u2σ2vT
2 + . . . + umσmvT

q (2)

In this case, the first singular factor, u1σ1vT
1 , is the leading MCA-mode of covariance between X

and Y. The magnitude of the first singular value, σ1, indicates the amount of covariance between both
variables, which is captured by the leading mode. The second singular factor, u2σ2vT

2 , is orthogonal
to the first one, and maximizes the remaining portion of the covariance, and so on until explaining
all the covariance contained in CXY. A measure of the degree to which both variables maximize their
temporal covariance within each mode, is provided through the estimation of the MCA-series xk and
yk, by projecting the matrices uk and vk (containing the singular vectors of CXY) on the original matrices
X and Y (Equation (3)), as:

xk = uT
k X, yk = vT

k Y (3)

Each mode contains a fraction of the square covariance, f XY
k , defined as:

f XY
k =

σ2
k

∑i σ2
i

(4)

f XY
k represents the magnitude of the covariance that is explained by each mode between each pair

of variables. The sum of the k relative fractions is denoted by FXY
k . Finally, we estimate the spatial

patterns associated with X and Y for each MCA-mode. To that end, we use correlation maps between
the series xk and yk and the matrices of standardized data X and Y.
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2.3. A Graph Model and Feedbacks at Interannual Timescales

The combined usage of MCA and Graph Theory has been recently implemented in some
studies [53,54,56]. Graph models have also been used to evaluate climatic interactions in a context of
causality [53,56]. For our purposes, we selected the interaction of the MCA-series according to the
interannual mode that determines their maximum covariance. The criterion to group the MCA-series
of each matrix is defined by the highest strength of correlation with the Niño 3.4 index.

For lags from 1 to 6 months, a graph model is constructed to study the connectivity at the
interannual timescale for each MCA-mode between variables. We use the concept of links between
two variables x and y [49] to construct the graph model, Γ, as:

Γ = f (V, E) (5)

where the nodes V are the variables with maximum covariance under the highest ENSO influence.
The weight of the edges, E, are estimates of the correlation and causality metrics between the x and y
from each MCA-mode (see Supplementary Materials).

The graph depicting the linear associations is constructed by assigning the edge weights
as correlations (ρ). A graph of non-linear associations is constructed with causalities (τ)
(see Supplementary Materials).

Additionally, we introduce a metric to quantify the ratio of bi-directional causalities between
two series y and x (Equation (6)), as:

Φy←→x =
τy←→x

τx←→y
(6)

A value of Φy←→x = 1 indicates a bidirectional feedback, while Φy←→x 6= 1 quantifies the degree
of coupling between both variables. For our purposes, we established a threshold τy←→x > |1%| to
define the relative causalities quantifying the interaction strength. With this restriction, we use only
the strongest causalities in each pair of relationships.

Estimation of simultaneous correlation does not provide information about directionality, and thus
the resulting linking graph is called an Undirected Graph. Otherwise, by applying bidirectional metrics,
such as causality described in Supplementary Materials [66], it is possible to establish a Directed Graph,
denoting directions with arrows (Figure 3).

Figure 3. The basic scheme of the interaction between two singular vectors resulting from a Maximum
Covariance Analysis (MCA) between two variables x and y assuming 1 lag-month.
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Lagged correlations and causalities also quantify bidirectional characteristics. Figure 3 shows a
basic relationship between two-time series xk and yk as a schematic view in two-time steps: x(t − 1)
influences y(t) and y(t − 1) influences x(t). The red arrow in Figure 3 connects the series when x leads
y, and the blue arrow when y leads x. Hence, in both cases, we systematically estimate correlations,
ρ(x(t), y(t− 1)) and ρ(x(t− 1), y(t)), and causalities, τ(x(t),y(t−1)) and τ(x(t−1),y(t)).

We define an edge magnitude threshold to construct correlation and causality graphs to focus on
the strongest connections among the studied variables on the highest ENSO-related covariance modes.
In all cases, we selected the percentile of 50% of the empirical probability distribution of causalities
and correlations values for each time lag.

The adjacency matrix was extracted to study the links structure among variables in each graph.
Factorizing each adjacency matrix by applying an SVD and following the HITS algorithm proposed
by [67], we systematically extracted the highest entries of the leading singular vectors pair from each
matrix factorization. In this context, the adjacency matrix directly connects the whole set of graph
nodes crosslinking their columns (emitters) and rows (receivers). As the adjacency matrix defines all
the possible associations among nodes, the variable (node) corresponding to the maximum vector u1
value (emitter) transfers the highest amount of information to the whole set of variables, while the
maximum vector v1 value is the best information receiver.

3. Results

3.1. Maximum Covariance Analysis among Variables and Strength of ENSO Influence

The three main MCA-modes are able to capture a large portion of the total covariance among the
interactions of the five variables in the study region (at least 76%). Table 1 shows results hierarchically
sorted according to the covariance fraction from the leading MCA-mode of each pair. The T-q925

interaction presents the highest fraction in the leading mode corresponding to 73% of its total
covariance. This is because both variables are strongly linked by the Clausius-Clapeyron formulation
between temperature and saturation water vapor pressure, especially in the humid tropics [1].

Table 1. Three leading MCA-modes of all possible covariance matrices CXY. Fraction of relative ( f XY
k ),

cumulative square covariance (FXY
k ), and simultaneous correlation between MCA-series, ρ(xk, yk).

Pairs of variables are sorted according with the value of the first fraction.

CXY Mode 1 Mode 2 Mode 3

X Y f XY
1 (FXY

1 ) (%) ρ(x1, y1) f XY
2 (FXY

2 ) (%) ρ(x2, y2) f XY
3 (FXY

3 ) (%) ρ(x3, y3)

q925 T 73 (73) 0.96 16 (88) 0.97 5 (93) 0.96
E Θ 53 (53) 0.77 17 (70) 0.64 11 (81) 0.64
P q925 51 (51) 0.78 27 (78) 0.6 9 (87) 0.64
P T 50 (50) 0.72 29 (79) 0.6 9 (86) 0.64
T Θ 50 (50) 0.67 29 (78) 0.66 7 (85) 0.66
E T 49 (49) 0.58 18 (67) 0.67 8 (76) 0.64

q925 Θ 48 (48) 0.7 30 (78) 0.57 8 (86) 0.68
E q925 45 (45) 0.58 23 (68) 0.65 9 (76) 0.65
P Θ 39 (39) 0.78 32 (71) 0.78 12 (83) 0.79
E P 39 (39) 0.71 32 (71) 0.73 10 (81) 0.71

The mechanisms of the hydrological cycle (P-Θ-E) are concentrated in the main two interannual
modes over the study region collecting up to 71% of the covariance. Compared with the whole set of
interactions, E-P and P-Θ concentrate the lowest fraction in the leading MCA-mode and the highest
fraction in the second one (Table 1). However, the interaction of E and Θ share more covariance than
P-Θ in the leading mode. Such a strong covariability between soil moisture (Θ) and evaporation (E)
reinforces the idea that droughts are also associated with LAFs at local scales, and with teleconnections
at larger scales in TropSA [23,68,69].
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We also assessed the influence of ENSO on the covariance modes correlating the MCA-series with
the Niño 3.4 index (Table 2). According to the magnitude of these correlations, we identify the largest
ENSO-influenced mode at each pair of variables (in bold). The interaction Θ-T shows the highest
correlation with N3.4 among the paired variables (ρ = 0.58) in the leading MCA-mode. Soil moisture
(Θ) influences the atmospheric response to surface warming (T), and, in combination with atmospheric
moisture (q925), Θ contributes to determining the spatiotemporal pattern of P [70]. Regularly, those
pairs involving T exhibit the highest correlation values with the Niño 3.4 index (Table 2); this means
that surface temperature is essential to propagate the ENSO-effect on studied variables.

Table 2. Correlation between MCA-series with the Niño 3.4 index, ρ(xk, N3.4) and ρ(yk, N3.4) for the
three leading MCA-modes. Highest correlation value of each pair is denoted in bold.

CXY Mode 1 Mode 2 Mode 3

X Y ρ(x1, N3.4) ρ(y1, N3.4) ρ(x2, N3.4) ρ(y2, N3.4) ρ(x3, N3.4) ρ(y3, N3.4)

q925 T −0.44 −0.50 0.15 0.14 0.19 −0.19
E Θ 0.40 0.45 0.33 0.36 0.14 0.19
P q925 0.25 0.33 −0.40 −0.48 −0.19 −0.01
P T −0.33 −0.47 −0.33 −0.48 −0.15 −0.01
T Θ 0.58 −0.58 −0.21 −0.12 −0.13 −0.07
E T −0.50 −0.54 −0.09 −0.12 −0.16 −0.22

q925 Θ 0.52 0.53 −0.30 −0.25 −0.13 −0.08
E q925 −0.46 −0.47 −0.14 −0.16 −0.20 0.05
P Θ 0.30 0.37 0.35 0.4 −0.22 −0.21
E P 0.07 0.18 −0.49 −0.42 −0.22 0.31

Each CXY including P (P-q925, P-T, E-P, and P-Θ) consistently shows the highest correlations with
N3.4 in the second MCA-mode (Table 2). The P-q925 pair shows a clear difference of correlation with
N3.4 among the three modes; in that case, the second mode of P-q925 is best correlated with N3.4.

Figure 4b,c shows the typical spatial pattern of the highest-related ENSO modes corresponding
to the interaction between evaporation (E) and soil moisture (Θ). The core of this pattern is located
in the Amazon River basin and is connected to the Magdalena-Cauca River basin and the western
Pacific coast of Colombia where the Choco Jet has a strong effect on the hydroclimate variability [68]
(Figure 4B,C). Some regions of the Orinoco and Tocantins River basins do not show statistically
significant values (p < 0.01) under this mode. Spatially, the pattern of correlations suggests that the
influences of E on Θ are higher than in the reverse case (Figure 4b,c). Both maps exhibit negative
correlations, suggesting that negative (positive) anomalies of Θ correspond to negative (positive)
anomalies in E. Temporally, values of one-month lag correlation coefficients suggest that the effect
of Θ on E is higher than in the reverse sense (Figure 4d). This effect is coherent but less evident at
two-month lags. The cross-correlation between both series is considerable up to six-month lags.

Complementary, Figure 5 shows the global SST-correlation map that corresponds to the high
ENSO-related using the MCA-series presented in Figure 4a. The SST-pattern exhibits highly statistically
significant correlations with the Niño regions acting in phase (same sign of coefficients) with the
Tropical North Atlantic (TNA), and with the Indian Ocean SSTs (IO) (Figure 5). The pattern also
exhibits the influence of the Pacific Decadal Oscillation (PDO) acting in phase-shift with Niño regions
correlations (reverse sign of coefficients). This conjoint effect is triggered because the Amazon River
basin occupies the largest portion of TropSA and several SST-modes determine the characteristics and
magnitude of the interannual anomalies therein [57,71–73].
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Figure 4. Leading MCA-mode between evaporation (X = E) and soil moisture (Y = Θ). The spatial-pattern
shows a core over the Amazon River basin. (a) MCA-series associated with this leading mode;
(b,c) Spatial correlations-pattern of the MCA-mode as the influence of each variable in the other one
(d) Lagged cross-correlations between MCA-series.

Figure 5. Maps of simultaneous correlations between SST anomalies and the time series associated
with the leading MCA-mode between E(x) and Θ(y).

3.2. Non-Linear Analysis of the MCA-Series and Feedbacks

We estimate the relative causalities τy→x using all pairs of MCA-series with the highest influence
of ENSO. Table 3 presents the non-linear metrics among those MCA-series. The interaction q925-T
shows the largest relative causalities from the set of estimated values. Specifically, T reaches up to
−23.3% of causality on q925. The negative value indicates that T favors the predictability of q925

under the influence of ENSO [70]. After q925-T, the P-Θ interaction shows the largest causality value.
Θ consistently subordinates P (τy→x = 21.6%), while the reverse causality is 15.2%, implying a coupling
ΦVSW←→PRC = 1.43. These non-linear connections suggest that Θ is fundamental in modulating the
interannual variability of P over the studied region under the ENSO influence.

Table 3. Estimated values of simultaneous (no-lags) relative causality, τ (%), and feedback Φy←→x for
the highest ENSO-related covariance modes for all pairs of variables.

X Y øx→y øy→x Φy↔x

q925 T 21.9 −23.3 −1.06
E Θ 12.1 9.4 0.78
P q925 7.7 −2 −0.26
P T 10.4 −6 −0.58
T Θ 13.4 13.4 1.00
E T 14 11.8 0.84

q925 Θ 11.4 14 1.22
E q925 11.9 9.6 0.81
P Θ 15.2 21.6 1.43
E P −6.1 5.8 −0.95



Water 2018, 10, 1095 9 of 19

In Table 3, we also highlight in bold those values of Φ (Equation (6)) within the interval [0.9, 1.1] defined
as a bidirectional feedback. These values are more frequent under the highest ENSO-influenced mode.
Surface temperature (T) acts in two of those feedbacks (q925-T, and T-Θ). Additionally, the interaction
T-Θ shows a perfect bidirectional feedback (Table 3). T is essential in capturing the non-linear
interactions at interannual timescale within the studied variables in the simultaneous analysis.

3.3. Visualizing Linear and Non-Linear Dependences Using Graph Theory

For our study, Graph Theory has the advantage of representing connections among the evaluated
variables, assuming that they represent the LAF feedbacks in Tropical South America. In this sense,
such feedbacks can be understood as the degree to which the atmosphere responds to anomalies
in the land surface state [15]. Soil moisture has been identified as a key variable in several studies
and especially in the terrestrial segment of the hydrological cycle i.e., the evaporation-soil moisture
interaction [4,8–10,15,16]. Using Graph Theory, we verify the interdependences of several variables in
the context of these complex interactions at interannual timescales.

Table 4 presents the median of correlation and relative causality at each lag for all possible
interactions among the five selected variables. Based on these thresholds, we construct graphs of linear
(Figure 6) and non-linear (Figure 7) linkages. To construct the graphs, we only used the values higher
than those thresholds. The couple of red nodes in each graph indicate the variables with the highest
value in the leading singular vectors u1 and v1 estimated from the SVD applied to the graph adjacency
matrix. We also show those variables as red horizontal bars in Figures 6 and 7. Red paired-edges in
each graph represent correlations and causality ratios (Equation (6)) ranging between 0.9 and 1.1.

Table 4. Threshold of edges magnitude to construct correlation and causality graphs (percentile of 50%
of the empirical probability distribution of causalities and correlations per lag).

Metric Type
Lag

0 1 2 3 4 5 6

Correlation (ρ) 0.68 0.43 0.35 0.315 0.3 0.265 0.22
Relative Causality (τ) 11.85 5.33 4.14 4.54 3.53 1.75 1.89

3.3.1. Linear Graphs

Figure 6 shows the linear graph constructed with linkages at one-, two- and three-month lags
under the highest ENSO-related MCA modes. The interactions among the five variables are connected
with the spatial patterns showed in Figure 4b,c over TropSA and the SST-pattern established in
Figure 5. Linear interactions among the variables depict that soil moisture (Θ) structurally regulates
the mechanisms of interdependences among the five variables for antecedent/subsequent times [9].

Specifically, Figure 6a shows the graphs whose edges are one-month lag correlations higher than
the median (ρ = 0.43, Table 4). The structural interaction between soil moisture-atmospheric humidity
(Θ and q925) corresponds to the highest entries of leading singular vectors -u1 and v1- of the graph
matrix (Figure 6a). The high degree of response of the atmosphere to anomalies in the land surface
state is taking into account all the interdependences among the five selected variables. Our results
point out that ENSO favors an important chain of linear feedbacks among T, q925, and E. This means
that land-atmosphere interactions are fundamental driving mechanisms of interannual variability and
delayed effects on hydrologic response over the study region [42,45]. Led by the ENSO-forcing, Θ
presents the highest correlation value with P among the variables (ρ = 0.69, Figure 6a) implying that
the interannual anomalies of soil moisture are strongly related with the subsequent anomalies at one
month of precipitation over the region [42]. Surface temperature anomalies are also directly regulated
by soil moisture anomalies and through linear feedbacks with E and q925 (Figure 6a). From this same
graph, we infer that antecedent anomalies of q925 do not influence directly the subsequent anomalies of
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Θ but through changes in T; instead, one-month lagged anomalies of Θ linearly controls the anomalies
in q925.

Figure 6. Correlation graphs constructed with the highest ENSO-related modes from each pair of
variables. The weights of the linkages between nodes are estimated as the lagged correlation among
MCA-series. Red linkages represent feedbacks between variables. Leading SVD vectors u1 and v1

are estimated from the adjacency matrix associated with the graph and represented with red nodes.
Red bars also represent the highest values of these vectors. (a) one-month lag graph; (b) two-month
lags graph; (c) three-month lags.
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Figure 6b shows the graph constructed with two-month lags correlations also associated with
the highest ENSO-influenced mode. Again, this graph reflects a relational structure dominated by
Θ as the best emitter (maximum value of u1); but, in this case, evaporation (E) is the best receiver
(maximum value of v1). For two-month lags, T establishes linear feedbacks to connect q925 with
Θ. Again, the highest correlation of the entire set shows the predominance of Θ on P (ρ = 0.53).
Soil moisture anomalies regulate the interdependence of P anomalies with T, q925, and E anomalies at
interannual timescale.

Finally, Figure 6c shows the graph corresponding to the three-month lags revealing a structural
relation between surface temperature and humidity at 925 hPa (T-q925). As shown by one- and
two-month lags, the structure of the graph represented in a hierarchical form demonstrates that Θ
constitutes a heterogeneous node connecting the anomalies of E, q925, and T with the subsequent
anomalies of precipitation (Figure 6c). However, in this case the correlations P-Θ are not the highest
among the variables, and thus the structure of the graph is inverted with respect to Figure 6a,b.
The linear feedbacks are identified for the pairs E-Θ, Θ-q925 and q925-T (Figure 6c). Among the studied
variables, T and Θ exhibit the highest amount of linear feedbacks, including the correlation among
them at one and two month-lag, and with E.

3.3.2. Non-Linear Graphs

Figure 7 presents graphs whose edges denote causality relations (τy←→x, non-linear associations).
Figure 7a shows the simultaneous (non-lagged) graph for the causalities reported in Table 3. Contrary
to correlations, relative causalities allow us to examine the relations structure without lagging. Because
of non-linearity, relative causalities depend on direction between the two variables, given by τy→x

and τx→y (Table 4). Surprisingly, the linkages structure is similar to that depicted by linear graphs of
one-month lag (Figure 6a) and two month-lags (Figure 6b). In this case, Θ also works as a transferring
node variable connecting P with E, q925, and T (Figure 7a). The highest causality of this graph of
concurrent interactions corresponds to the T→ q925 relationship (23.3%). In addition, the structure
of this graph is nearly equally dominated by Θ as the best emitter (u1), while the best receptor is
q925 (Figure 7a). This means that Θ dominates the non-linear relationships with P, q925, and T at
interannual timescales and without lagging. It is remarkable that under this structure of causalities,
evaporation (E) is the only variable which non-linearly controls Θ. This agrees with the essential role
of evaporation in the surface energy partitioning in wetter environments [74], taking into account
that under this non-linear framework, precipitation presents a relative causality on soil moisture
(Figure 7a). In general, Θ is essential over Tropical South America to structurally feedback on q925

under the highest influence of ENSO at concurrent series (non-linear links).
While the simultaneous causalities are evidence that Θ dominates q925 (Figure 7a), T exerts a non-linear

control on Θ at one- and two-month lags (Figure 7b,c). In this way, non-linear associations reveal
that T is essentially strengthening the identified feedbacks under the ENSO effect [6]. For both the
simultaneous and lagged analyses, surface temperature (T) exhibits non-linear associations with the
atmospheric moisture (q925) and soil moisture (Θ) causality graphs. Under the ENSO influence, T
is not only a key variable in the diagnostics of the dynamics of interannual LAFs but also has a
substantial role in the dynamics and thermodynamics of the lower troposphere and soil interfaces over
TropSA [2,3,40,44,69,75]. Besides, interannual anomalies in P are associated with perturbations
of the surface water balance at the regional scale by controlling T interactions with Θ and
E [10,17,30,31,45,49,76–78].

Comparing the graphs under one-month lag for linear (Figure 6a) and non-linear (Figure 7b)
connections, we found different relational structures. Under the non-linear structure, Θ receives
relative causalities from the rest of variables (P, E, T, and q925) with a highest value coming from
temperature (τT→Θ = 11.4%, Figure 7b). Another important fact is the causality that precipitation has
on temperature (τP→T = 5.45%). This implies an important non-linear connection of the antecedent
anomalies of temperature and precipitation on the one-month subsequent anomalies of soil moisture.
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This also contributes to understanding that the linear (1-month lag, Figure 6a) and non-linear
(simultaneous, Figure 7a) structure of relationships are connected over TropSA.

Figure 7. Causality Graphs constructed with the highest ENSO-related mode time series from each
pairwise of variables. The weights of the edges between the nodes are estimated as the simultaneous
causality (

∣∣τx←→y
∣∣ and

∣∣τy←→x
∣∣) between the MCA-series. Red edges represent feedbacks between

variables. Bar panel represents leading singular vectors u1 and v1 estimated from the the adjacency
matrix; (a) Simultaneous (No Lags); (b) one-month lag; (c) two-month lags.
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4. Discussion

The structure of relationships illustrated by the graphs in Figure 6a–c shows the central role of
soil moisture as a transitional variable between precipitation and surface processes at interannual
time-scales [4,9,15]. Evaporation anomalies depend on surface conditions and these are relatively
homogeneous in the region as shown by the spatial pattern depicted in Figure 4b,c [69,74]. This is
the most representative ENSO-influenced area over tropical South America for all the variables.
The physical mechanisms of the LAFs over Tropical South America at interannual time scales for one-
to three lag-months are clearly modulated by the dynamics of soil moisture to produce the anomalies
of precipitation. In this way, we reveal that the interannual anomalies witnessed in precipitation are
dominated by the antecedent soil moisture anomalies for one and two-month lags. Actually, soil
moisture exerts the highest influence on the studied variables and even more so on precipitation.
The physical mechanisms are related to the control that soil moisture exerts over the subsequent
anomalies of evaporation, atmospheric humidity and surface temperature.

One notable aspect is the fact that, under the defined thresholds presented in Table 4 for correlations,
none of the variables influence rainfall as soil moisture does (Figure 6). Only the one-month antecedent
anomalies of temperature have influences on the subsequent soil moisture anomalies (Figure 6a).
The role of temperature in this case is related to the influence of ENSO. The one-month lag anomalies
of soil moisture dominates the subsequent anomalies of precipitation, evaporation, temperature and
atmospheric humidity. This fact confirms the key role of soil moisture anomalies under the ENSO
influence to define the state and dynamics of those variables (P, E, T, q925) in Tropical South America at
an interannual time scale.

Land surface-atmosphere feedbacks (LAFs) have been previously studied in the Amazon
River basin, although their connection with the rest of tropical South America has been largely
overlooked [13,20,23,25,28,34]. Here, we advance new ideas about such linkages. Besides, these LAFs
have been studied for annual and intra-annual timescales, but the interannual timescale has also been
largely overlooked. Most of the research at the interannual timescale has been focused on the study of
large-scale atmospheric teleconnections or anomalies in the transport of moisture by winds [2,31,33,62],
but the role of LAFs has not been thoroughly explored. We explored land surface-atmosphere feedbacks
at interannual timescales using mainly a simplified overview of connectivity of the most relevant
variables that describe these interactions as well as identifying the regions of TropSA where they are
best characterized. We demonstrated that within the identified multivariate structure, Θ enhances
the interannual connectivity since it exhibits two-way interactions with the whole set of variables at
simultaneous and lagged times.

Results show concurrent and lagged interdependencies between soil-atmospheric humidity and
precipitation over TropSA. The simultaneous interdependencies identified using relative causalities
under the ENSO influence indicate that they are modulated through surface temperature (Figure 7a).
This result is very interesting because it suggests a dynamic that is not possible to expose using linear
analysis (correlation). The structural interaction between soil moisture (Θ) and atmospheric humidity
(q925) is mediated through non-linear interdependences of the surface temperature (Θ-T and T-q925) as
defined by Equation (6) (bi-directional causalities). At the same time, the anomalies of precipitation
are highly dependent on soil moisture anomalies (Figure 7a). Results from the linear analysis show
the fundamental role of soil moisture as the best emitter within the multivariate dynamics of LAFs
over TropSA (Figure 6). This role is not completely demonstrable in the non-linear graphs where
temperature takes more relevance (Figure 7). The greater differences between linear and non-linear
analysis correspond to the one-month lag graphs (Figures 6a and 7b). However, results indicate
a connection between the structure of the linear one-month lagged and non-linear simultaneous
analyses (Figures 6a and 7a). In summary, we show that linear and non-linear structural relationships
are complementary to capture the dynamics of LAFs over tropical South America. We defined and
estimated metrics of linear and non-linear feedbacks among several variables in a common interannual
mode mainly dominated by ENSO.
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Our approach allows us to quantify the role of antecedent anomalies on the related anomalies
using the two-way interactions identified within the LAF framework. We present a novel approach:
defining a structural scheme of relationships among the variables (via Graph Theory), using the
spectral modes on the adjacency matrices of the graphs at different time lags. In addition, we introduce
new metrics to quantify the ratio of bi-directional causalities between two variables (Equation (6)).

The use of MCA is useful at interannual time scales because it allows us to identify the main
co-variability modes evaluating all possible relationships among the selected variables. Based on
cross-correlation functions and causality, Graph Theory is a good complement in the context of
land atmosphere interaction mechanisms between different processes, mainly with the purpose of
visualizing and understanding the bidirectional relationships among the selected variables and also to
compare linear and non-linear perspectives [53,54]. The structural relationships depicted through the
use of Graph Theory are representative of the spatial pattern related to each co-variability mode.

MCA allows for simultaneous identification of main-covariability modes while also evaluating all
relationships among the selected variables. This approach is important because it enables exploring
of the multiple interaction and interdependencies between variables. In the context of TropSA, the
MCA allows the identification of the regions and the main macroclimatic patterns influencing the
interactions among the variables through the land atmosphere feedbacks. The use of network analysis
to complement eigen-techniques has proved recently to be very useful in the study of climatological
processes [54]. Bracco et al. [79] also discussed the use of data mining as a complement to traditional
tools for climatological analysis and presented an application of Graph Theory to highlight the
interconnectedness of global SST patterns among different domains. In this sense, we tried to
demonstrate that, based on cross-correlation functions and causality, Graph Theory is a very good fit
to complement the study of land atmosphere interactions mechanisms among different processes and
state variables. In our study, we mainly used it with the purpose of visualizing and understanding the
bi-directional relationships among the selected variables and also to compare linear and non-linear
perspectives. The structural relationships depicted through the use of Graph Theory are representative
of the spatial pattern related to each co-variability mode.

We noticed that the use of graphs is a growing and new field of Climatology [54,79,80]. In spite of
the demonstrated capabilities of the approach used in the present study to reveal the temporal dynamics
of two-way interactions between fundamental hydrometeorological variables, some disadvantages
involve the data requirements, the capacity to estimate uncertainties, and the fact that results can be
hard to interpret in a mechanistic way.

5. Conclusions

A multivariate analysis allowed us to further understand the role of land surface-atmosphere
feedbacks over Tropical South America at interannual timescales during the period 1979 to 2010.
We used elements from Linear Algebra, Information Theory and Graph Theory to infer structural
relations among the most relevant processes involved in those feedbacks. In so doing, we defined
the spatiotemporal patterns by a pair-wise categorization of variables through Maximum Covariance
Analysis, with the aim of reducing the dimensionality of the problem, as well as to identify and
quantify the most salient factors associated with ENSO. With such patterns, we evaluated the relational
structure between variables using Graph Theory to estimate the linear and nonlinear connectivity at
interannual timescales.

Using the ratio of linear (correlations) and nonlinear (causalities) metrics between two variables
(Φ, Equation (6)), we defined a bi-directional relationship (feedback) whenever 0.9 ≤ Φ ≤ 1.1. Using
such a definition, based on concepts defined in previous studies [49], we found that the causality
graphs corresponding to the highest association with ENSO show several feedbacks among the studied
variables for all lags between one and six months. This effect is triggered by the highest association
with ENSO. Correlation metrics reveal a consistent bi-directional relation between Θ-T at one and
two month-lags. Use of non-linear metrics detects the feedback Θ-T at non-lagged analysis.
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The identified LAFs are enhanced (in-phase) by SSTs over the tropical Pacific and Atlantic, but also
over the Indian Ocean. The regulatory action of ENSO creates a stronger memory and resilience of
interactions among variables. The spectral analysis of the composite graphs, identified to study the
linkages between variables, allowed us to conclude that soil moisture is a key variable in defining the
spatiotemporal patterns of P and E in TropSA at interannual timescales, and as such plays a major role
in regulating LAFs at interannual timescales, mainly controlled by ENSO. Although deforestation is
a relevant aspect of land surface-atmosphere interactions, this topic goes much beyond the scope of
our study.

Finally, within the context of the humid tropics, the identified LAFs play a major role in controlling
the connection between the soil and atmosphere subsystems. Our analyses and results using the
concepts of process and state variables and their linear and nonlinear connectivity over TropSA shed
new light on the fundamental role of soil moisture within the LAFs and the water and energy budgets
over the region at interannual timescales.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/8/1095/
s1.
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LAFs Land-Atmosphere Feedbacks
ENSO El Niño-Southern Oscillation
TropSA Tropical South America
SAM South American Monsoon
TNA Tropical North America
SST Sea Surface Temperature
T Surface Temperature
q925 Specific Humidity at 925 hPa
Θ Volumetric Soil Water
P Precipitation
E Evaporation
GPCC Global Precipitation Centre
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