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Abstract: Instantaneous flow rate estimation is essential for sizing pipes and other components of 

water systems in buildings. Although various demand models have been developed in line with 

design and technology trends, most water supply system designs are routinely and substantially 

over-sized to keep failure risks to a minimum. Three major types of demand models from the 

literature are reviewed in this paper: (1) deterministic approach; (2) probabilistic approach; and (3) 

demand time-series approach. As findings show some widely used model estimates are much larger 

than the field measurements, this paper proposes a Bayesian approach to bridge the gap between 

model-based and field-measured values for the probable maximum simultaneous water demand. 

The proposed approach is flexible to adopt estimates as its prior values from a wide range of existing 

water demand models for determining the Bayesian coefficients for reference models, codes, and 

design standards with relevant measurement data. The approach provides a useful method not only 

for evaluating the corresponding demand values from various design references, but also for 

responding to the call for sustainable building design. 

Keywords: probable maximum simultaneous demand; water systems; deterministic models; 

probabilistic models; water demand time series; Bayesian estimates 

 

1. Introduction 

Estimation of instantaneous flow rates is essential for sizing pipes and other components in a 

building water system [1]. Flow rate models have been developed to determine the design flow rate 

(i.e., probable maximum simultaneous demands), while striking a balance between energy, costs, and 

health concerns. Design criteria have also been judgmentally established to ensure the immediate 

provision of water services at an allowable failure rate [2]. As most water supply system designs are 

routinely and substantially over-sized to keep failure risks to a minimum, innovative water-efficient 

design concepts and features have been more recently introduced to respond to the call for 

sustainable built environment [3,4]. Mazumdar et al. [5] suggested reducing the confidence levels in 

Hunter’s binomial probability function [2] for better descriptions of water-saving appliances. 

However, suitable confidence levels for various applications have not yet been derived based on field 

measurement data and that increases the need for re-evaluating the theoretical basis, as well as design 

practices for practical pipe sizing [6]. Furthermore, measurements that rely on an opportunistic time 

series of flows make data validation complex and difficult [7]. 

Water demand modelling has come a long way since 1940 [8]. The first statistical models were 

introduced in the 1940s, and statistical sub-models were developed in the 1970s. Although time-series 

simulations have been in use since 2000, the existing approaches are not uniform and do not finally 
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converge on single estimates. In order to improve the accuracy of demand estimates, estimating 

model updates require the acquisition of long-term, high-quality measurements of actual water 

demand.  

This paper reviews three major types of demand models for water systems in buildings and 

proposes a Bayesian approach to bridge the gap between model estimates and field measurements. 

By applying the Bayesian techniques, demand estimates can be progressively updated and 

continuously improved as increasingly more data becomes available. The research findings will both 

enrich our knowledge of water demands and advance the development of optimal water supply 

network designs. Sizing a piping network using demand models is also discussed with energy loss 

and cost implications. 

2. Classification of Demand Models for Water Systems in Buildings—Deterministic, 

Probabilistic, and Simulation Approaches 

Figure 1 illustrates a schematic structure based on Carson’s definition [8] for modelling design 

flow rate. As the basic level models (e.g., Level 1) are associated with more descriptions of the basic 

demand parameters, they usually offer higher-resolution flow demands and more flexible 

applications. The results obtained from these models can be used to develop expressions that describe 

models for specific engineering design applications (e.g., Levels 1 and 2). Different levels of 

application result in different approaches to design flow rate estimation. 

Deterministic (Level 3) models estimate the design flow rates by summing the ‘flows’ or ‘units’ 

of all fixtures on the system and then multiply this value by a simultaneous factor (≤1), or by using 

empirical formulas. As the allowable failure rates in these models are constant, the design flow rates 

are fixed values. These models are commonly used in design guides and standards for specific system 

designs. 

Probabilistic (Level 2) models employ parametric probability distributions to estimate the 

likelihoods of different numbers of fixtures in simultaneous use. This approach uses the statistical 

nature of water appliances and flow rates and, together with an allowable failure rate, gives flow rate 

estimates corresponding to selected levels of adequacy or performance. However, as the time patterns 

in the flow rates are not primarily included in this approach, more probability parameters may be 

required to resolve the daily, weekly, diurnal, or seasonal patterns. 

Simulation (Level 1) models attempt to model individual uses via Monte Carlo sampling from 

the cumulative frequency distributions of user demand parameters. These models can tackle time-

dependent variables that are dependent on one another. 

 

Figure 1. Demand models for water systems in buildings.  
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2.1. Deterministic Approach 

Konen and Goncalves [7] reviewed a number of design flow determination standards and 

guidelines and concluded that deterministic equations and/or graphs developed for pipe sizing were 

mainly based on Rydberg’s model, Hunter’s model [2], or expressions (or curves) that relate the sum 

of unitary flow rates (or fixtures) to the design flow rate. Deterministic approaches (Figure 1) in 

selected codes and standards available are given below. 

The analytical formula of design flow rate qs by Rydberg [7] is the sum of three components, 

namely, the standard flow rate of the largest water fixture qi,max, the mean flow rate of the other 

fixtures, and the risk term for the random variation of the mean flow rate of the other fixtures. It can 

be considered the first deterministic model based on probabilistic support. A formula of design flow 

rate qs used for dimensioning of supply pipes in Scandinavian countries is given by the following 

equation, where pi is the probability of average water flow from each fixture qi,μ, qi is the nominal 

flow rate of fixture I, and k is the constant for a selected failure factor, 

( ) ( )max,,max,max, iiiiiiiis qqpqkqqpqq −+−+=  
  

(1) 

A number of deterministic curves in design guides are based on Hunter’s probabilistic model or 

its modification [2,9]. Using Hunter’s method, the design flow rate can be determined by Equation 

(2), where k (=1.8226) is the constant at an allowable failure rate λ = 1% during daily rush hours, M0 

is the total number of installed fixtures, and p0 is the probability at which each fixture is operated 

[10]. 

( )




 −+= 000000 12 ppMkpMqqs   (2) 

As fixtures of the same type are assumed in Equation (2), a fixture unit approach was adopted 

to approximate the design flow rate for a main pipe, which supplies appliances of different types, 

and to characterize the i-th appliance by the number of fixtures (pi, qi), i = 1, 2, 3, … M. The design 

flow rate, which is equivalent to the flows produced by a number of fixture units Ui, is determined 

by the following expressions, where qf (=10 L·s−1) is the selected reference probable maximum demand 

produced by each appliance type [11,12], and m is the number of fixtures that produce the reference 

design flow rate, 

( )00000 12 ppUkqpUqq
i
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i
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


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


 −+ 1212 000000   (5) 

The design flow rate qs is affected by the choice of qf. Mui and Wong [11] estimated that the 

variations in qs for a qf range of 1 to 250 L·s−1 could be up to 12%. According to the plumbing services 

design guides [13–15], the probability of use and the design flow rate of a unitary fixture M for a 

water supply system are 0.0282 and 0.15 L·s−1, respectively. Design flow rates qs for residential fixtures 

can be approximated by the below expression, 

72.0048.0 Mqs = ; 30M   (6) 

Table 1 displays the constants for relating the sum of unitary flow rates ∑Miqi to the design flow 

rate qs as defined in a Deutsches Institut für Normung DIN (the German Institute for Standardization) 

standard [7]. 
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( ) 3

21

k

iis qMkkq +=   (7) 

In DIN-1998 W308 norm (German), there is an expression by Malan [16] for the design flow rate 

of a residential building, where U is fixture (loading) units of appliances, 

= Uqs 25.0  (8) 

Table 1. Constants for relating the sum of unitary flow rates to the design flow rate at pipes (Deutsches 

Institut für Normung DIN standard). 

Applicable Range k4 ≤ ∑Miqi ≤ 20 L·s−1 ∑Miqi > 20 L·s−1 

qi for k Value qi < 0.5 L·s−1 qi ≥ 0.5 L·s−1 All qi 

Occupancy k1 k2 k3 k4 k1 k2 k3 k4 k1 k2 k3 

Residences −0.14 0.682 0.45 1.0 −0.70 1.7 0.210 1.0 −0.70 1.7 0.21 

Offices −0.14 0.682 0.45 1.0 −0.70 1.7 0.210 1.0 0.48 0.4 0.54 

Hotels −0.14 0.698 0.50 0.1 0 1.0 0.366 1.0 −1.83 1.08 0.50 

Shopping centres −0.12 0.698 0.50 0.1 0 1.0 0.366 1.0 −6.64 4.3 0.27 

Hospitals −0.12 0.698 0.52 0.1 0 1.0 0.366 1.0 1.25 0.25 0.65 

Schools −3.41 4.400 0.27 1.5 −3.41 4.4 0.270 1.5 11.5 −22.5 −0.50 

Mambourg [17] presented an expression in France (Règles DTU 60.11) for design flow rate 

calculations, 

1
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

i
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Konen and Goncalves [7] also presented some curves (adopted in Portugal) for design flow rate 

calculations, 
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An expression of design flow rate as stated in Brazilian Standard NBR 5606 is given below [7], 

= iis qMq 3.0   (11) 

Konen and Goncalves [7] suggested some new values for the unitary fixtures based on the 

probabilistic formulation developed by Hunter [2] and proposed curves for relating 10 ≤ M ≤ 10,000 

water closet (WC) flush tanks and 5 ≤ M ≤ 1000 WC flush valves to the design flow rate, 

( )9.101263.01066.11054.3
85.15

1 25310 ++−= −− MMMqs   (12) 

( )15log5.11log5.8
85.15

1 2 ++= MMqs   (13) 

Murakawa [18] developed a loading unit method to estimate the design flow rate. Instead of 

using an overall average by fixture type, the time-dependent average of simultaneous use in the peak 

period is used for each fixture type. A design flow rate estimated this way is comparatively lower 

than that by the Hunter’s method (i.e., qs,0) [2], and it is expressed by Equation (14), where k1 and k2 

are the constants as given in Table 2. 
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2

0,20,1 sss qkqkq +=   (14) 

Table 2. Regression constants for approximating design flow rates. 

Reference  k1 k2 
Correlation 

Coefficient 

[7] 0.5879 0.8683 0.9971 

[18] 0.4819 0.0033 0.9976 

[19] 1.0270 1.2266 0.9969 

[20] 0.05 0.71 0.9989 

[21]; Miqi ≥ 30 L·s−1 0.2283 0.5906 0.9626 

[21]; Miqi < 30 L·s−1 0.11
2

maxq  − 0.5qmax + 0.53 −0.36
2

maxq  + 1.66qmax − 1.23 0.9989 

In a Japanese code established by The Society of Heating, Air-conditioning and Sanitary 

Engineers of Japan (SHASE) SHASE-S (or HASS) 206, a set of procedures were also introduced by 

Murakawa [19] to determine the design flow rate using the sum of the maximum load of an appliance 

in a group of different sanitary appliances and the half load of the other appliances within that group. 

The design flow rates determined by Konen and Goncalves [7] and Murakawa [19] were compared 

with those by the Hunter’s probabilistic approach qs,0 [2]. Using the curves presented in original 

papers and the constants listed in Table 2, approximations can be given by, 

2

0,1

k

ss qkq =   (15) 

In Europe, a harmonized European Union (EU) Standard [21] supersedes the previous version 

[20]. BS6700 [20] allocates the loading units to appliances instead of mapping the total loading units 

for the pipe to the simultaneous demand. The design flow rate can be approximated using Equation 

(16) and constants from Table 2. BSEN806-3 [21] defines that one loading unit is equivalent to a draw-

off flow rate of 0.1 L·s−1 and the design flow rate can be mapped to the total loading units for the 

water supply pipe section. With the constants given in Table 2, the design flow rates can be 

approximated by the below expressions, where qmax is the maximum flow rate of a single appliance 

unit, 

( ) 2

1

k

iis qMkq = ; Miqi ≥ 30 L·s−1  (16) 

( ) 21exp kqMkq iis +=  ; Miqi < 30 L·s−1; 0.2 L·s−1 ≤ q1 ≤ 1.5 L·s−1  (17) 

Wong and Mui [22] presented a deterministic curve of design flow rate for collective residential 

drainage appliances. The constants, displayed in Table 3, were determined from a survey research 

study of 597 apartments selected among 14 high-rise residential buildings in Hong Kong. Constants 

from other design guides are listed in the table for comparison [13–15,23,24]. 

( ) 3

10

k

s Mkkq +=   (18) 

Table 3. Regression constants for the design flow rates in drainage stacks. 

Reference qs (L·s−1) M k0 k1 k2 

[22] 0.23 
70−157 

158−6500 

0.9 

0 

0.0061 

0.073 

1 

0.64 

[13−15] 0.34 
70−157 

158−6500 

0.9 

0 

0.0061 

0.073 

1 

0.64 

[13−15,23] 1 All 0 0.5 0.5 

[24] 0.6 100−20,000 2.3895 0.0622 0.6659 
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2.2. Probabilistic Approach 

The design flow rate qs can be determined from the probability density function of flow rates q 

for all connected appliances, provided that the probability does not exceed the design flow rate. P(q 

> qs) is determined at an allowable maximum failure rate λ selected, 

( ) = sqqP  (19) 

Hunter [2] applied binomial distribution to estimate the probability P(Ms < M) of simultaneous 

operation of Ms appliances out of M identical appliances, which are connected to a common supply 

pipe. At a constant appliance flow rate q, the design flow rate qs is determined by the discharge 

probability of an appliance p as expressed below, where τ1 is the discharge period and τ2 is the period 

of time between two consecutive uses, 

ss qMq = ; ( ) ( ) ss

s

s

MMM
M

M

M

Ms ppCMMP
−

−=  1 ; 

2

1




=p  (20) 

The time period between two consecutive uses τ2 can be related to the user queue as expressed 

by the following equation [25], where na is the number of appliances serving a group of users at an 

arrival rate γ, 


= an

2
 (21) 

In order to address the design flow rates for different types of appliances, Webster [26] applied 

a generalized binomial distribution to determine the simultaneous operation of Mj,s appliances out of 

Mj appliances in a group of identical appliances j (i.e., out of j independent groups). The probability 

of Mj,s is given by Equation (22), where pj is the probability of an appliance j operating in the peak 

period. 

( ) ( )
=

−



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 −=

J
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M

Msj

sjjsjj
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ppCMP
1

,
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1 ; 

j
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jp
,2

,1




=  (22) 

The flow rates q through the common supply pipe when Mj,s appliances are operating 

simultaneously can be calculated using Equation (23), and the design flow rate qs is determined from 

P(q > qs) in Equation (19). 

=
j

sjjs Mqq ,  (23) 

This approach is further developed for a pipe with different flow rates qj from Nj associated 

probabilities pj during the peak period [27,28], where p0 is the probability of zero flow rate for 

appliances Ms,0, 

( )
!! ,0,
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,

,0,
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M
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sj
MM

pp
MP
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=  (24) 

Murakawa [19] followed Hunter’s approach [2] and suggested a Poisson distribution (instead of 

a binomial distribution), 

( )
( )


−

=
M

M s

MMp

s

s

s

M

Mpe
MMP

!
 (25) 

Ilha et al. [29] developed an open model for τ1, τ2, and q for appliances M. All of the four 

parameters are described by parametric distributions. The simultaneously operating appliances Ms 

are described by a beta-binomial distribution B as shown in Equations (26)–(30) below, where τ1 and 
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τ2 can be represented by Erlang or exponential distributions; the probability p is beta distributed; q 

and qs are given by gamma distributions; and k1, k2, and Ms are the distribution parameters, 

( )
( )
( ) ( )

( ) 11

21

12 21 1
−−

−


+
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qqP

12

1

1

21

 (30) 

Alitchkov [30,31] proposed that the design flow rate can be determined by the cumulative 

normal distribution of simultaneous flow rates qs at time t over a period of one year, where M is total 

number of fixtures and σ2 is the variance of flow rate which serves as a stochastic component, 

( )
( )( )

















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
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s

s dq
qtq

qqP
2

2

,

2
exp

2

1
; q ~ q(μ,σ2) (31) 

2.3. Deterministic Model Simplification 

Relationships of various distributions are illustrated in Figure 2. Design flow rates suggested at 

an acceptable failure rate ε can be given by the following expression, with a constant k accounting for 

various distributions adopted [10,29], 

+= kqs
; q ~ q(μ,σ2) (32) 

This approach was adopted in some design guidelines as a form of deterministic equation. One 

possibility is to use the normal approximation for the binomial distribution to estimate peak loads 

directly [10]. Below is an expression by Wistort [32] for the direct estimation of the 99th percentile of 

the flow rates from j appliance types, 

+= kqs
; =

j

jjj pMq ; ( ) −=
j

jjjj ppMq 22
 (33) 

By taking p0 (=0 for Mp > 5) as the expected number of operating fixtures in a collection of j fixture 

groups, it can be rewritten in a dimensionless variation [32,33], 

01
1

p

pM
k

q
j

jj

s
−












+=


 (34) 

( ) −=
j

M

j
jpp 10  (35) 

Theoretically, the design flow rate tends towards the discharge probability p when the number 

of appliances is increasing. Taking Hunter’s equation [2] for illustration, Equation (2) can be 
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expressed by the fractional design flow rate *
sq , that is, the design flow rate can be divided by the 

maximum flow rate, 

( )
( )000

0

0

00

000000
* 12

12

ppM
M

k
p

Mq

ppMkpMq

qs −+=




 −+

=


 
(36) 

( )
0 0

*

0 0 0 0 0

0

lim lim 2 1s
M M

k
q p M p p p

M



→ →

 
= + − = 

 
 (37) 

The fixture flow rates determined from various deterministic and probabilistic models cannot 

be compared directly as different models assume different flow rates and demand probabilities for 

the reference fixtures installed. Figure 3 plots the design flow rates qs as a function of the sum of 

fixture flow rates M0q0 based on various deterministic and probabilistic models for residential water 

supply and drainage systems. Although large variations of the predicted design flow rates (i.e., 1–10 

times) can be seen in the figure, all model estimates show consistent trends. The fractional design 

flow rates qs* from various deterministic models are normally distributed (p > 0.05, w/s test). Figure 4 

illustrates the average fractional design flow rate estimates against the maximum flow rates, within 

an estimate range of 0.005–0.36 L·s−1. The results show a decreasing trend of fractional design flow 

rates from 0.15 to 0.025 L·s−1 against an increasing sum of the sum of fixture flow rates from 4.5 to 

1500 L·s−1. 
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Figure 3. Design flow rates of residential fixture units. (a) water supply; (b) drainage. x-axis: 

maximum flow rate M0q0 (L·s−1). y-axis: design flow rate qs (L·s−1). 
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Figure 4. Model estimated fractional design flow rates against maximum flow rates. (Shaded area 

indicated one standard deviation plus and minus the average estimates). 

2.4. Simulation and Time Series Approach 

Design flow rates can be determined from instantaneous demand time series via Monte Carlo 

sampling techniques [27]. In the Monte Carlo simulations, a large number of pseudo-random uniform 

numbers ui are obtained from the intervals (0, 1) to map numeric values xs,i to model parameters xs as 

described by the following probability mass or density function, 
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Studies show that for appliances i (with different usage patterns) installed in the same 

washroom, the probable maximum simultaneous water demands can be determined using the Monte 

Carlo sampling techniques even when the appliances are not operating simultaneously [34,35]. The 

design flow rate qs for all washrooms j with demands q and an allowable failure factor λ (=1%) is 

expressed by the following equation, where qi is the water demand in rush hour τ, τ0 is the time period 

without demand, and τ1 is the time period with demand, 
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With known demand probability and demand flow rate in each hour, daily demand time series 

can also be made up using Monte Carlo simulations [36]. Mui and Wong [37] proposed a time series 

model constructed this way to determine the occurrence and duration of drainage demands from 

random and intermittent appliance discharges. 

Simulation procedures for the demand time series can be programmed for the ease of use [38]. 

Once the time series are obtained, descriptive statistic quantities of instantaneous demands (e.g., 

maximum and average values with various failure factors) in any integrating periods can be 

computed. A number of research works have been done for this purpose. Rathnayaka et al. [39] 

reviewed some tools for generating end-use data for residential water systems. Duncan and Mitchell 

[40] developed a model that simulates household water demands for a range of end uses and 

aggregates multi-year demand sequences generated at 1-min time steps to a time series. Thyer et al. 

[41] presented a probabilistic behavioural model to simulate household water use at 1-min time steps. 
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SIMDEUM, developed by Blokker et al. [42,43], is a water demand end-use model that combines 

various water use behavioural patterns with the knowledge of appliance types to predict water use 

on a micro scale (at 1-s time steps). In order to optimize the inflow rate of a tank water supply system, 

Wong et al. [44] integrated a demand time series. 

Figure 5 shows the core calculation procedures for constructing the time series of simultaneous 

demands. Sub-models of key parameters (e.g., number of appliance demands within a time period, 

flow rate, demand duration, etc.) can be included either through various approximations of 

parametric distribution functions, surveyed frequency distributions, or further physical 

relationships. The queuing models by Goncalves and Alves da Graca [25] and Mui and Wong [45] for 

sanitary appliances in congested use and a fuzzy algorithm by Oliverira et al. [46] for demand start 

time and duration calculations are a few good examples. 

 

Figure 5. Simulations for time series of simultaneous demands. 

For simulations of the simultaneous demands, a time-series is subdivided into a number of time 

partitions τi, i = 1, 2, 3, …, with a number of demands N of appliances j = 1, 2, 3, …; and each demand 

has a time variant demand qj(t) for each operation and a uniformly distributed demand start time tj 

in τi [36]. Using Monte Carlo sampling for the fractional demand start time u from a uniform 

distribution function, the demand start time in the time partition is given by, 
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The flow rates from all appliances in the time partition and for all time partitions are given by, 

( ) ( )=
i

iss tqtq ,  (41) 

( ) ( )=
j

jis tqtq ,  (42) 

Asano et al. [47] studied time series of instantaneous demands in an office building and 

compared the maximum flow rate predictions made by a linear multivariate equation with those 

made by a neural network. Although the neural network approach could give a better prediction, no 

physical explanation was given in that study. In latter studies by Murakawa et al. [48,49], time series 

of instantaneous maximum flow rates modelled by Monte Carlo simulation techniques were used to 

estimate the design flow rates for office buildings and restaurants. 

3. Bayesian Approach 

Most water supply system designs are routinely and substantially over-sized as the prospect of 

system failure is commercially and professionally unimaginable [4,50]. It was opportunistic to 

determine the probable maximum simultaneous demands in measurements. Usage patterns of water 

appliances associated with occupancy, replacement of newer appliances, and lifestyle changes in 

installations added uncertainty to data quality of the maximum demands in long-term measurement. 

Indeed, there were insufficient long-term measurements available in open literature to establish 

promising design flow rates for all water installations in buildings. Regarding the most appropriate 

choice of design flow rate for sustainable development in buildings, there is no conclusive evidence 

that favors either model or measurement outcome. 

3.1. Measurement Data 

Vrana et al. [51] studied the peak flow rates measured in 12 (n = 12; number of residents = 12–

168) water supply systems for residential buildings in the Czech Republic and compared them with 

the design flow rates given in four design guidelines, namely, CSN75-5455 (Czech), EN806-3 (British), 

W3 (Swiss), and DIN1988-300 (German). Reportedly, the measured rates were fractions of the design 

flow rates: 0.173–0.483 for CSN, 0.2–0.568 for EN, 0.262–0.684 for W3, and 0.256–0.692 for DIN. The 

fraction values appeared to be normally distributed (p ≥ 0.1, Shapiro-Wilk test); except for CSN (p = 

0.04, t-test for correlation), where no significant correlation between predicted and measured values 

was found (p > 0.05, t-test for correlation). 

Pieterse-Quirijns et al. [52] and Blokker et al. [53] investigated the flow rates measured on a per 

second basis for the hot and cold water supply systems in two offices (255–2000 employees), two 

business hotels (80–192 rooms), and two nursing homes (124–260 beds). The measurement periods 

ranged from 28 to 47 days, and the measurement results showed that the peak flow rates were only 

fractions (0.417–0.755) of the design flow rates given in existing guidelines. 

In a research project by Malan [16], daily peak domestic water demands were gauged in a 134-

unit apartment building for 12 consecutive calendar days. The measured peak demand was 8.77 L·s−1 

and that was equal to 46.6% of the estimated value given in the German design guide W308. That 

project included 166 WC cistern inlet valves, 536 taps (15-mm), and 268 taps (20-mm). 

Murakawa et al. [48] reported that, from a continuous measurement period of 14 months, the 

instantaneous maximum flow rate of a water supply system, which served 21 restaurants (with a 

total of 1932 seats), was 8.8 L·s−1. The design flow rate of the system was 10.4 L·s−1 [13–15,54]. 

According to the studies by Takata et al. [55] and Murakawa et al. [48], the instantaneous maximum 

flow rate recorded for the water supply system in a 14-story office building (total floor area = 18,256 

m2) was 3.2 L·s−1, while the system design flow rate was 11.8 L·s−1 [13−15]. 

In yet another study, Murakawa et al. [56] investigated the water flow rates for 16 residential 

buildings (95–910 flats). The maximum simultaneous flow rates, recorded from measurements made 
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at 1.2-min intervals for one year, were presented as a function of loading units. A total of 29 

measurement data sets (n = 29) were given as a fraction (α = 0.276–0.522) of a design flow rate range 

of 2.9 to 65 L·s−1 [18,56]. The fraction values were assumed to be normally distributed (p ≥ 0.1, Shapiro–

Wilk test), and there was no significant correlation between the fractions α and the loading units (p = 

0.75, t-test for correlation). 

Recently, a Bayesian approach has been proposed to bridge the gap between model estimates 

and field measurements for the probable maximum simultaneous water demand [57]. Bayes’ 

theorem, which relates the conditional and marginal probabilities of stochastic events A and B (where 

B has a non-vanishing probability), asserts that the probability of an event A given by event B 

depends not only on the relation between events A and B, but also on the marginal probability of 

occurrence of each event. This theory can be applied to a sample size not large enough for decision-

making purposes, yet relevant enough for statistical analysis. Its general formulation and various 

applications are available in the literature [54,58]. Studies applied Bayesian analysis to improve 

understanding of the downtime characteristics of water installations [59]. Factor weights contributed 

to water pipe conditions were evaluated with Bayesian inference [60]. A Bayesian network was used 

as an aid to integrated water resource planning, accounting various considerations of environmental, 

economic, social, and political impacts, as well as inputs from stakeholders in decision making 

process [61]. In this section, the proposed approach predicts the probable maximum simultaneous 

demand for the total fixtures installed using the readily available model predictions (event A) and 

the measurements from a compatible installation (event B). 

Given a measured (maximum) value *
mq ~N(μ,σ2), the posterior estimate of a fractional design 

flow rate 
*
1,sq ~N(

1 ,
2

1 ) is expressed by the following Bayesian rules [62], where 
*
0,sq ~N(

0 ,
2

0 ) is 

the prior estimate of the fractional design flow rate; p is the probability; μ and σ2 are the mean and 

variance of a normal distribution function, respectively; μ and μ0 are the best estimates of the 

fractional measured value and design value *
mq  and 

*
0,sq , respectively, 

( ) ( ) ( )*

0,

**

0,

**

1, || smsms qqpqpqqp =  (43) 

( ) 122

0

2

1

−−− += ; μ1 = μ0 σ0−2/(σ0−2 + σ−2) + μ σ−2/(σ0−2 + σ−2) (44) 

In these rules, the weightings are proportional to their respective variances, and the posterior 

mean is a weighted average of the prior mean and the measured value given. This posterior mean 

can be characterized by the ratio of standard deviations and expressed as a parameter β. 

β2 = σ2/σ02 (45) 

Given a measurement maximum flow rate μ is significantly different from a prior belief of the 

maximum (design) flow rate μ0 that |μ0 − μ| > ε, where ε is a cut-off value of the acceptable error. 

Suppose repeatedly measurements given the same value μ that an acceptable choice of design 

flow rate qs*–μn. Denote X = σ0−2/(σ0−2 + σ−2) = β2/(1 + β2) and Y = μ σ−2/(σ0−2 + σ−2) = μ/(1 + β2), posterior 

estimates μ1, μ2, …, μn are given below, 

μ1 = μ0 X + Y, μ2 = μ0 X 2 + XY + Y, …, μn = μ0 Xn + Y (Xn−1 + Xn−2 + … + X + 1) (46) 

μn = μ0 Xn + Y (1 − Xn)/(1 − X) (47) 

It is noted for Equation (47) μn→μ when n→∞. Taking n is a finite number of the repeated 

observations such that the n-th estimate shows no significant difference from measured acceptance, 

that is, |μn − μ| ≤ ε, and β2 can be determined below, 

μ0 Xn + Y (1 − Xn)/(1 − X) = μ + ε (48) 

μ0 (
β2

1+β2)
𝑛

 + (
μ

1+β2) (
1−(

β2

1+β2)
𝑛

1−(
β2

1+β2)
) = μ + ε (49) 
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β2 = cr1/n/(1 − cr1/n); cr = ε (μ0 − μ)−1 (50) 

The constant cr is the ratio of acceptable error to the difference between the prior value μ0 and 

the measured value μ. Therefore, the weighting parameter β can be expressed by the target sample 

size, the acceptable error of the estimate, the measured value, and the prior estimate. 

For the simplicity of application of the Bayesian calculated results with the prior estimated 

values, a ratio of measured value to the prior estimate is defined below, 
*

0,

*

sm qq=  (51) 

The target sample size n∞, for repeated measures of the maximum flow rate, is a finite value that 

is deemed sufficient to adopt the measured maximum flow rate for design calculations with 

acceptable error in the final estimate ε∞. 

1*

,

*

, −=  ms qq  (52) 

Figure 6 illustrates the examples of β (ranged between 0.5 and 4) for a sample size n with errors 

ε and α (ranged between 0.4 and 0.7). With the predetermined values for β~β(n∞, ε∞, α), the posterior 

estimate of the fractional design flow rate for measured *
mq  and a sample size n is given by, 

( )( ) 122**

1,

*

, 1
−−−

− ++= misis qqq ; i = 1, 2, 3, … n (53) 

3.2. Bayesian Coefficient 

The posterior design flow rate estimates for a sample size qs,n can be determined by multiplying 

the corresponding prior design flow rate estimates qs,0 and a Bayesian coefficient αn, 

0,, snns qq =  (54) 

Figure 7 exhibits the Bayesian design flow rates estimated for some residential buildings with 

target sample sizes n∞ = 50 and 200, α = 0.5215, n = 29, and ε∞ = 0.05. Estimates made by Murakawa 

[16] are shown for comparison. For the cases with a sample size close to the target sample size, the 

posterior estimates are very close to the ones made by Murakawa and approaching the measured 

maximum loading units. For a larger target sample size, the posterior estimates are closer to the prior 

values than the measured ones. Table 4 summarizes the coefficients αn for the office and restaurant 

cases. Correction to the estimated design flow rate is unnecessary for any case in which the difference 

between prior and measured values is insignificant, the coefficient αn is close to unity or the sample 

size is small (e.g., the restaurant case). 

Table 4. Bayesian coefficients of design flow rates αn. 

Building Type and 

Location 

Sample 

Size 

n 

Prior Estimated Design 

Flow Rate 

qs,0 (L·s−1) 

Measured (Maximum) 

Fraction  

αm 

αn 

(Reference Design 

Guide) 

n∞ = 

50 

n∞ = 

100 

n∞ = 

200 

Czech Republic CSN75-5455 (Czech) 

Residential 11 1.09–3.79 0.483 0.571 0.633 0.715 

British EN806-3 (British) 

Residential 11 0.95–3.80 0.568 0.666 0.728 0.801 

Swiss W3 (Swiss) 

Residential 11 0.80–2.34 0.684 0.796 0.843 0.895 

German DIN1988-300 (German) 

Residential 11 0.88–2.24 0.692 0.799 0.850 0.901 

Netherlands  Dutch guidelines 

Office 2 1.1–4.0 0.579–0.755 0.956 0.976 0.994 

Hotel (cold) 2 1.5–1.8 0.437–0.567 0.844 0.904 0.946 

Hotel (hot) 2 0.71–1.17 0.416–0.441 0.725 0.817 0.891 
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Nursing home 2 1.5–3.2 0.385–0.571 0.800 0.874 0.927 

South Africa W308 (German) 

Residential 1 18.8 0.466 0.837 0.904 0.947 

Japan Loading unit (Japanese) 

Residential  29 2.9–65 0.522 0.565 0.602 0.695 

Office  1 11.8 0.271 0.627 0.750 0.847 

Restaurant 1 10.4 0.846 0.992 0.996 0.998 

Figure 8 plots the measured maximum flow rates against the estimates made by SIMDEUM [36]. 

As can be seen, good predictions were made by SIMDEUM with only a few underpredictions. Figure 

8 also graphs the Bayesian estimates for n∞ = 3 and 20, where the Bayesian correction factors applied. 

When n∞ = 3, the Bayesian estimates are very close to the predictions made by SIMDEUM; when n∞ = 

20, a target sample size of 10% can be achieved that the corrected Bayesian estimates are closer to the 

original design estimates. 

Figure 9 shows the measured maximum flow rates against the estimates made by the design 

guidelines CSN75-5455, EN806-3, W3, and DIN1988-300. It also graphs the Bayesian estimates for n∞ 

= 13 (i.e., a sample size very close to the target sample size), 50, and 200. The figure demonstrates that 

Bayesian coefficients can significantly improve prediction quality (Figure 9b). 

The Bayesian coefficients of design flow rates for various buildings and design guidelines are 

summarized in Table 4. As the proposed Bayesian approach, without any conceptual assumptions of 

failure factors as required in many probabilistic models (e.g., Hunter’s model), gives results 

comparable to those obtained through design guidelines as well as small-scale measurements, 

existing systems can be retained with only minor modifications to the updated measurement results. 
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(d) 

Figure 6. Posterior error estimates. (a) αm = 0.4; (b) αm = 0.5; (c) αm = 0.6; and (d) αm = 0.7. x-axis: sample 

size n. y-axis: error ε (%). 

 

Figure 7. Design flow rates for some residential buildings in Japan. x-axis: loading unit U. y-axis: 

design and measurement flow rate qs (L·s−1). 

 

Figure 8. Design flow rates for offices, business hotels, and nursing homes. x-axis: design flow rate qs 

(L·s−1). y-axis: measured maximum flow rate qm (L·s−1). 
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(b) 

 
(c) 

 
(d) 

Figure 9. Design flow rates for Czech residential buildings. (a) Original estimates; (b) Bayesian 

estimates for n∞ = 13; (c) Bayesian estimates for n∞ = 50; (d) Bayesian estimates for n∞ = 200. x-axis: 

design flow rate qs (L·s−1). y-axis: measured maximum flow rate qm (L·s−1). Design references: ●: CSN75 

(Czech); ○: EN806 (British); +: W3 (Swiss); ×: DIN1988 (German). 

4. Demand Sizing, Energy Loss Minimization, and Cost Implications 

A pipe size that is based on demand estimates has cost implications. Construction, maintenance, 

and remedy (repairing) costs of water supply systems for some high-rise buildings in Hong Kong are 

correlated with the ratio of pipe surface area to pipe length [63]. The costs η for pipe construction, 

maintenance, and remedy are given by the following expression, where D is the average pipe 

diameter, with constants k0 and k1 as exhibited in Table 5, 

12

0~
k

Dk  (55) 

For a high-rise tank water system that supplies water to 600 residential WC cisterns as described 

by Wong et al. [44], downsizing the supply pipe from a diameter of 67 mm to 54 mm can reduce the 

pipe construction, maintenance, and remedy costs by 32%, 79%, and 94%, respectively. 
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Table 5. Constants k0 and k1 for water systems in buildings. 

System Cost 
Commercial Buildings Residential Buildings 

k0 k1 k0 k1 

Water supply 

Construction 1 0.33 1 0.91 

Maintenance 1 0.38 1 3.62 

Remedy 1 1.29 1 6.50 

Drainage 

Construction 0.67 0.18 0.62 1.69 

Maintenance 1 5.83 1 1.74 

Remedy 1 1.29 1 6.50 

As energy is consumed to compensate the pressure loss due to pipe friction, pipe sizes should 

be chosen to minimize energy losses in a piping network. According to an energy loss optimization 

method by Mui et al. [64], for the probabilistic demands (from p = 0 to 1) at the branch pipes (of 

identical radius) in a basic T-shaped piping network of constant volume, the optimal radius ratio of 

the centre pipe is in the range from 21/7 to 23/7. This method can be extended to a tree-shaped piping 

network where a centre pipe is used to feed a number of paired branch pipes (i.e., a number of T-

shaped piping networks as arranged in Figure 10), and the optimal radius ratio ϕp is given by [65], 

( )

( )



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


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


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i
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; 





=



1

1
:p  (56) 

To demonstrate the implications of the volume constraint, an example using eight pairs of WC 

cisterns was presented by the authors of [65]. Two cases, case 1 with medium demands and case 2 

with high demands, were illustrated. The demand flow rate was 0.1 L·s−1 with a branch pipe diameter 

of 16 mm (determined by the Hunter’s method [2]) and a flow velocity of 1 ms−1. While the pipe radius 

ratios were 16 mm/8 mm = 2 and 20 mm/8 mm = 2.5, the demand probabilities were 0.1 and 0.2 

(corresponding to public water closets in offices and shopping malls [13–15]) for cases 1 and 2, 

respectively. Suppose choices of pipe radius were available, the existing designs would consume 12% 

(case 1) or 43% (case 2) more pipe fiction energy than the optimal cases. In other words, with 

appropriate demand-controlled pump operations, this pipe sizing approach can offer pumping 

energy savings potentials for the two cases. For the optimal pipe radius ratios of 1.70 and 1.86 for 

demand probabilities 0.1 and 0.2, with the constraint of an equal pipeline volume, the corresponding 

centre/branch pipe radii are 15.5 mm/9.1 mm and 19 mm/10.2 mm, respectively. 

In commercial building settings, the cost implications for sizing pipes with minimum energy 

loss were estimated according to the lengths of centre and branch pipes in a ratio of 1:1 using Equation 

(55). The results, shown in Table 6, indicate that the proposed sizing method will reduce energy 

losses, but with additional costs generated by larger pipe sizes in compared with those sizes given in 

some practices [13–15]). 

Table 6. Implications of sizing a tree-shaped piping network (with branch demand flow rates of 0.1 

L·s−1) with energy loss minimization [61,62]. 

Case 
Demand 

Probability 

Average Pipe 

Diameter  

Energy 

Loss  

Costs  

Construction Maintenance Remedy 

(1) 0.1 +2.5% −11% +0.8% +0.9% +3.0% 

(2) 0.2 +4.3% −30% +1.4% +1.6% +5.6% 
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Figure 10. A tree-shaped piping network (A np-section T-shaped piping network). 

5. Discussion 

Overestimation of the probable maximum water demands being made simultaneously at the 

different water outlets in a network leads to inefficient use of water and energy resources. Without 

accurate demand estimates, it is impossible to optimize water systems in the quest for a sustainable 

built environment. 

In the above sections, by reviewing all major demand models and corresponding datasets with 

the additional dimension of predictive Bayesian input information, a better understanding of the 

relationships between the various types of demand and other attributes influencing the behaviour of 

water systems in buildings is gained. This outcome can enhance future statistical model development 

and measurement data analysis. The proposed Bayesian approach could result an immediate 

improvement in demand estimation and recommendations for existing design practice. As existing 

model estimates and latest demand values actually observed can be synthesized to provide up to 

date best available information, when implementing the proposed Bayesian model updating 

approach, very little modification to existing design standards/guidelines/approaches is required. 

Examples showing how a new dataset of water demands derived from some unit applications could 

be made, the new dataset that conforms better with the needs for updating and developing statistical 
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estimates made by various methods, with new data available, are thus recommended. The scheme 

will determine and provide adjustments to existing practice in relation to accurate urban water 

demand forecasting. 

6. Conclusions 

Most water supply system designs are routinely and substantially over-sized to keep errors to a 

minimum. This paper reviewed three major types of demand models for sizing pipes and other 

components in a building water supply system. In order to bridge the gap between model estimates 

and field measurements for the probable maximum simultaneous water demand, a Bayesian 

approach was proposed. The proposed approach provides a useful method not only for evaluating 
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the corresponding demand values from various design references, but also for reducing energy losses 

in pipes though with a bigger price tag. 
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Nomenclature 

B( ) Beta-binomial distribution 

C Binomial coefficient 

D Pipe diameter 

i, j i, j = 1, 2, 3, … as defined 

k Constant 

M Number of fixtures 

m, mi Number of fixtures, number of fixtures of fixture i (given a reference flow rate qf) 

N Number of demands  

N( ) Normal distribution  

n Sample size 

na Number of appliances serving a group of users 

np Number of T-networks in a tree-shaped network 

P( ) Probability  

p, pi, pj Probability, probability of operating fixture i, probability of operating fixture group j 

Q Flow rate 

q, qi Flow rate, flow rate of fixture i 

qs, qm 

qf 

Design flow rate, measured maximum flow rate 

Probable maximum demand  

t Time  

U, Ui Fixture (loading) unit, fixture unit of fixture i 

u Uniform random number between 0 and 1 

x Dummy variable as defined 

X, Y Dummy variable as defined 

  

Greek  

Γ( ) Gamma function 

α Bayesian constant (fractional flow rate of design value) 

β Ratio of measured to predicted standard deviations 

ε Error 

λ Failure rate 

ϕ Optimal pipe diameter ratio 

γ Arrival rate 

η Cost  

μ Mean 

σ Variance 

τ Time period 

τ0, τ1, τ2 Time period of no demand, of a demand, between two consecutive demands 

  

Subscripts  

0, 1, 2, … Of conditions 0, 1, 2, … as defined 

f Of reference 

i, j Of i, j as defined 

m Of measured value 

max Of maximum 

p Of probability 

s Of design condition 
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∞ Of target value 

  

Superscripts  

* Fractional value 

~ Probability density function 
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