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Abstract: The systemic biases of Regional Climate Models (RCMs) impede their application
in regional hydrological climate-change effects analysis and lead to errors. As a consequence,
bias correction has become a necessary prerequisite for the study of climate change. This paper
compares the performance of available bias correction methods that focus on the performance of
precipitation and temperature projections. The hydrological effects of these correction methods
are evaluated by the modelled discharges of the Kaidu River Basin. The results show that
all used methods improve the performance of the original RCM precipitation and temperature
simulations across a number of levels. The corrected results obtained by precipitation correction
methods demonstrate larger diversities than those produced by the temperature correction methods.
The performance of hydrological modelling is highly influenced by the choice of precipitation
correction methods. Furthermore, no substantial differences can be identified from the results of
the temperature-corrected methods. The biases from input data are often greater from the works
of hydrological modelling. The suitability of these approaches depends upon the regional context
and the RCM model, while their application procedure and a number of results can be adapted from
region to region.

Keywords: Regional Climate Models; climate change; bias correction methods; SWAT model

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) has observed that climate variable
changes associated with global warming are affecting regional or catchment scale hydrological
processes [1]. Changes in precipitation and temperature are anticipated as direct driving factors
because they are the main factors that influence regional hydrological processes [2]. The Regional
Climate Models (RCMs) provide a new opportunity for climate change effects analysis since they
have a higher spatial resolution and more reliable results on a regional scale compared to General
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Circulation Models (GCMs) [3–5]. Numerous studies have shown that RCM outputs improve the
representation of climate change information at the mesoscale by providing spatially and physically
coherent outputs with observations [4,5]. However, the original RCM outputs still contain considerable
bias, which is inherited from the forcing of GCMs or produced by systematic model error [6,7].
Furthermore, such biases may be amplified when climate change effects are included, such as in
hydrological effect studies [4]. Therefore, bias correction of RCM data is the prerequisite step to the
data being used in any climate change effects analysis.

Many bias correction methods, ranging from simple scaling techniques to the rather more
sophisticated distribution mapping techniques, have been developed to correct biased RCM outputs [8].
The scaling approach mainly includes linear or nonlinear approaches that adjust the climatic
factors based on the differences between observed and RCM means in a linear or nonlinear
formula, such as the linear scaling method (LS) [9,10] and the power transpiration method (PT) [11].
Distribution mapping, involving distribution-based and distribution-free quantile mapping methods,
matches the statistical distribution of RCM-simulated climatic factors to the distribution of observations.
Distribution-based quantile mapping is based on the assumption that climatic factors obey a certain
distribution, such as Gamma and Gaussian distributions [4,12], while the distribution-free quantile
mapping technique employs the empirical distribution [13]. Selecting a suitable bias correction method
is important for providing reliable inputs for impact analysis of a region.

Teutschbein and Seibert [8] applied six ensemble statistical and bias correction methods to correct
precipitation and temperature data from eleven different RCM outputs in five typical catchments in
Sweden. The results suggest that most methods were able to correct daily mean values to a certain
extent, while only higher-skill approaches, such as distribution mapping and power transformation
methods, performed well in hydrological extremes. Chen, Brissette, Chaumont and Braun [4]
investigated the performance and uncertainty of two change factor and four bias correction methods
in quantifying the climate change effects over Manicouagan 5 and Chickasawhay basins. It indicated
that the uncertainties that result from RCM simulations are slightly greater than those from different
bias correction methods. Chen, Brissette, Chaumont and Braun [13] compared the performances of six
bias correction methods in four RCM-simulated precipitation events over ten North American river
basins. The results demonstrate that all bias correction methods are capable of reducing bias in raw
RCM, while performances of hydrological modelling are highly dependent on the locations of the
catchments and the choice of bias correction methods. Setting these recent studies aside, contributions
that compare and evaluate different kinds of bias correction methods in hydrological modelling are
still rare in the literature, in particular over arid mountainous areas. Moreover, only a few have
provided the best combination of bias correction methods for precipitation and temperature over
a specific region.

Xinjiang Uygur Autonomous Region, which is an arid and semi-arid region and located in Central
Asia, is extremely vulnerable to climate change effects, since most water sources originate from the
upper mountainous regions [14,15]. It is necessary to select suitable bias correction methods for
providing credible inputs to estimate climate change effects over the region. Therefore, the Kaidu River
Basin, one of the typical mountainous catchments in Xinjiang, was selected as a case study. The objective
of the present study is to investigate the performance of available bias correction methods for
downscaling climatic outputs of RCM and provide the best combination of bias correction methods for
precipitation and temperature over an arid mountainous region. This paper compares existing bias
correction methods of climate and hydrological projections. Seven precipitation correction methods
and five temperature correction methods cover most of the existing bias correction methods that are
included with the intention of correcting deviations in this study. The influence of bias correction
methods on hydrological simulations is studied by comparing different discharge outputs. This is
achieved by using SWAT hydrological modelling with original RCM data and all possible combinations
of corrected precipitation and temperature data.
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2. Study Area and Data

2.1. Study Area

The Kaidu River Basin is situated on the southern slope of Tianshan Mountains, Xinjiang, China.
It is enclosed between a longitude of 82◦58′–86◦05′ E and a latitude of 42◦14′–43◦21′ N [16], and covers
an area of ca. 18,827 km2 (Figure 1). This region has a complex topography, including grassland,
marshland, surrounding mountainous alpine areas, and woodland [15,17]. Its elevation extends from
1342 m to 4774 m, with an average elevation of 2995 m above sea level (asl) [18]. Meteorological
parameters covering the period of 1965–2005 from the China Meteorological Data Sharing Service
System (http://data.cma.cn/) suggest that the average annual precipitation is ca. 294 mm and
the annual average temperature is −3.8 ◦C at the Bayinbuluke (BYBLK) meteorological station
(Figure 2). The annual maximum and minimum temperatures are 18.8 ◦C and −44.6 ◦C, respectively.
The measured total annual pan evaporation exceeds 1017 mm [16].
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Figure 2. Mean daily precipitation, temperature, and pan evaporation at the BYBLK station and
discharge at the DSK station.

Precipitation which takes the form of snowfall lasts from November to March and is stored as
a solid form. The total number of snow cover days is ca. 139.3 days and the average snow depth
is 120 mm [19,20]. Water resources in the headwater region mainly originate from season snowmelt
in spring, while during the summer months, they are provided by a mixture of melting glaciers
and rainfall [21]. Figure 2 demonstrates that there are two main flood peaks throughout the whole

http://data.cma.cn/
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year: the first one arises from seasonal snowmelt during April and the latter is mainly attributable to
precipitation during the months of July and August. The mean annual discharge at the Dashankou
(DSK) hydrological station is ca. 35.03 × 108 m3 with a runoff depth of ca. 143.2 mm.

2.2. Data

The daily observed meteorological data, including precipitation and average/maximum/minimum
temperatures from the BYBLK and Baluntai (BLT) stations (Figure 1), provide the reference material that
is used to correct RCM outputs. They are taken from the China Meteorological Data Sharing Service
System (http://data.cma.cn/). The observed discharges at the DSK station are provided by the Tarim
Water Resources Management Bureau. RCM outputs from HadGEM3-RA, with a horizontal resolution
of ca. 50 km for the 1965–2004 period, are used in this study. The HadGEM3-RA model is taken from
the Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia [22]. The nearest
neighbour method is adopted to extract the grid points at site locations with the intention of comparing
the observations with RCM model outputs. To set up the SWAT model, spatial datasets covering the
topographic data, land cover data, and soil property data are also needed. The digital elevation data
(DEM) at a 90 m spatial resolution from the NASA Shuttle Radar Topographic Mission (SRTM) was used
in our study. The land cover was determined by using 1 km gridded land cover data from the global land
cover map for the year 2000 (GLC2000). The soil property database is determined by the Harmonized
World Soil Database (HWSD) of the Food and Agriculture Organization (FAO).

3. Methodology

3.1. Review of Bias Correction Methods

Seven precipitation bias correction methods and five temperature bias correction methods are
compared in this study. The precipitation correction methods consist of Daily Bias Correction
(DBC), Daily Translation (DT), Distribution Mapping (DM), Empirical Quantile Mapping (EQM),
Local Intensity Scaling (LOCI), LS, and PT. Meanwhile, DM, DT, EQM, LS, and VARI (Variance Scaling)
are used for temperature correction. They cover major types of existing bias correction methods.
All of them are conducted on a daily basis for each calendar month during the period 1965–2004.
These methods are listed in Table 1 and further details are provided below.

Table 1. Bias correction methods for precipitation and temperature.

Bias Correction for Precipitation Bias Correction for Temperature

Linear scaling (LS) Linear scaling (LS)
Daily translation (DT) Daily translation (DT)

Local intensity scaling (LOCI) Variance scaling (VARI)
Daily bias correction (DBC) Distribution mapping (DM)
Power transformation (PT) Empirical Quantile Mapping (EQM)
Distribution mapping (DM)

Empirical Quantile Mapping (EQM)

3.1.1. Linear Scaling (LS) Method for Precipitation and Temperature

The LS method implements a constant corrected factor that is estimated by the difference between
original RCM simulations and observations for each calendar month. This approach is capable of
perfectly adjusting for climatic factors when monthly mean values are included [8]. Precipitation is
adjusted with a multiplier and temperature is corrected by the additive term, as Equations (1) and (2)
demonstrate respectively.

Pcor
hst,m,d = Phst,m,d × [

µ(Pobs,m)

µ(Phst,m)
] (1)

Tcor
hst,m,d = Thst,m,d + [µ(Tobs,m)− µ(Thst,m)] (2)

http://data.cma.cn/
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where Pcor
hst,m,d and Tcor

hst,m,d denote the corrected precipitation and temperature on the d-th day of the
m-th month, respectively; Phst,m,d and Thst,m,d respectively denote the precipitation and temperature
from original RCM outputs during the relevant period; the subscripts d and m are specific days and
months, respectively; and µ denotes the mean value.

3.1.2. Daily Translation (DT) Method for Precipitation and Temperature

In the DT approach (which is also known as quantile-quantile mapping), a distribution mapping
approach is adopted to establish the relationship between the original RCM outputs and the observed
time series grounded within 100 integral quantiles [23]. It is different from the LS method, which corrects
the RCM outputs with a constant scaling in a specific month—the RCM outputs are corrected by different
scaling factors based on the event-quantiles. The corrected precipitation (Pcor,m,Q) and temperature
(Tcor,m,Q) data for each specific month are respectively calculated using Equations (3) and (4).

Pcor
hst,m,Q = Phst,m,Q × (

Pobs,m,Q

Phst,m,Q
) (3)

Tcor
hst,m,Q = Thst,m,Q + [µ(Tobs,m,Q)− µ(Thst,m,Q)] (4)

where Pcor,m,Q and Tcor,m,Q are the corrected precipitation and temperature, respectively; and Q
represents the percentiles (ranks) in a specific month.

3.1.3. Local Intensity Scaling (LOCI) Method for Precipitation

The LOCI method [24] aims to simultaneously correct the precipitation intensity and frequency.
Initially, the rainfall intensity threshold (Pthres,m) for each month is confirmed. Accordingly, the number
of wet days in RCM precipitation that exceed this threshold matches the number of days for which
observed precipitation was determined. This approach is able to effectively eliminate the drizzle effect
because too many drizzly days are often included in original RCM outputs [25]. A scaling factor

( µ(Pobs,m,d|Pobs,m,d>0)
µ(Phst,m,d|Phst,m,d>Pthres,m)

) is then calculated to ensure that the mean amounts of corrected precipitation
are equal to observations.

sm =
µ(Pobs,m,d|Pobs,m,d >0)

µ(Phst,m,d|Phst,m,d >Pthres,m)
(5)

Pcor
hst,m,d =

{
Phst,m,d × sm Phst,m,d > Pthres,m

0 Phst,m,d < Pthres,m
(6)

3.1.4. Daily Bias Correction (DBC) Method for Precipitation

The DBC method is a hybrid method that combines the LOCI and DT methods [4,26]. The LOCI
method is applied to adjust precipitation occurrences. In the first instance, this is undertaken to ensure
that corrected precipitation occurrences have the same precipitation events as observations in a given
month. The DT method is then adopted in order to adjust precipitation amounts in accordance with
the frequency distribution.

3.1.5. Power Transformation (PT) of Precipitation

The PT method utilizes a non-linear approach in an exponential form a Pb [27], in order to correct
the mean and variance of the precipitation series. Since the original PT method does not contain
frequency correction, the frequency-corrected results from LOCI were also used in PT correction for
such a purpose. In being applied to a given month, the parameter bm is calibrated by Equation (7) in
order to ensure that f(bm) is minimized to zero.

f(bm) =
σ(Pobs,m)

µ(Pobs,m)
−

σ(Pbm
LOCI,m)

µ(Pbm
LOCI,m)

(7)
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where bm is the exponent in month m and σ represents the standard deviation operator. Subsequently,
scaling factors (sm) are calculated to establish that corrected precipitation amounts are equal to the
observations. sm and corrected precipitation are respectively determined in Equations (8) and (9).

sm =
µ(Pobs,m)

µ(Pbm
LOCI,hst,m)

(8)

Pcor
hst,m,d = sm × Pbm

LOCI,hst,m,d (9)

3.1.6. Variance Scaling (VARI) of Temperature

The described PT method is capable of correcting both the mean and variance, while being
restricted to correct precipitation in the use of the power function [28,29]. A viable alternative is offered
by the three-step VARI method [30], which was developed to correct both the mean and variance of
temperature. The mean corrected results instituted by the LS approach are further normalized upon
a monthly basis to a zero mean [8]:

Thst,m,d = TLS,hst,m,d − µ(TLS,hst,m) (10)

The standard deviation (σ) of the normalized time series is then corrected in accordance with the
ratio of the observed σ and the normalized series σ, as Equation (11) clearly demonstrates.

σhst,m,d = Thst,m,d ∗
σm(Tobs,m,d)

σm(Thst,m,d)
(11)

In the final step, the corrected temperature is calculated in accordance with the corrected µ and σ.

Tcor
hst,m,d = σhst,m,d + µ(TLS,hst,m) (12)

3.1.7. Distribution Mapping (DM) of Precipitation and Temperature

The DM method is applied to correct the distribution function of the RCM outputs and to
align them with the observed distribution function. It is based on the assumption that both
the RCM-simulated and observed climatic variables obey a specific frequency distribution [31].
The Gamma distribution with shape parameter α and scale parameter β is often considered to be
appropriate for precipitation probability distribution [32], which previous studies have shown to be
effective [33,34].

fγ(x|α,β) = xα−1 ∗ 1
βα ∗ Γ(α)

∗e
−x
β ; x ≥ 0; α, β > 0 (13)

where Γ(.) is the Gamma function; and α and β are the form and scale parameter, respectively.
The specific threshold used to define a wet day in the LOCT method is applied prior to the DM

method. This is done in order to avoid drizzle day effects, which may distort the corresponding
distribution of the RCM outputs.

Pcor
hst,m,d = F−1

γ (Fγ(PLOCI,hst,m,d|αLOCI,hst,m,βLOCI,hst,m)|αobs,m,βobs,m) (14)

where Fγ and F−1
γ respectively represent the Gamma cumulative distribution functions (cdfs) and

their inverse. In relation to temperature, the Gaussian distribution (normal distribution), with location
parameter α and scale parameter β, is often assumed to agree with the optimal temperature
distribution [35].

fN

(
x|µ,σ2

)
=

1
σ ∗
√

2π
∗ e

−(X−µ)2

2σ2 ; x ∈ R (15)
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where µ and σ are respectively determined by the mean and standard deviation. The corrected
temperature can be expressed in terms of Gaussian cdfs (FN) and its inverse (F−1

N ) as:

Tcor
hst,m,d = F−1

N (FN(Thst,m,d|µhst,m,σ2
hst,m)|µobs,m,σ2

obs,m) (16)

3.1.8. Empirical Quantile Mapping (EQM) of Precipitation and Temperature

The EQM method can be applied to any kind of climatic variable. Its principle is based on
point-wise daily constructed empirical cumulative distribution functions (ecdfs). It is distinguished
from other distribution-mapping-based approaches that focus on precipitation and which only estimate
the cdfs for wet days [31,36]. Its comparative advantage stems from the fact that it can produce possible
ecdfs for both dry and wet days. The frequency of precipitation occurrences along with standard
deviations can be simultaneously corrected in the EQM approach. The corrected precipitation and
temperature can be respectively expressed as:

Pcor
hst,m,d = ecdf−1

obs,m(ecdfhst,m(Phst,m,d)) (17)

Tcor
hst,m,d = ecdf−1

obs,m(ecdfhst,m(Thst,m,d)) (18)

where ecdf−1 represents the inverse ecdf.

3.2. Hydrological Modelling

The impacts of corrected precipitation and temperature in hydrological processes are evaluated
by the SWAT hydrological model. The SWAT model is a semi-distributed, physically-based,
and time-continuous hydrological model that was developed by the United States Department of
Agriculture’s Agricultural Research Service (USDA-ARS) [37]. This model requires spatial information
related to land use information, meteorological variables, soil textural and physicochemical properties,
and topography [38]. It divides a basin into sub-basins that include topographic information and
the sub-basins are further divided into minimum hydrologic response units (HRUs) that uniquely
combine land use, slope, and soil type [39]. This study uses 19 years (1986–2004) of daily discharge data
obtained from the DSK station for model calibration (1986–2000) and validation (2001–2004). Based on
the Latin hypercube sampling method and the sequential uncertainty fitting (SUFI-2) method, we get
a set of sensitive parameters and their ranges. This process can be done in SWAT-CUP software with
95% prediction uncertainty (95PPU). Based on sensitive parameters and their ranges, the reasonable
values of the model parameters are able to be calibrated manually.

Table 2 shows the sensitivity ranks and final calibration values of the top ten selected model
parameters in SWAT. Because the study area is located in a high altitude mountainous area, rainfall and
snowmelt are the main sources of runoff. The parameters associated with snow melting, such as snow
melting (snowfall temperature (SFTMP, ◦C), snow melt base temperature (SMTMP, ◦C), melt factor
for snow on 21 June (SMFMX, mm H2O/◦C-day), and melt factor for snow on 21 December
(SMFMN, mm H2O/◦C-day) presented high sensitivities in this study area. The precipitation lapse
rate (PLAPS, mm H2O/km) and temperature lapse rate (TPLAPS, ◦C/km) also play important roles
since precipitation and temperature in this region have a linear correlation with elevation. Beside the
ones mentioned above, effective hydraulic conductivity in main channel alluvium (CH_K2, mm/h),
Manning’s “n” value for the main channel (CH_N2), moisture constitution II curve number (CN),
and Manning’s “n” value for overland flow (OV_N) play important roles in the processes of sensitivity
analysis and the calibration (Table 2).

The Nash-Sutcliffe efficiency coefficient (NSE) was chosen as the criterion to evaluate the model’s
performance. The NSE values are 0.84 and 0.87, respectively, for validation and calibration periods
conducted on a daily basis. A good model performance [30] provides a reliable basis for assessing the
performance of various bias correction methods.
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Table 2. Sensitivity rate and final calibration values of the top ten selected SWAT model parameters.

Component Parameter Name Description Sensitivity
Rate

Final Estimate
Value

Snow

SFTMP Snowfall temperature 2 1.5
SMTMP Snow melt base temperature 1 0.7
SMFMX Melt factor for snow on 21 June 6 7.5
SMFMN Melt factor for snow on 21 December 8 2.1

Subbasin
condition

PLAPS Precipitation lapse rate 3 183
TLAPS Temperature lapse rate 4 −7.8

Land
use/cover

OV_N Manning’s “n” value for overland flow 10 0.2
CN Moisture constitution II curve number 5 68

River
course

CH_N2 Manning’s “n” value for the main channel 9 0.18

CH_K2 Effective hydraulic conductivity in main
channel alluvium 7 240

3.3. Performance of Statistical Evaluation

The performance of each bias correction method is assessed upon the basis of the capacity
to generate discharges, precipitation, and temperature (including daily average along with
maximum and minimum temperatures) under the frequency-based and time-series-based evaluation
metrics. Frequency-based indices include the 5th percentile, 95th percentile, mean, and standard
deviation; the special indices involve the coefficient of variation, probability, and wet day intensity.
For time-series-based metrics, authors use the Goodness of Fit (R2), Mean Absolute Error (MAE),
the Nash-Sutcliffe Efficiency Coefficient (NSE) Percent Bias (PBIAS), and Mean Absolute Error (MAE)
for assessment. The equations of these indices are expressed in Equations (19)–(22), respectively.

R2 =
∑n

i=1
(
Psi − Ps

)(
Poi − Po

)√
∑n

i=1
(
Psi − Ps

)2
∑n

i=1
(
Poi − Po

)2
; 0 ≤ R2 ≤ 1 (19)

NSE = 1− ∑n
i=1(Poi − Psi)

2

∑n
i=1
(
Poi − Po

)2 ; −∞ ≤ NSE ≤ 1 (20)

PBIAS =
∑n

i=1(Poi − Psi)

∑n
i=1 Poi

(21)

MAE =
∑n

i=1 |Poi − Psi|
n

(22)

where, Psi and Poi represent the simulated and observed values at time step i, respectively; and Ps and
Po are the corresponding average values for simulated and observed variables, respectively.

4. Results

4.1. Performance of RCM Outputs in Reproducing Discharges

In order to evaluate the capability of original RCM data in discharge modelling, precipitation and
maximum/minimum temperature from RCM outputs are used to directly force the SWAT model.
The SWAT model is calibrated and specially forced by the original RCM simulations against the
observed discharges. If the original RCM output simulated discharges closely align with the observed
discharges of reasonable model parameters, RCM outputs are considered to be small biases that can
be overcome through model calibration. Under this circumstance, bias correction approaches will
not be required. If this is not the case, original RCM outputs are seriously biased and not suitable for
hydrological modelling.

The mean daily cycle results reveal that the simulation run by original RCM precipitation and
temperature has obvious bias and great overestimation for discharges (Figure 3), particularly in the wet
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seasons (April–September). This is to be expected because the performance of the RCM data is highly
dependent upon the season. When the observed discharges are included, the original RCM-simulated
discharges become less coherent. The NSE coefficient is −10.13 over the length of the relevant period,
and this indicates that the original RCM outputs are not capable of being used for calibration and the
bias cannot be corrected by hydrological calibration.
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4.2. Validation of Original Precipitation and Temperature

The validation of the original RCM-simulated precipitation and temperature is contingent on the
quality of the probabilities distributions and average daily cycle. The subsequent discussion focuses
upon the performance of daily average temperature because similar results are obtained from daily
maximum and minimum temperatures. The performance of the RCM outputs is also dependent upon
the specific region. The distribution of RCM-simulated precipitation at the BYBLK station is less
coherent than observations obtained from the BLT station (Figure 4).
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(a) and BLT (b) meteorological stations.

At the BYBLK station, overestimations are observed in RCM-simulated precipitation,
with probabilities that fall below 0.78. When the focus is on the temporal distribution (Figure 5),
overestimated periods are mainly concentrated in the wet season. But the biases cannot be attributed
to systematical error because the conditions are very different at the BLT station. RCM simulations
underestimate precipitation, with probabilities below 0.04 and, when applied at the BLT station,
overestimate probabilities between 0.04 and 0.80. The underestimations mainly occur during the
June-July period and overestimations are concentrated in the November-December period. It is
worthwhile to note that, in comparison to the dry season, precipitation is consistently less accurate in
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the wet season. This can possibly be attributed to the RCMs evidencing diminished capacity in the
simulation of convective precipitation [40]. The RCM-simulated temperature outputs obtained at the
BYBLK station are more reliable than at the BLT station (Figure 6). The probabilities distribution
of temperature at BYBLK is more concentrated and there are obvious overestimations of low
temperatures that fall beneath −19.1 ◦C (probabilities above 0.8). High temperatures fall in the
slightly overestimated range between 18.8 ◦C and 7.1 ◦C (probabilities below 0.28). Overestimations
are mainly concentrated in the Winter and Summer seasons, while underestimations are clearly
evidenced in Spring once temporal variation is taken into account (Figure 7). At the BLT station,
the temperature is more decentralized and serious underestimations range between −21.9 ◦C and
13 ◦C (probabilities 0.37-1) during the November–May period. Slight overestimations fall between
13 ◦C to 27.1 ◦C (probabilities below 0.37) during the June–September period.
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4.3. Validation of Corrected Precipitation and Temperature

All bias correction methods are capable of effectively improving the original RCM simulations
to a certain degree. The LS and LOCI methods underestimate heavy precipitation, with probabilities
falling below 0.08 and 0.06 at the BYBLK station, respectively. This is because the LS and LOCI are
mean-based methods that adjust different precipitation levels by using a unique scaling factor during
a specific month. Extreme precipitation is not specifically considered by the two methods. Meanwhile,
overestimations are included, with probabilities falling between 0.08 and 0.33 in the LS method and
0.06 to 0.31 in the LOCI method. But the LOCI method is obviously superior when dry days (<0.1 mm)
are considered. The LS method is limited in reproducing dry days and consistently overestimates
probabilities that range from 0.33 to 0.79.

The DT method is able to competently adjust the higher precipitation in probabilities that fall
below 0.06, but it does not take into account drizzle days corrections, and this results in consistent
overestimations of probabilities between 0.31 and 0.79. It is fortunate that this limitation is fully
overridden by the DBC method, which uses observations to correct the original RCM-simulated
precipitation distribution to a completely uniform configuration. The DM, EQM, and PT methods
reproduce precipitation quite well, with the partial exception of the PT method, which slightly
overestimates the original precipitation within a probabilities range of 0.09–0.30. These corrected
methods present similar capacities, both at the BLT and BYBLK station. But it is worth noticing that
several outliers (extreme values) are evidenced within the DM and PT (the reason for this will be
discussed at a later stage of this paper).

The performance of the corrected temperature confirms that all the temperature correction
methods improve the original RCM simulations. The DM, DT, EQM, and VARI methods correct
the original temperature and produce exceedance probabilities that closely resemble observations
taken from the two stations. But the LS method, in particular when it is applied at the BLT station,
is incapable of improving the RCM quality to the same extent as the other four methods. The poor
performance of the original RCM-simulated temperature at the BLT station is still not fully overcome
by the LS method, and this indicates the RCM-model dependence of the bias correction methods.

The calculated performance metrics (Figure 8) suggest that a bias in average precipitation is
no longer evidenced in the LS method, whereas original RCM simulations respectively show a bias
of 1.4 mm and −0.01 mm at the BYBLK and BLT stations. But the LS method still presents large
biases in other indices. The DT method is capable of reproducing the 95th percentile upon the basis
of the 100-quantile corrected processes, but it does not present great improvement in other metrics
and its complete oversight of drizzle days means that it even extends the error in mean. Biases in
mean precipitation, probability of wet days, and wet-day intensity are not found in the LOCI method,
while biases in the coefficient of variation, 95th percentiles, and standard deviation still exist. The other
four correction methods evidence a level of performance that exceeds each of these three methods.
No bias in these metrics can be identified in the DBC and EQM methods, while their DM and PT
counterparts only evidence slight biases in some metrics.

The bias in average temperature is no longer found in all correction methods at the two stations,
whereas the original RCM temperature respectively presented biases of −0.03 ◦C and 10.14 ◦C at
the BYBLK and BLT stations (Figure 9). The VARI method is the only one of the five temperature
correction methods that specifically considers the correction of variance. In most cases, the correction
in mean values does affect the variance, and this leads to variations in the DM, DT, and EQM methods,
thereby lending coherence to the variance of observations and VARI-corrected temperature. The LS
method also reduces the bias in variance, although it is unable to correct extreme temperatures
(5/95th percentiles). The performance of the other four correction methods is broadly comparable and
does not evidence biases in extreme temperatures.

The time-series-based metrics of these corrected precipitation and temperature data, along with
original RCM simulations, are also analyzed in this paper (Figures 6 and 7; Table 3). For presentational
reasons, Table 3 only presents the results of the BYBLK station. The performance of RCM-simulated
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precipitation is very biased, as an MAE of 1.65 mm, NSE of −5.71, PBIAS of 224.2%, and R2 of
0.59 attests (daily scale). Comparison of these time-series-based metrics suggests that all methods
are capable of improving the original RCM simulations to different levels. The DT method still
overestimates precipitation, with PBIAS and MAE respectively rising to 49.50% and 0.47 mm.
Other corrected precipitation series suggest that the MAE, PBIAS, NSE, and R2 respectively range
between 0.27 mm/0.37 mm, −0.2%/4.2%, 0.46/0.72, and 0.56/0.72. In time-series-based metrics,
the performance of mean-based methods (LS and LOCI) in precipitation is slightly better than
quantile-based methods. Temperature exhibits a much better performance than precipitation at
the BYBLK station, which slightly overestimates the observations with an MAE of 1.99 ◦C and
PBIAS of 0.7%. All temperature bias correction methods improve the performance of RCM-simulated
temperature and present PBIAS almost equal to zero.
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Table 3. Time-series-based metrics of original and corrected precipitation as well as temperature on
an average daily scale at the BYBLK station.

Parameter Method MAE (mm/◦C) PBIAS (%) NSE (−) R2 (−)

Pr

RCM 1.65 224.20 −5.71 0.59
LS 0.27 0.00 0.72 0.72
DT 0.47 49.50 0.29 0.65

LOCI 0.29 −0.20 0.69 0.69
DBC 0.34 −0.20 0.56 0.60
PT 0.33 −0.20 0.57 0.61

DM 0.37 4.20 0.46 0.56
EQM 0.34 0.00 0.56 0.60

Tas

RCM 1.99 0.7 0.96 0.96
LS 0.89 −0.2 0.99 0.99
DT 0.76 0 0.99 0.99

VARI 0.78 0 0.99 0.99
DM 0.78 0 0.99 0.99

EQM 0.76 0 0.99 0.99

4.4. The Performance of Bias Correction Methods for Hydrological Modelling

In order to evaluate the capacity of the corrected precipitation and temperature data in discharge
simulations, 35 possible combinations of corrected precipitation and temperature data are applied
to drive the SWAT model. The exceedance probabilities of simulated discharges are grouped in
accordance with different temperature-corrected methods (Figure 10). The simulated discharges that
use observed precipitation and temperature data, as opposed to observed discharges, are used as the
reference in order to prevent the model exerting undue influence. Great uncertainty corresponds to
different precipitation methods, and this is mainly attributable to the poor performance of DT and LS
methods. Discharges simulated by the corrected precipitation with the LS and DT methods significantly
differ with the reference. In particular, simulated discharges driven by corrected precipitation with the
DT method are even worse than the discharges using original RCM-simulated precipitation.
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The DBC performs slightly better than the LOCI method when projecting the exceedance
probabilities of discharges. The DM, EQM, and PT methods demonstrate a consistently good
performance when reproducing the daily discharges, and there are no obvious differences between
the three methods in this regard. Differences will be evaluated by applying statistical metrics in
the following sections. In a similar manner to its immediate predecessor, Figure 11 presents the
exceedance probability of simulated discharges, which are grouped in accordance with different
precipitation correction methods. No substantial difference is found between the different temperature
correction methods in hydrological modelling and a relatively small variability range is identified.
This indicates that the temperature correction methods, in comparison to precipitation correction
methods, provide a higher level of certainty in the reproduction of discharges. But the performances
of these temperature-corrected methods are also slightly different when combined with different
precipitation-corrected methods. When grouped with LOCI, DBC, PT, DM, and EQM-corrected
methods for precipitation, these five temperature correction methods present quite similar forms,
although the DM method evidences more differences than its other four counterparts when combined
with the DT and LS methods—this may conceivably be attributed to the interaction included in the
different method combinations.

Water 2018, 10, x FOR PEER REVIEW  14 of 21 

 

The DBC performs slightly better than the LOCI method when projecting the exceedance 
probabilities of discharges. The DM, EQM, and PT methods demonstrate a consistently good 
performance when reproducing the daily discharges, and there are no obvious differences between 
the three methods in this regard. Differences will be evaluated by applying statistical metrics in the 
following sections. In a similar manner to its immediate predecessor, Figure 11 presents the 
exceedance probability of simulated discharges, which are grouped in accordance with different 
precipitation correction methods. No substantial difference is found between the different 
temperature correction methods in hydrological modelling and a relatively small variability range is 
identified. This indicates that the temperature correction methods, in comparison to precipitation 
correction methods, provide a higher level of certainty in the reproduction of discharges. But the 
performances of these temperature-corrected methods are also slightly different when combined 
with different precipitation-corrected methods. When grouped with LOCI, DBC, PT, DM, and EQM-
corrected methods for precipitation, these five temperature correction methods present quite similar 
forms, although the DM method evidences more differences than its other four counterparts when 
combined with the DT and LS methods—this may conceivably be attributed to the interaction 
included in the different method combinations.  

 
Figure 11. Exceedance probabilities of discharge between 1986–2004 periods grouped by precipitation 
bias-corrected methods. 

The cumulative runoff from 1986 to 2004 simulated by the 35 combinations is also presented in 
Figure 12 for better understanding the capacities of these bias correction methods in simulating 
interannual variabilities of discharge. The precipitation corrected by LS and DT methods is not able 
to catch the cumulative runoff well. The positive deviation is getting larger and larger from 1986 to 
2004. The bias correction methods without wet-day frequency correction are unable to describe the 
interannual variabilities of discharge as well. The precipitation corrected by DM and EQM methods 
exhibited an obvious advantage when compared to precipitation corrected by LOCI, DBC, and PT 
methods, especially combined with temperature corrected by VARI and EQM. It indicates that these 
two methods are able to simulate the interannual variabilities of runoff effectively. The bias correction 
methods of precipitation also exhibited relative greater uncertainties in interannual variabilities of 
runoff when compared with temperature correction methods. 

The SWAT-simulated discharge characteristics, including daily flood peaks, daily low flow, 
mean, and 25th quantile and 75th quantile discharges during the relevant period, are also considered 
(Figure 13). Simulations forced by corrected precipitation with the DT and LS methods generally 
seriously overestimate all these statistical indices, and this indicates that the precipitation correction 

Figure 11. Exceedance probabilities of discharge between 1986–2004 periods grouped by precipitation
bias-corrected methods.

The cumulative runoff from 1986 to 2004 simulated by the 35 combinations is also presented
in Figure 12 for better understanding the capacities of these bias correction methods in simulating
interannual variabilities of discharge. The precipitation corrected by LS and DT methods is not able
to catch the cumulative runoff well. The positive deviation is getting larger and larger from 1986 to
2004. The bias correction methods without wet-day frequency correction are unable to describe the
interannual variabilities of discharge as well. The precipitation corrected by DM and EQM methods
exhibited an obvious advantage when compared to precipitation corrected by LOCI, DBC, and PT
methods, especially combined with temperature corrected by VARI and EQM. It indicates that these
two methods are able to simulate the interannual variabilities of runoff effectively. The bias correction
methods of precipitation also exhibited relative greater uncertainties in interannual variabilities of
runoff when compared with temperature correction methods.

The SWAT-simulated discharge characteristics, including daily flood peaks, daily low flow,
mean, and 25th quantile and 75th quantile discharges during the relevant period, are also
considered (Figure 13). Simulations forced by corrected precipitation with the DT and LS methods
generally seriously overestimate all these statistical indices, and this indicates that the precipitation
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correction methods without wet-day frequency correction are restricted to discharge simulations.
Simulations conducted through corrected precipitation with the other five methods come very close to
being referenced, especially when combined with temperature corrected by the DT, EQM, and VARI
methods. In particular, the DM method for both precipitation and temperature corrections presents
a slightly better performance in daily extreme flow simulations.
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Table 4 summarizes the time-series-based metrics of simulated discharges forced by different
combinations of corrected precipitation and temperature and original RCM outputs. With the exception
of simulations driven by corrected precipitation with the DT method, all 35 simulations improved
the statistical metrics. The simulations forced by corrected precipitation with the LS method are
also very biased, with PBIAS ranging between 45.2% and 55.3%. The simulations that use corrected
precipitation with the DBC, DM, EQM, LOCI, and PT methods more closely resemble simulations
forced by observations with considerably reduced MAE and PBIAS. The corrected precipitation with
the DM and EQM methods presents an equally excellent performance, while corrected temperature
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by the EQM and VARI methods performs best in the reproduction of time-series-based metrics.
In the reproduction of discharges, the best combinations are the DM-corrected precipitation and
VARI-corrected temperature.

Table 4. Time-series-based metrics of simulated discharges forced by 35 combinations of corrected
precipitation and temperature as well as original RCM simulations on an average daily scale at the
DSK station.

Method
(Pr)

Method
(Tas)

MAE
(m3s−1)

PBIAS
(%)

NSE
(−)

R2

(−)
Method

(Pr)
Method

(Tas)
MAE
(m3s−1)

PBIAS
(%)

NSE
(−)

R2

(−)

LS

LS 35.26 54.60 −0.88 0.70

PT

LS 9.76 −12.80 0.81 0.91
DT 35.56 55.20 −0.73 0.86 DT 6.63 −8.00 0.90 0.93

VARI 35.71 55.30 −0.73 0.87 VARI 5.92 −6.90 0.91 0.93
DM 29.37 45.20 −0.33 0.87 DM 8.75 −11.50 0.85 0.92

EQM 35.56 55.20 −0.74 0.86 EQM 6.58 −8.10 0.90 0.93

DT

LS 106.34 165.00 −17.35 0.21

DM

LS 7.92 −9.10 0.86 0.91
DT 92.54 143.60 −12.09 0.63 DT 5.58 −4.60 0.92 0.93

VARI 101.05 156.80 −14.19 0.47 VARI 5.04 −3.50 0.93 0.93
DM 92.54 143.60 −12.09 0.63 DM 7.85 −8.10 0.88 0.91

EQM 100.62 156.10 −13.91 0.50 EQM 5.53 −4.50 0.92 0.93

LOCI

LS 10.10 −13.80 0.79 0.91

EQM

LS 9.15 −11.70 0.83 0.91
DT 6.62 −8.70 0.89 0.94 DT 6.14 −6.80 0.91 0.93

VARI 5.92 −6.90 0.91 0.93 VARI 5.49 −5.60 0.92 0.93
DM 8.37 −120 0.86 0.93 DM 8.22 −10.10 0.87 0.92

EQM 6.59 −8.70 0.89 0.94 EQM 6.12 −6.80 0.91 0.93

DBC

LS 9.45 −12.20 0.82 0.91

RCM RCM 71.31 110.60 −10.13 0.42
DT 6.37 −7.40 0.90 0.93

VARI 5.75 −6.20 0.91 0.93
DM 8.52 −10.80 0.86 0.92

EQM 6.33 −7.40 0.91 0.93

5. Discussion

Several bias correction methods have been proposed to downscale RCM outputs as a prerequisite
for the analysis of climate change. These methods range from simple linear scaling techniques to rather
more sophisticated distribution mapping techniques. There is a clear and ongoing need to compare
and evaluate their performance.

Numerous studies prove that the original RCM outputs, and in particular RCM-simulated
precipitation [41–43], are always biased. Their direct use in climate change effects is inadvisable
because they might lead to misleading results. The validating results of the original RCM simulations in
this study indicate that the performance of RCM outputs varies across region. They fail in hydrological
modelling because of their poor performance in the Kaidu River Basin and model calibration could not
even overcome their biases. What is worth noting is that precipitation presents a consistently worse
accuracy in the wet season than the dry season. The possible reason for this is that the RCMs have
a diminished capacity in simulating convective precipitation [40].

All methods can improve the original RCM simulations at different levels. The LS method is
the simplest bias correction method that corrects the climate data upon the basis of the difference
between RCM simulations and observations. While it can adjust mean values, it cannot be used in the
analysis of extreme events because the unique scaling factor in a specific month often leads to heavy
precipitation being greatly underestimated [44]. The LOCI method is the extension of the LS method
that effectively corrects the precipitation frequency. No bias can be found in wet-day frequency or
intensity. When compared to the LS method, heavy precipitation is also partly corrected, and this
is attributable to the correction in wet-day frequency. The DBC and DT methods are both based
on 100-quantile distributions and their major point of divergence originates within the correction of
precipitation occurrence [8]. The extreme events are perfectly presented within these two methods,
and this feature clearly distinguishes them from the LOCI and LS methods.
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However, the DT method greatly deviates the actual mean precipitation and produces large biases
in discharge simulations. The EQM method is based on a point-wise empirical distribution and it
takes different precipitation levels into account on an individual basis. In this study, the DBC and
EQM methods perform the best in precipitation projection—this is because no bias is included in their
frequency-based metrics. The nonlinear DM (based on Gamma distribution) and PT methods still
evidence tiny biases in some frequency-based metrics. Meanwhile, the DM method should be used
with caution because it originates within the assumption that RCM-simulated and observed time series
approximate the distribution [45]. Its use is oppositional unless the time series obeys a theoretical
distribution. As has already been noted, several extreme events are found in the corrected time series
when the DM and PT methods are used and these new extremes arise when the reference period is not
stable [4]. Therefore, a long and relatively stable period would be preferable as it would avoid extreme
error to the greatest possible extent.

When time-series-based metrics are included, linear-based LS and LOCI methods perform best,
with the nonlinear-based PT method following closely behind. Distribution-based methods evidence
a poorer level of performance than other methods. A study by Fang, Yang, Chen and Zammit [29]
reached a similar conclusion—these bias correction methods are grounded within temporal structure
correction [13,30], while linear approaches perform slightly better than the other approaches. In the case
of precipitation correction, the LS method demonstrates the poorest performance in frequency-based
and time-series-based metrics and is clearly distinguished from the other four methods when applied
to temperature correcting. This is because the time structure problem does not exist in temperature
series. The nonlinear VARI method and distribution-based DM, DT, and EQM methods compare fairly
well, and present a similar performance of PBIAS equal to zero.

When the corrected precipitation and temperature are transferred to discharges by hydrological
modelling, great improvements are evidenced that compare favorably to the results forced by original
RCM outputs (corrected precipitation with the DT method being the one exception in this respect).
Different precipitation-corrected methods present larger uncertainty when compared against various
temperature-corrected methods—this is attributable to the poor performance of these methods in the
absence of wet-day frequency correction. The exceedance probabilities of simulated discharges driven
by corrected precipitation with the DT method greatly deviate the references, to an extent that even
exceeds the simulated discharges driven by the original RCM outputs. The results can be traced back
to two sources. In the first instance, simulated discharges driven by the original RCM outputs were
calibrated specifically and the biases were partly overcome as a consequence.

Chen, Brissette, Chaumont and Braun [13] arrive at a similar conclusion. The model may also
be sensitive to a bias in the DT method’s corrected precipitation that has been further magnified by
hydrological modelling. The corrected precipitation in the LS method for precipitation was also not
acceptable for the hydrological modelling because it includes large biases. This further reiterates that
the drizzle effects were not neglected and that the methods without wet-day frequency correction,
such as those evidenced in the DT and LS methods, are not acceptable in discharge simulations in our
study area.

These results clearly diverge from a previous study by Chen, Brissette, Chaumont and Braun [4],
which found that the drizzle effects are not significant in North America. It indicates that the DT method
is highly dependent on the RCM and region. It performs better in the more humid North America than
in arid Xinjiang, which has less precipitation occurrences. The other five methods are all capable of
reproducing discharges to a reasonable extent. Discharges simulated by corrected precipitation
with the DBC method perform slightly better when compared against discharges simulated by
corrected precipitation with the LOCI method. Although correction based on 100 quantiles does
affect hydrological modelling, the effects are not comparable to those evidenced for wet-day frequency
correction. DM and EQM methods perform better against other methods when applied to corrected
precipitation; the same applies to EQM and VARI methods in relation to corrected temperature.
The performance of these correction methods in relation to discharge simulations is not completely
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consistent with those for climate projection; nonetheless, this is only a small difference, which attests
to the robust performance of these methods.

The Kaidu River Basin is a snow-dominated basin where melting water accounts for 58.6% of
the total discharges. Discharges are therefore less sensitive to the temporal structure of precipitation
occurrences. Chen, Brissette, Chaumont and Braun [13] also suggest that bias correction methods
perform more poorly in precipitation-dominated regions than in the snow-dominated regions.
The weak performance of the time structure of corrected precipitation may therefore be insufficiently
recognized by this study. Lafon, Dadson, Buys and Prudhomme [42] also suggest that corrected
precipitation is more sensitive to the selection of a particular time period. Bias correction methods
should therefore be used with caution when the studies are strongly dependent on the temporal
structure of precipitation, although it should be recognized that a good temporal structure of the
original RCM simulations provides considerable assurance in this respect.

6. Conclusions

This paper compares the performances of (seven precipitation and five temperature bias) RCM
correction methods and their hydrological applications in China’s Kaidu River Basin. The abilities
of these corrected methods are evaluated by reproducing discharges, precipitation, and temperature
through the SWAT hydrological model. Several conclusions can be extracted afterwards.

Original RCM outputs are very biased, and this precludes their direct use in the analysis of climate
change effects. The representation of the RCM simulations is highly dependent upon the region and
season. All bias correction methods have the potential to improve the performance of reproducing
precipitation and temperature, although the bias correction method great influences their final results.

The performance of different precipitation-corrected methods presented greater differences
when compared against various temperature-corrected methods. These differences mainly resulted
from the poor performance of the corrected methods (DT and LS methods) in the absence of
precipitation occurrence correction. The distribution-based DBC and EQM methods performed best
in reproducing precipitation, while all temperature-corrected methods, with the exception of the LS
method, performed extremely well.

The correction in wet-day frequency is extremely important for hydrological projection of the
Kaidu River Basin. The DT and LS methods, which lack wet-day frequency correction, are not suitable
for being applied in discharge simulations. Biases in corrected precipitation are likely amplified
when transferred to discharges. The distribution-based DM and EQM methods for precipitation
performed equally well in discharge simulations. There were no substantial differences in the various
temperature-corrected methods in discharge simulations, while the LS method clearly provided the
poorest performance when compared against the other methods. The EQM and VARI methods for
temperature did the best job in discharge simulation. The DM method for both precipitation and
temperature evidenced a narrow superiority in extreme-flow projection.

In general, this paper emphasizes the importance of using several bias correction methods for
crosscheck in climate and hydrological response analysis. Even the performance of bias correction
methods is dependent upon the RCM model and region. The results set out in this paper are of wider
significance and the procedures can accordingly be applied to other regions.
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