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Abstract: Evapotranspiration (ET) is the second largest component of the water cycle in arid and
semiarid environments, and, in fact, more than 60% of the precipitation on earth is returned to the
atmosphere through it. MOD16 represents an operational source of ET estimates with adequate
spatial resolution for several applications, such as water resources planning, at a regional scale.
However, the use of these estimates in routine applications will require MOD16 evaluation and
validation using accurate ground-based measurements. The main objective of this study was to
evaluate the performance of the MOD16A2 product by comparing it with eddy covariance (EC)
systems. Additional objectives were the analysis of the limitations, uncertainties, and possible
improvements of the MOD16-estimated ET. The EC measurements were acquired for five sites and for
a variety of land covers in northwestern Mexico. The indicators used for the comparison were: root
mean square error (RMSE), bias (BIAS), concordance index (d), and determination coefficient (R2) of
the correlation, comparing measured and modelled ET. The best performance was observed in Rayón
(RMSE = 0.77 mm·day−1, BIAS = −0.46 mm·day−1, d = 0.88, and R2 = 0.86); El Mogor and La Paz
showed errors and coefficients of determination comparable to each other (RMSE = 0.39 mm·day−1,
BIAS = −0.04 mm·day−1, R2 = 0.46 and RMSE = 0.42 mm·day−1, BIAS = −0.18 mm·day−1, R2 = 0.45,
respectively). In most cases, MOD16 underestimated the ET values.

Keywords: eddy covariance; wheat; shrublands; remote sensing; Penman–Monteith;
canopy conductance

1. Introduction

Evapotranspiration (ET) is the second largest component of the water cycle [1,2]. It is commonly
accepted that more than 60% of precipitation is returned to the atmosphere through it [3,4], especially
in ecosystems with limitations of water (arid and semi-arid zones) [2,5,6]. ET considers all the processes
in which water changes from liquid to gas and includes the evaporation from the surface of plants (also
called loss by interception, which can represent up to 30%), soil evaporation (up to 65% for canopies
with scarce vegetation, like shrubs), and plant transpiration [2,6]. The relative proportion of ET over
precipitation defines the availability of water in a region and determines global vegetation patterns [2];
thus, ET plays an important role in hydrology, agriculture, climatology, ecology, meteorology, carbon
cycle, coastal sciences, data science, statistics, and economics [4,7]. Information on ET is essential

Water 2018, 10, 901; doi:10.3390/w10070901 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-7542-7779
https://orcid.org/0000-0003-4271-2439
http://www.mdpi.com/2073-4441/10/7/901?type=check_update&version=1
http://dx.doi.org/10.3390/w10070901
http://www.mdpi.com/journal/water


Water 2018, 10, 901 2 of 14

for the comprehension and evaluation of water resources systems and their changes influenced by
human activities [8], as well as for the quantification of food [9], fibers, and biofuels production [10],
in the parameterization of hydrological planning and operational models for weather and climate
prediction [10], the management and allocation of water in regions with water scarcity [10], and
the detection of volcanic activity [4]. Having accurate estimates of ET contributes to facilitating
the decision-making for water resources management [7,11] because, in hydrological balances, even
“small” errors in the estimated values can represent substantial volumes of water [10].

ET is highly variable in space and time [10], depending on the heterogeneity of the landscape,
vegetation conditions [7], solar radiation, wind speed, vapor pressure deficit, and air temperature,
among other elements [12]. It is difficult to measure, as it requires the use of relatively complex
principles and techniques [10], especially in arid and semi-arid regions, where the ET flux is very
low in comparison with humid regions [7]. ET can be measured or estimated for a specific site, plant,
agricultural plot, or landscape through punctual methods [13–16]. Such methods, even those that have
been successfully tested, represent local conditions and can rarely be escalated to large areas, since
they do not capture the spatial variability and are limited by the time and costs involved in installation
and processing [10,17,18]. There are also methods for measuring and estimating the elements of
evapotranspiration separately [19].

The information required at a regional scale for hydrological applications is typically obtained
through remote sensing techniques (RS) [10–12], which provide relatively frequent and spatially
contiguous measurements for the global monitoring of surface biophysical variables that affect ET.
Some of the most used approaches are: (i) for crop, ET at plot scale based on the product between a
reference ET (ETo) and the crop coefficient (Kc) derived from RS-based vegetation indices, such
as the well-known normalized difference vegetation index (NDVI) [20]; (ii) based on a surface
energy balance (SEB), one-source Landsat-based SEB models such as SEBAL (Surface Energy Balance
Algorithm for Land) [21] and METRIC (Mapping Evapotranspiration with High Resolution and
Internalized Calibration) [22], S-SEBI (Simplified Surface Energy Balance Index) [23], and SEBS (SEB
System) [24], two-source SEB models such as ALEXI (Atmosphere–Land EXchange Inverse) [25],
DisALEXI (Disaggregated Atmosphere–Land EXchange Inverse) [26], and the Sim-ReSET model
(Simple Remote Sensing EvapoTranspiration) [27]; (iii) Priestley–Taylor Methods such as GLEAM
(Global Land Surface Evaporation: the Amsterdam Methodology) [28]; (iv) Land Surface Models
(LSM) [29] such as Noah [30,31], Mosaic [32,33], VIC (Variable Infiltration Capacity) [34–36], and CLM
(Common Land Model) [37]; (v) Water balance methods (basin-wide estimates) using GRACE (Gravity
Recovery and Climate Experiment) satellites data [38,39]; (vi) the solution of the Penman–Monteith
equation based on biophysical parameters derived from RS, as is the case for the MOD16 [3,40] product
analyzed in this work.

Remote sensing can be complementary to field measurements, and the information can be
added to obtain an overall, spatially distributed image to express the data variability in very fine
scales or can be represented spatially through geographic information systems [18] and mapped
profitably, comparing with measurements in situ [13,41]. A particular case is the use of information
from the Earth Observation System (EOS), specifically, the MODIS sensor (Moderate Resolution
Imaging Spectroradiometer) [42]. As part of the NASA/EOS project, MOD16 emerged representing
the transpiration of vegetation and the evaporation from the canopy and soil surfaces (mm·day−1)
worldwide with a spatial resolution of 1 km2, at 8-day intervals [3,40].

The performance of the MOD16 estimation model has been validated in different ecosystems of
the USA [3,43], and this model attracted interest for its use in other regions of the world [7,44–49].
However, in Mexico it has been little explored, except for some evaluations of the potential ET product
in concrete areas [50]. Therefore, the main objective of this research was to evaluate MOD16 by
comparing its estimations with measurements of ET through eddy covariance (EC), to assess the
possibility of using MOD16 for decision-making in questions related to the hydrological cycle. In this
study, the MOD16 ET product was evaluated in five sites included in the initiative of the network of
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towers with EC systems (MexFlux) [51]. Two sites corresponded to wheat crop, and three towers are
located over natural ecosystems, mainly covered by shrubs and situated in arid and semi-arid zones.
The natural ecosystems analyzed are particularly relevant in Mexico, covering more than 60% of the
national territory [52]; therefore, the application of remote sensors to these areas provides information
to develop viable strategies in solving emerging problems of ecosystem degradation [2].

2. Materials and Methods

2.1. MOD16 Algorithm

The MOD16 algorithm, based on the Penman–Monteith equation [53], estimates soil evaporation
and vegetation transpiration (Equations (1) and (2)). The original algorithm was developed on a point
scale [54] and it was later modified and improved [3,40]. Among other modifications, the improved
model is characterized by: (1) a simplified calculation of the plant cover fraction (Fc), since it directly
uses the satellite product MOD15A2 FPAR (fraction of photosynthetic active radiation absorbed by
the canopy) [55]; (2) calculation of the daytime and night-time ET separately; (3) calculation of the
soil heat flux, linearly partitioning the incoming net radiation with respect to Fc (Equations (3) and
(4)); (4) improved estimates of stomatal conductance, aerodynamic resistance, and resistance of the
boundary layer [3].

λET =
∆·Ac + ρ·CP·(esat − e)·Fc/ra

s + γ(1 + rs/ra)
(1)

λES =
∆·ASOIL + ρ·CP·(1 − Fc)·(esat − e)/ras

(s + γ·rtot/ras)
·
(

RH
100

)(esat−e)/200
(2)

Ac = Fc·A (3)

ASOIL = (1 − Fc)·A − G (4)

where λET (Wm−2) is the latent heat flux of foliage transpiration, and λES (Wm−2) is the latent heat
flux of evaporation of the soil at a daily scale; ∆ is the slope of the curve that relates the water vapor
pressure to the temperature (PaK−1); e (Pa) is the actual water vapor pressure, and esat (Pa) is the
saturated vapor pressure; A (Wm−2) is the net radiation, partitioned for soil (ASOIL) and vegetation
(Ac); G (Wm−2) is the soil heat flux; ρ (kgm−3) is the air density; CP (Jkg−1K−1) is the specific heat
capacity of air; Fc is the fraction of the plant cover; ra (sm−1) is the aerodynamic resistance; rs (sm−1)
is the surface resistance; rtot (sm−1) is the total of the aerodynamic resistance; RH (%) is the relative
humidity, and γ is the psychometric constant (PaK−1).

The satellite product used in this work was MOD16A2, the most recent version of MOD16 on an
8-day temporal scale (8-day average) with a spatial resolution of 500 m [56]. The images are available
in the HDF-EOS format, and each image covers about 1200 × 1200 km, corresponding to the MODIS
mosaics (http://modis-land.gsfc.nasa.gov/MODLANDgrid.html). The study sites are within three
mosaics (h08v06, h08v05 and h07v06), see Figure 1. The raster layer corresponding to the Latent heat
turbulent flux (LE) variable was extracted from each MOD16A2 ET file, and the values were converted
to the average ET values in mm·day−1 (the 8-day average) for each pixel corresponding to the EC sites,
using ArcGis 10× (https://www.esri.com/en-us/arcgis/about-arcgis/overview).

http://modis-land.gsfc.nasa.gov/MODLAND grid.html
https://www.esri.com/en-us/arcgis/about-arcgis/overview
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State (Son: Sonora, BCN: Baja California Norte, BCS: Baja California Sur), Elevation (Elev, unit: m), 
Latitude (Lat), Longitude (Lon), mean annual precipitation (P, unit: mm), mean annual temperature 
(T, unit: °C), and references describing the measurements. 
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EC1 Valle de Yaqui1 Crop: wheat Crop Son 36 27.278 −109.904 261 22 Rodríguez, et al. [59] 
EC2 Valle de Yaqui2 Crop: wheat Crop Son 40 22.279 −109.873 261 22 Castañeda [58] 
EC3 Rayón Shrub Cshrub Son 632 29.741 −110.533 487 21 Villareal, et al. [60] 
EC4 El Mogor Shrub Oshrub BCN 406 32.029 −116.604 309 17 Villareal, et al. [60] 
EC5 La Paz Shrub Oshub BCS 21 24.129 −110.438 181.8 23.6 AmeriFlux [62] 

EC1 and EC2 where located in the Irrigation District Valle del Yaqui [57]. The sites are located 
in northern Mexico (Figure 1); this zone has a semi-arid climate with summer rains (July–October), 
the average annual temperature is 22 °C, and the average annual precipitation is 261 mm [58]. During 
the experimental phase of the PLEIADeS project (Participatory Multi-Level EO-Assisted Tools for 
Irrigation Water Management and Agricultural Decision-Support), in the winter–spring cycle of the 
years 2007–2008, micro-meteorological measurements were made to determine water consumption 
in annual crops, including wheat (EC1 and EC2), in an area of 1600 ha. The energy balance closure 

Figure 1. Geographical location of the study sites and disposition of the Moderate Resolution Imaging
Spectroradiometer (MODIS) mosaics that cover the territory of Mexico (MODIS mosaics are named
h08v06, h08v05, and h07v06).

2.2. Eddy Covariance Sites

In this work, the ET estimates derived from the MOD16A2 product were compared with the ET
measurements in five eddy covariance systems (EC) in northern Mexico. The location and the main
characteristics of the study sites are presented in the Table 1.

EC1 and EC2 where located in the Irrigation District Valle del Yaqui [57]. The sites are located in
northern Mexico (Figure 1); this zone has a semi-arid climate with summer rains (July–October), the
average annual temperature is 22 ◦C, and the average annual precipitation is 261 mm [58]. During the
experimental phase of the PLEIADeS project (Participatory Multi-Level EO-Assisted Tools for Irrigation
Water Management and Agricultural Decision-Support), in the winter–spring cycle of the years
2007–2008, micro-meteorological measurements were made to determine water consumption in annual
crops, including wheat (EC1 and EC2), in an area of 1600 ha. The energy balance closure was 0.82,
and the heat fluxes were not corrected. For additional information about the EC systems, the reader is
referred to Castañeda [58] and Rodríguez, et al. [59].

EC3 is 4 km northeast of the city of Rayón and corresponds to subtropical shrublands.
The species with the highest soil cover are Fouquieria macdougalii, Parkinsonia praecox, Acacia cochiacanta,
Jatropha cordata, and Encelia farinosa. It has a dry warm climate, with hot and humid summers (about
70% of rain occurs between July and September) and cold winters. The average annual temperature is
21 ◦C, and the average annual precipitation is 487 mm. The site is equipped with a T45 tower 9 m high
that supports the eddy covariance system with an open-path infrared gas analyzer (IRGA, LI-7500,
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LI-COR) and a three-dimensional sonic anemometer (CSAT 3, Campbell Scientific, Logan, UT, USA).
Villareal, et al. [60].

Table 1. Description of the sites with installation of eddy covariance system (EC): site abbreviation, site
name, vegetation type, MODIS cover land (ModCL, Cshrub: Close shrub, Oshrub: Open shrub), State
(Son: Sonora, BCN: Baja California Norte, BCS: Baja California Sur), Elevation (Elev, unit: m), Latitude
(Lat), Longitude (Lon), mean annual precipitation (P, unit: mm), mean annual temperature (T, unit:
◦C), and references describing the measurements.

Site Name Vegetation ModCL State Elev Lat Lon P T Reference

EC1 Valle de Yaqui1 Crop: wheat Crop Son 36 27.278 −109.904 261 22 Rodríguez, et al. [59]
EC2 Valle de Yaqui2 Crop: wheat Crop Son 40 22.279 −109.873 261 22 Castañeda [58]
EC3 Rayón Shrub Cshrub Son 632 29.741 −110.533 487 21 Villareal, et al. [60]
EC4 El Mogor Shrub Oshrub BCN 406 32.029 −116.604 309 17 Villareal, et al. [60]
EC5 La Paz Shrub Oshub BCS 21 24.129 −110.438 181.8 23.6 AmeriFlux [61]

EC4 El Mogor (EC4) is located 406 m above sea level in Valle de Guadalupe, Baja California; the
plants found in this site are Mediterranean shrubs; this shrubland is characterized by a mixture of
chaparral, representing the most abundant species at the study site, namely, Adenostoma fasiculatum,
Ornithostaphylos oppositifolia, Cneoridium dumosum, Salvia apiana, and Lothus scoparius, with less
abundance of sclerophyllous plant species. It has a Mediterranean climate with hot, dry summers
and cool, wet winters (November–April). The flow measurement system consisted of an open-path
infrared gas analyzer (IRGA, LI-7500, LI-COR) and a three-dimensional sonic anemometer (81000V,
Young, Traverse City, MI, USA) installed at 3.5 m above ground level [60]. The energy balance closure,
an independent measurement to evaluate the Eddy Covariance performance, was 0.82 for the EC3 site
and 0.89 for EC4 site during the years 2008 to 2010. These reports are in accordance with Fluxnet open
and closed shrublands [60].

Site EC5 corresponds to one of the sites of the Ameriflux network (http://ameriflux.lbl.gov/),
measuring ecosystem energy fluxes. This site is called MX-Lpa by the network. It is located 21 m
above sea level, west of La Paz, within the experimental reserve of the Center for Biological Research
of the Northwest (CIBNOR). The predominant vegetation is the open shrubland; the average height of
the canopy is 2–3 m, with Pachycereus pringlei representing the tallest species (6–8 m). The dry desert
climate of the site is characterized by variable annual precipitation, with the highest incidence of rain
between August and September (182 mm year−1); the average annual temperature is 23.6 ◦C, and the
highest solar radiation occurs during the period from April to August. The flux measurement system
consisted of a three-dimensional sonic anemometer–thermometer (Wind Master Pro, Gill Instruments,
Lymington, UK) and an open-path gas analyzer (LI-7500, LI-COR, Lincoln, NE, USA) mounted on a
tower 13 m above the surface [62]. The energy balance closure was 0.95 during the analyzed period.

For the comparison with MOD16 ET estimates, the available EC measurements were processed to
obtain 8-day averages. For EC1 and EC2, the available ET values at a daily scale were used to obtain
the 8-day averages for the year 2008. For EC3 and EC4 sites, there is access to the daily ET estimates for
the 2008–2010 period (https://doi.org/10.3334/ORNLDAAC/1309) [60], and the 8 day- averages were
processed for the whole period. For EC5, LE measurements at 30 min intervals are available for the
2004–2006 period (http://ameriflux.lbl.gov/data/download-data) [61]; these values were averaged at
a daily scale, considering valid only the days (24 h period) with more than 40 data of 30 min averages.
The daily averages of latent heat turbulent flux (LE) were transformed into ET values (mm·day−1)
using the latent heat of vaporization value of water (2.45 MJ·m−2) [13]. The number of 8-day average
values and the period monitored are presented in Table 2.

http://ameriflux.lbl.gov/
https://doi.org/10.3334/ORNLDAAC/1309
http://ameriflux.lbl.gov/data/download-data
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Table 2. Performance assessment of MOD16 in relation to EC, in northern Mexico based on the Root
mean Square Error (RMSE), bias (BIAS), concordance index (d), and coefficient of determination (R2).

Site Name Year
Number of

Data 1

Mean MOD16 Mean EC RMSE BIAS
d R2

mm·day−1 mm·day−1 mm·day−1 mm·day−1

EC1 Valle Yaqui 2008 15 2.76 ± 1.29 2.65 ± 0.97 0.68 0.11 0.90 0.72
EC2 Valle Yaqui 2008 8 2.65 ± 1.80 4.01 ± 1.44 1.85 −1.48 0.72 0.58
EC3 Rayón 2008 19 1.28 ± 1.06 1.85 ± 1.42 0.85 −0.57 0.88 0.93

2009 42 0.61 ± 0.78 0.92 ± 1.09 0.58 −0.31 0.90 0.84
2010 43 0.75 ± 0.87 1.32 ± 0.87 0.88 −0.56 0.86 0.88

EC4 El Mogor 2008 39 0.87 ± 0.41 0.85 ± 0.47 0.41 0.02 0.74 0.30
2009 40 0.79 ± 0.31 0.88 ± 0.55 0.37 −0.09 0.79 0.60
2010 41 1.11 ± 0.41 1.16 ± 0.51 0.38 −0.04 0.81 0.46

EC5 La Paz 2004 32 0.64 ± 0.23 0.87 ± 0.45 0.42 −0.23 0.62 0.41
2005 34 0.53 ± 0.14 0.57 ± 0.25 0.26 −0.04 0.48 0.04
2006 37 0.49 ± 0.24 0.76 ± 0.63 0.52 −0.27 0.65 0.69

1 One full year of MOD 16 information consists of 45 data of the average ET (mm·8 days−1).

2.3. Data Analyses

To evaluate the performance of MOD16 in relation to the measurements obtained by EC, four data
comparison indicators were used: (1) the root of the mean square error (RMSE), measures the variation
of the calculated values with respect to the observed ones; (2) the bias (BIAS), which may be positive
(overestimation) or negative (underestimation), over the observed ones; (3) the concordance index (d),
proposed by Willmott [63], represents the ratio of the mean square error and the potential error; (4) the
coefficient of determination (R2). The first three indicators were calculated with the following equations:

RMSE =

√
∑(EC − MOD16)2

N
(5)

BIAS =
∑(MOD16 − EC)

N
(6)

d = 1 − ∑(MOD16 − EC)2

∑
(∣∣EC − MOD16

∣∣+ ∣∣MOD16 − MOD16
∣∣)2 (7)

The coefficient of determination (R2) was used as a measure of the quality of fitting, understood
as the proportion of the variability explained by the fitted model (Equation (8)).

R2 =

 ∑
(
MOD16 − MOD16

)(
EC − EC

)√
∑
(
MOD16 − MOD16

)2
√

∑
(
EC − EC

)2

2

(8)

where EC is the eddy covariance-based ET at a daily scale (mm · day−1); MOD16 is the ET at a daily
scale (mm · day−1).

3. Results

Comparison of Data Pairs

MOD16 had the best performance in the EC3 site (Table 2), for which the lowest error and the
highest concordance index among the data were observed (RMSE = 0.58 mm·day−1, d = 0.90). The best
performance of MOD16 was evident in land with close shrub cover in comparison with land with open
shrubs (EC4 and EC5) and wheat crops (EC1 and EC2) (Table 3). In the EC5 site, a poor performance
of MOD16 for the three-year study was found. For the EC1 and EC2 sites, only one-third and
one-fifth of information on the 8-day periods during the year were available. The greatest deficiency
according to the RMSE was observed on the site with the least number of data (RMSE = 1.85 mm·day−1
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EC2). Although the concordance index (d = 0.72) was acceptable, the modelled values explained
only 58% of the variability (R2 = 0.58), much less than in EC1, where two parameters showed better
performance (d = 0.90 and R2 = 0.72). In general, MOD16 underestimated the values of ET, except for
EC1 and EC4 in 2008, for which the model barely overestimated the ET (BIAS = 0.11 mm · day−1,
BIAS = 0.02 mm · day−1, respectively).

The performance of MOD16 was analyzed (Figure 2) by grouping the EC1 and EC2 sites and
comparing them with EC3, EC4, and EC5 for every analyzed period. All data were considered, i.e.,
EC3 and EC4 for 2008–2010 and EC5 for 2004–2006. The highest concordance index and coefficient
of determination (d = 0.88 and R2 = 0.86) were observed in EC3, although the highest RMSE was
obtained for this site (RMSE = 0.77 mm·day−1). EC4 and EC5 presented errors and coefficients of
determination close to each other (RMSE = 0.39 mm·day−1, R2 = 0.46 and RMSE = 0.42 mm·day−1,
R2 = 0.45, respectively), although the data had a higher concordance in EC4 (d = 0.80,) than in EC5
(d = 0.62). As presented in Figure 2, the correlation between measured and modelled values indicated
a clear overestimation by MOD16 under high ET rates in EC5, but the errors had not a clear tendency
in EC4. The poorest performance was observed when grouping EC1 and EC2, sites covered with
wheat crop (RMSE = 1.22 mm·day−1, BIAS = −0.44, d = 0.78). For several 8-day averages, MOD16
overestimated ET (points below the red (1:1) line); however, the BIAS estimated for each site indicated
that MOD16 underestimated the measured ET.Water 2018, 10, x FOR PEER REVIEW  8 of 15 
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Figure 2. Comparison of measured (EC) and modelled (MOD16) ET for the study sites analyzed.
The red dotted line represents the 1:1 line, and the solid grey line represents the best fitting line.
This panel shows the dispersion that exists between the data, MOD16 as the estimated variable (x) and
EC as the real values (y), as well as the fitting line of the model and the line 1:1: (a) Valle del Yaqui
(group of EC1 and EC2), (b) Rayón (EC3), (c) El Mogor (EC4), and (d) La Paz (EC5).
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The analysis of the correlations pointed to the relative good agreement of the measured and
modelled values during most of the analyzed period (see Figure 2). However, the modeled values were
not able to reproduce the sudden increases of ET measured by the EC systems during the rain period
in the sites with natural vegetation (EC3, EC4, and EC5). Figure 3 represents the temporal evolution
of the measured values of ET and precipitation. As shown in Figure 3, the ET values changed from
around 1.2 mm·day−1 during winter to up to 6 mm·day−1 in the site EC3 during the rainy season.
In addition to the increment in the evaporation from soil and plant surfaces, plant transpiration could
be increased during these periods. We interpret these data suggesting that the model based on canopy
resistances does not account for the increase of the transpiration rates as a consequence of the expected
increment in water availability for the plants. In addition, the simulation of soil evaporation and
plant interception exclusively based on the relative humidity should be revisited according to the
analyzed conditions.Water 2018, 10, x FOR PEER REVIEW  9 of 15 

 

 
Figure 3. Temporal evolution of the measured evapotranspiration (ET) using the eddy covariance 
systems and precipitation (Pp) in the sites (a) EC3, (b) EC4, and (c) EC5. 

4. Discussion 

This study focused on the assessment of the performance of the satellite product MOD16A2 in 
arid zones of northern Mexico by comparing the ET values estimated by the MOD16 algorithm with 
the values estimated by EC systems. The ecosystem monitored corresponded to wheat crops and 
shrubs. Differences between both methods for ET estimation were found, which can be attributed to 
multiple factors associated to the generation of the algorithm [40]. In a general way, the differences 
can be attributed, primarily, to the parameterization of the MOD16 algorithm (inputs) and to the 
considerations about physical processes that influence ET, secondly, to the EC measurements, 
considered as “real ones”, and, thirdly, to the spatial and temporal scales of each method. 

The parameterization of the MOD16 algorithm plays an important role in the accuracy of ET 
estimations [40]. Soil moisture has a great influence on the aerodynamic or surface resistance of the 
foliage and on the resistance of the soil surface, which are essential parameters in the algorithm. The 
ecosystem in arid and semi-arid zones is driven by moisture in the soil [64,65]; however, this is not 
directly considered in the algorithm [43], since it is very difficult to obtain it in a large area because 
of the variety of soil permeability values and associated textures [64]. However, it is possible to use 
available mapped information about textures in Mexico and integrate it into the MOD16 algorithm 
to improve it. However, and even in these conditions, the simulation of soil water content will require 

Figure 3. Temporal evolution of the measured evapotranspiration (ET) using the eddy covariance
systems and precipitation (Pp) in the sites (a) EC3, (b) EC4, and (c) EC5.



Water 2018, 10, 901 9 of 14

Table 3. Performance assessment of MOD16 in relation to EC in northern Mexico based on the Root
mean Square Error (RMSE), bias (BIAS), concordance index (d), and the coefficient of determination
(R2). MODIS cover land (ModCL, Cshrub: Close shrub, Oshrub: Open shrub).

ModCL Site
Mean MOD16 Mean EC RMSE BIAS

d R2
mm·day−1 mm·day−1 mm·day−1 mm·day−1

Crop EC1 and EC2 2.69 ± 1.45 3.13 ± 1.31 1.218 −0.44 0.78 0.43
Cshrub EC3 0.79 ± 0.89 1.25 ± 1.35 0.767 −0.46 0.88 0.86
Oshrub EC4 and EC5 0.75 ± 0.38 0.86 ± 0.52 0.401 −0.11 0.77 0.44

4. Discussion

This study focused on the assessment of the performance of the satellite product MOD16A2 in
arid zones of northern Mexico by comparing the ET values estimated by the MOD16 algorithm with
the values estimated by EC systems. The ecosystem monitored corresponded to wheat crops and
shrubs. Differences between both methods for ET estimation were found, which can be attributed to
multiple factors associated to the generation of the algorithm [40]. In a general way, the differences
can be attributed, primarily, to the parameterization of the MOD16 algorithm (inputs) and to
the considerations about physical processes that influence ET, secondly, to the EC measurements,
considered as “real ones”, and, thirdly, to the spatial and temporal scales of each method.

The parameterization of the MOD16 algorithm plays an important role in the accuracy of ET
estimations [40]. Soil moisture has a great influence on the aerodynamic or surface resistance of
the foliage and on the resistance of the soil surface, which are essential parameters in the algorithm.
The ecosystem in arid and semi-arid zones is driven by moisture in the soil [64,65]; however, this is not
directly considered in the algorithm [43], since it is very difficult to obtain it in a large area because
of the variety of soil permeability values and associated textures [64]. However, it is possible to use
available mapped information about textures in Mexico and integrate it into the MOD16 algorithm to
improve it. However, and even in these conditions, the simulation of soil water content will require the
integration of precipitation data that are not generally available in most areas; also, the precision of the
global estimates grilled products must be analyzed. A relationship between the vapor pressure deficit
(VPD) and the relative humidity (RH) is assumed [66], which is highly questionable [3] and could
lead to the underestimation identified in this work. Previous model validations of MOD16 showed
a similar underestimation of ET in sparse natural vegetation, such as crops [67], savanna [40], and
grassland [68]. As pointed out by these authors, the differences may be due to the uncertainty of the
input variables (Leaf area index (LAI) or meteorological data). These results indicate the necessity of
improving the model formulation focused on the variation of canopy conductance. Identical forced
models can determine what controls the accuracy of ET in our sites. It is urgent to improve strategies
to measure meteorological drivers and local vegetation properties, such as relative humidity, net
radiation, canopy conductance, and leaf area index, especially in the rainy season. It will be important
to evaluate other satellite products with higher spatial and temporal resolution or rescale MOD16 RS
inputs using another satellite products with better resolution.

In addition, the Global Modelling and Assimilation Office (GMAO) meteorological information
reanalysis is validated at a global scale. It was resampled from ~110 km (0.5◦) to 1 km to be inserted in
the MOD16 algorithm, a process that may introduce uncertainty in the ET estimation. Other products
that can introduce significant errors are the classification of coverage and land use (MOD12Q1) and
LAI/FPAR (MOD15A2). Discrepancies have been found when comparing the classification of land
use by the MODIS product with that made in the field [49], in contrast with this study, in which
the classifications coincide both for shrublands in EC3, EC4, and EC5 and for crops in EC1 and
EC2; however, MOD16 considers constant the properties for the same biome, so the phenological
and structural differences of the shrubs are not captured, having an impact on the ET estimates.
It has been found that when comparing MOD16 to estimates of reference evapotranspiration (ETo) in
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southeastern Mexico, in areas of higher humidity, there is a 0.21 coefficient of correlation, suggesting
that it is necessary to parameterize the algorithm with locally derived data [50]; even though higher
correlations were found in this study, it is necessary to obtain local phenology measurements, associate
them with the national land cover classification, and then integrate them in MOD16.

Secondly, there are uncertainties associated with the EC measurements, which may be caused by
the instrument calibration, the necessary postprocessing in the flux measurements, and the problem of
closing the energy balance. For this study, EC measurements were obtained from previous studies and
were considered as real ET. Authors reported energy balance closure for EC1 and EC2 (0.82), El Mogor
(0.82), and Rayón (0.89). In La Paz, the energy balance closure was 0.95. All these measurements were
acceptable. A fundamental requirement is to maintain a homogeneous surface without disturbance
(Fetch), which is proportional to the instrument height [18]; a Fetch 100:1 is recommended and should
be higher for smoother surfaces and smaller for rough surfaces. This height is unknown for sites
located in areas with wheat crops; however, it has been demonstrated that with an instrument that is
2 m high, a homogeneous area of 1.5–2.5 ha can be observed depending on the direction and speed of
the wind and on the atmospheric stability [68]; in the case of Rayón, which has a rough surface, with
an instrument height of 9 m, a Fetch of at least 900 m is required, a requirement that is easily fulfilled
because of the type of coverage; in the case of El Mogor, the height at which the measuring instrument
was placed, i.e., 3.5 m, requires a Fetch of at least 350 m, and, in La Paz, the height of 13 m can easily
represent a Fetch of 1300 m. The uncertainties associated with the measurements of the flux towers
can influence the indicators bias, error, and coefficient of determination [43]. The advantage of having
complete measurements at intervals of 8 days was evident in the improvement of the relationship
between the flux towers and MOD16 in the sites with more data [7], as was observed in EC1 and EC2.

Both the magnitude and the definition of the different components of the water balance depend
to a great extent on the scale [2]. There are time lags between the ET estimates for many satellite
systems, especially those with high spatial resolution, where images are obtained only periodically
for a specific location (8 days in the case of MODIS); therefore, evaporation from precipitation events
occurring between satellite passages or the processing of the “wet” images of recent precipitation
events may bias the seasonal estimates [16]. The EC estimates, used to evaluate the MOD16 algorithm,
represent a homogeneous zone with a smaller surface than the spatial scale of MOD16, in the case
of the wheat crop (~0.01 km2) and El Mogor (~0.1 km2) sites. Over narrow vegetation systems or
small cultivation areas, satellite pixels can overlap large mixtures of vegetation types and densities.
Surface temperature signals are mixed and ET recoveries are difficult to interpret [16]. MOD16 assumes
an average value for a heterogeneous area, considering it as if it were a homogeneous area, inserting a
bias in the information and in the comparisons with EC

5. Conclusions

In this investigation, the ET values obtained in the eddy covariance (EC) sites were compared
with the satellite information estimated by the MOD16 algorithm, in five sites located in northwestern
Mexico, in arid and semi-arid zones, over wheat cultivation and shrubs. Based on the results
found, it can be primarily concluded that, in Mexico, evapotranspiration measurements through
EC systems are scarce; the literature reports more EC sites, but the results are not available or they
are hard to access; for this reason, this study only used five sites which provided sufficient and useful
information for the proposed objectives. However, it is necessary to compare MOD16 with EC in zones
with different environmental conditions in Mexico, before we could recommend it at national level.
Secondly, acceptable results were found to consider the applicability of MOD16A2 products in areas
with close shrubs, at a regional, state, and basin scale, in arid and semi-arid zones, despite the error,
bias, and medium concordance indices found between EC and MOD16. Thirdly, in the current study,
sufficient evidence to recommend the use of MOD16 in crops was not obtained.
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