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Abstract: Currently, with the rapid development of many cities, water problems, such as water
logging and water quality deterioration, occur inevitably. Thus, sponge city construction and
low impact development (LID) utilization have become more important worldwide. However,
previous works have failed to address the problem of selecting an optimal LID measure layout
scenario by simultaneously considering various evaluation indices without subjective factors. In this
study, we applied a new and outstanding statistical classifier, random forest, to aid in addressing
this conundrum. It was tested on a case study in LiWan district, Guangzhou city. The following
conclusions were drawn. (1) To some extent, LID measures are capable of reducing water discharge
and generation of pollutants. (2) Excluding subjective factors, random forest can select an optimal
LID measure layout scenario when simultaneously considering multiple indices. This study proposed
a novel and effective means to evaluate the hydrologic effects of LID measures when constructing
sponge cities and provided a guide for optimizing LID layouts.

Keywords: sponge city; optimal low impact development measure layout scenario; random forest

1. Introduction

Studies addressing water problems have a long tradition. During the past decades, people across
the world have been threatened by various ecological disasters, causing heavy economic losses and
widespread fatalities. For example, Pall et al. [1] thought widespread floods in the United Kingdom
such as those during the spring of 1998, autumn of 2000, winter of 2003, and summer of 2007 were
related to extreme precipitation. From 6 May at 7:00 p.m. to 7 May at 4:00 a.m., 2010, 128 precipitation
stations in Guangzhou recorded rainfall of more than 100 mm. Moreover, rainfall in the urban area was
near 130 mm on average. Rapid socio-economic and urban developments have led to climate change
and frequent extreme rainstorm events. The increase in urban impervious area has made sustainable
development problems in cities increasingly prominent. The increase has resulted in an increase in
the runoff coefficient and peak flow, and the peak flow time has advanced, differing from river basin
flooding. In response to the increasing water problems, different strategies based on the situations of
different countries are indispensable. However, as developed countries in Europe, North America,
and other continents have already rapidly industrialized and urbanized, they faced and addressed
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water-related problems earlier than China [2–4]. Because of the frequent occurrence of hazards in
China and precedents of other countries, it is of great significance for China to put forward new
policies suitable to its own realities, known as integrated urban water management [2]. This is the
very reason the concept of sponge city in China was proposed. As some projects of sponge city have
been launched, low impact development (LID) measures such as green roofs, permeable pavements,
and sunken lawns have caught the designer’s eye.

Because LID measures can feasibly purify water and reduce water contaminant concentrations,
several researchers have studied their hydrologic performance. For instance, Stovin et al. [5] analyzed
the performance characteristics of green roofs and employed the green roof moisture flux model to
explain runoff behaviors on the foundation of prolonged monitoring data. In another study, Jia et al. [6]
evaluated the benefits of low impact development-best management practices (LID-BMPs) in terms
of water quantity and quality based on the storm water management model (SWMM) via a case
study conducted in Suzhou, China. Ahiablame et al. [7] developed the long-term hydrologic impact
assessment (L-THIA)-LID model and found that LID implementation was effective in minimizing the
impact of urbanization on the hydrologic process. Chui et al. [8] analyzed the hydrological performance
and cost-effectiveness of various LID designs, aiming to identify the optimal design among them.
Xing et al. [9] showed that control efficiencies of water quality and quantity were concerned with LID
layouts via weighting analysis and SWMM, appealing that further studies on the efficiency and the
management of rainfall runoff control are imperative.

Responding to the problem of combining the optimal proportions of each LID facility may not
be the optimal solution to the combination of all facilities, studies on LID layouts and optimization
have been conducted. By developing different models, Hu et al. [10] tentatively explored the general
thinking of LID layouts and optimization methods in a LID demonstration area. Wang et al. [11]
attempted to identify the optimal proportion of each LID appliance in an old city area by simulating
various proportions of LID appliances in the SWMM. They also explored the optimal LID combination
layout. In addition, Young et al. [12] applied the analytic hierarchy process (AHP) to select a single
BMP when simultaneously considering several influential criteria.

Nevertheless, given all the previously mentioned studies, further research is still needed. Because
some evaluation approaches such as the AHP and the entropy weight method (EWM) have the
disadvantages of considering weights and contain subjective factors, it is still of great significance to put
forward a novel approach to evaluate combined LID appliances under different rainstorm intensities.
In this study, an innovative approach, namely random forest, was applied to this difficult problem.

Random forest is an integrated non-parametric learning machine based on decision trees. It is
compatible for classification and regression of variables. With the advantages of simple principles,
precise predictions, relative flexibility, and rapid training speed, it has become a new favorite in
substantial academic fields. However, its results are not easily interpreted, that is to say, the meaning
of the classification model is hard to describe [13].

In this study, we tentatively explored the hydrologic effects of LID measures via a case study in
LiWan district, Guangzhou city. Five LID measure layout scenarios were designed, and six categories
of contaminants were tested to investigate the influence of the five scenarios on water quality. A model
was developed to quantitatively assess the hydrologic effects of LID appliances under six rainstorm
design recurrence periods with the help of the LID controls module in the SWMM. Eight indices were
selected as assessment criteria for each scenario. Apart from these measures, random forest algorithm
based on Python was applied to evaluate the comprehensive performance of each scenario. Finally,
some recommendations for sponge city construction are given at the end of this paper based on the
simulation results.

2. Materials and Methods

A simple flow chart of the experiment is shown in Figure 1.
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2.1. Research Area 

Located in the LiWan district of Guangzhou city and surrounded by rivers on three sides, the 
research area is residential and covers a total area of 0.4329 km2. It has an isolated and closed drainage 
system with rain and sewage diversion. In this study, roofs, roads, green spaces, and bare lands were 
chosen to be the underlying surfaces. 

Considering the rainwater pipe network, terrain conditions and principles of the SWMM, the 
model of the area was divided into 128 subcatchments, consisting of 128 nodes, 129 pipes, and 2 
outlets (Figure 2).  
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2.1. Research Area

Located in the LiWan district of Guangzhou city and surrounded by rivers on three sides,
the research area is residential and covers a total area of 0.4329 km2. It has an isolated and closed
drainage system with rain and sewage diversion. In this study, roofs, roads, green spaces, and bare
lands were chosen to be the underlying surfaces.

Considering the rainwater pipe network, terrain conditions and principles of the SWMM,
the model of the area was divided into 128 subcatchments, consisting of 128 nodes, 129 pipes, and 2
outlets (Figure 2).
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2.2. SWMM

The SWMM, a dynamic rainfall–runoff simulation model, is available for a single event or
long-term simulation of runoff quantity and quality from primarily urban areas [14,15]. First developed
by the US Environmental Protection Agency (EPA) in 1971, it is a watershed-scale distributed
hydrologic model based on water diffusion. Given the availability of the source code and library
functions, it is thought to be the most widely used urban stormwater model throughout the world [16].
Considering the spatial variability and principles of the SWMM, the model of a research area is often
simplified into several subcatchments, each of which is generalized as a nonlinear reservoir when
completing surface runoff calculations. Since version 5.1.007, the LID controls module has been
implemented to simulate the hydrologic effect of rain gardens, permeable pavements, infiltration
trenches, etc. Aiming to define the corresponding areal coverage, LID measures can be assigned within
the selected subcatchments [17]. According to Ahiablame et al. [18], various combinations of structural
layers ought to correspond to various LID practices in the light of permeation theory. In this study,
we selected green roofs, permeable pavements, and sunken lawns as LID implementations in each
subcatchment and the Horton model was applied to simulate the infiltration of unsaturated soil area
under precipitation.

2.3. Random Forest

Put forward by Leo Breiman and Adele Culter, random forest, an integrated non-parametric
learning machine, is an ensemble of numerous tree predictors. With the purpose of sample training,
considerable classification and regression trees (CART) are often constructed. All trees in the forest
are identically distributed and the generation of each tree relies on the values of random vectors [19].
Random forest can fit multiple classification trees to a dataset [20]. In this technique, a small random
sample that can interpret variables is chosen and these limited variables are competent to make the
best split [21]. Ascribed to this characteristic, this algorithm performs much better than other classifiers
based on standard trees [22]. Regarding classification, each tree in random forest votes for the most
popular class, which is described as Equation (1). The final result depends on the majority vote of
these tree predictors as follows [23]:

H(x) = max
Y

∑ k
i=1 I(hi(x) = Y) (1)

where H(x) is the classification result of random forest, hi(x) is the classification result of a single
decision tree, Y is the classification object, and I(·) is the indicator function.

The generalization error is given by Equation (2) as follows:

PE∗ = PX,Y(mg(X, Y) > 0) (2)
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where P is the probability, E* is the mathematical expectation, and mg(X, Y) is the margin function.
The convergence of the generalization error is given by Equation (3) as follows:

lim
k→∞

PE∗ = PX,Y(Pθ(h(X, θk) = Y)−max
j 6=Y

Pθ(h(X, θk) = j) > 0 (3)

The results show that random forest will not overfit as more decision trees are added.
To clarify, the implementation process of this eminent algorithm can be summarized as follows.
Step I: Create an original training set termed N, and then, apply the bootstrap method to randomly

extract some self-help sample sets in the number of k. Samples that are not extracted each time will be
a component of data out of the bag.

Step II: Assume a total of m variables and x variables are randomly selected at each node of each
tree, and then a variable with the most classification ability is selected in the x variable. The threshold
of the variable classification is determined by checking each classification point.

Step III: Each tree is fully grown without any pruning.
Step IV: A random forest is finally composed of multiple trees, and the new data are classified

by a random forest classifier. The classification results are determined according to the vote of the
tree classifier.

A strengths, weaknesses, opportunities, and threats (SWOT) analysis of random forest is shown
in Figure 3.
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2.4. Methodology

2.4.1. Model Building

Aiming to simplify the research area, the equal angle line method was applied to define
the boundary lines of the catchment. Subsequently, the Tyson polygon rule was used to divide
the catchment into several subcatchments. According to the principle of water nearby discharge,
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the research area was finally simplified into 128 subcatchments. In the research conducted by
Zhu et al. [24] in the adjacent area, they used rainfall–runoff events during 2013 and 2014 to calibrate
the parameters and applied ten other events to validate the model, which promised sufficient precision.
Thus, the water quantity parameters in this study, as shown in Table 1, were determined by referring
to both the model manual [14] and relevant research mentioned previously. Water quality simulation
in SWMM is related to different underlying surfaces. The street sweeping parameters shown in Table 2
were used for water quality simulation in the SWMM.

Table 1. Water quantity parameters of each subcatchment.

Parameter Physical Meaning Value

N-Imperv Manning coefficient of impervious area 0.015
N-Perv Manning coefficient of permeable area 0.4

Destore-Imperv Depth of water storage in impervious area (mm) 1
Destore-Perv Depth of water storage in permeable area (mm) 10

Percent Zero-Imperv Proportion of no depressions and impervious zones in impervious area 50
MaxRate Maximum infiltration rate (mm·h−1) 103.81
MinRate Minimum infiltration rate (mm·h−1) 11.44

Decay Osmotic attenuation coefficient 2.75

Table 2. Street sweeping parameters of various underlying surfaces.

Parameters
Underlying Surfaces

Road Green Roof Green Space

Sweeping interval/d 1 1 0
Fraction availability 1 0.2 0
Last swept time/d 1 1 0

To calibrate parameters and validate the built model, data of three rainfall events during
September 2016 were collected. Five-day biological oxygen demand (BOD5), chemical oxygen
demand (CODcr), ammoniacal nitrogen (NH3-N), total nitrogen (TN), total phosphorous (TP), and total
suspended solids (TSS) are water quality indices typically used to analyze water pollution of various
underlying surfaces. Specifically, data of the rainfall event that occurred on 7 September were used
to validate the water quality and quantity parameters of green spaces and roads. Data collected on
2 September were used to validate the same parameters for roofs. The relative errors (E) between
the simulation results and the observed data of the six contaminants were determined to ensure the
precision of the model. The calculation formula is shown as Equation (4):

E =
(Cs,max − Co,max)

2 +
(
Cs − Co

)2
+ (Cs,same − Co,same)

2(
Co,max − C

)2
+

(
Co − C

)2
+

(
Co,same − C

)2 × 100% (4)

where E is the relative error, %; Cs,max is the maximum simulation value; Co,max is the maximum
observed value; Cs is the average value of simulation; Co is the average value of observations; Cs,same

is an instantaneous value of simulation; Co,same is an instantaneous value of observations at the same
time of the simulation; and C is the average value of Co,max, Co, and Co,same.

The relative errors (E) of the three previously mentioned rainfall events were analyzed. Based
on the results shown in Figure 4, the relative errors (E) were overwhelmingly less than 15%, which
illustrates that the simulation results conform to the precision requirements.
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2.4.2. Rainfall Simulation

In this study, the formula for storm intensity (Equation (5)) was applied to calculate rainfall in
Guangzhou. On the foundation of storm rainfall data over the last 30 years, this formula was derived
using the multi sample method and is as follows [25,26]:

q =
3618.427(1 + 0.438LgP)

(t + 11.259)0.75 (5)

where q is the design storm intensity (L/s·ha), t is the duration of a rainfall event (min), and P is the
rainstorm design recurrence period (year).

Additionally, a rainfall pattern that is near the reality of the research area using the Chicago
Hydrograph Model [27] was selected to describe the procedures of rainfall events under six rainstorm
design recurrence periods (i.e., P = 0.5, 1, 2, 5, 10, and 20 years). The duration of each rainstorm design
recurrence period in this manuscript was determined to be 120 min. The Chicago rainfall process lines
of different rainstorm design recurrence periods are shown in Figure 5.
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2.4.3. Computational Principles of LID Measures

LID rainwater utilization technology mainly utilizes different functions of different facilities
to decrease total runoff volume and peak flow, purify and utilize rainwater, and improve the
eco-environment. A single LID measure such as a sunken lawn may have multiple functions.
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LID measures are formed using different layers. For example, a permeable pavement is composed
of pavers, sub-base, and a reservoir course; a green roof is composed of a vegetation layer, growing
medium, drainage filter, and drainage layer; and sunken lawns and bio-retention cells are composed of
storage layers, cultivated soils, and local soils. Based on the principles of various LID measures,
the SWMM has incorporated seven LID control measures: bio-retention cell, infiltration trench,
permeable pavement, rain barrel, vegetative swale, rain garden, and green roof. In this model,
these measures are also represented by combinations of different vertical layers, including the surface
and a soil, pavement, storage, and drain layer. The specific layers that each LID measure contains are
shown in Table 3.

Table 3. Structural layers of each LID measure.

LID type Surface Soil Pavement Storage Drain

Bio-retention cell 3 3 7 O O
Infiltration trench 3 7 7 3 O

Permeable
pavement 3 O 3 3 O

Rain barrel 7 7 7 3 3

Vegetative swale 3 7 7 7 7

Rain garden 3 3 7 7 7

Green roof 3 3 7 7 3 (drainage mat)

Note: 3 means necessary, 7 means unnecessary, O means optional.

Among these seven LID measures, the bio-retention cell is introduced as an example for LID
computational principles. The SWMM has generalized each LID measure as a reservoir that contains
fillers with pores (Figure 6). Direct rainwater and rainwater from other impervious areas flows into
the surface of the reservoir, in which vegetation has been planted. Different parameters are also set
for the surface, including berm height, vegetation volume fraction, Manning coefficient, and slope.
When the surface capacity is saturated, runoff discharges from the top. The soil layer needs to consist
of coefficients of thickness, porosity, field capacity, wilting point, conductivity, conductivity slope, and
suction head. Specifically, porosity determines the volume of the pores, which is the volume of the
water that can be stored; wilting point measures the water content of the soil when it is the driest; and
field capacity indicates the maximal water content when there is no exchange of water between the soil
layer and other layers such that it must be greater than the wilting point, otherwise the model would
report errors. The storage layer is similar to a reservoir, and needs a thickness, porosity, and seepage
rate. Rainwater can seep via the storage layer to the local soil, and if the drainage layer is set, the water
would discharge through it. The drainage layer must contain a flow coefficient, flow exponent, and
offset height.
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2.4.4. LID Measure Layout Approaches

In the SWMM, LID control measures are established in the subcatchment properties, and either
different or identical LID measures can be established in the same subcatchment. There are two means
to establish LID measures in the subcatchments: adding a single LID measure or multiple LID measures
into a subcatchment with no existing LID measures (Figure 7a) or adding only one LID measure into
one subcatchment (Figure 7b). The first approach allows mixing of different LID control measures in
the same subcatchment and all function simultaneously. Each LID measure addresses the water flow
in its corresponding area, and the outflow data from one LID measure cannot be taken as the inflow
data for another LID measure.
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The second approach allows a LID measure to occupy the entire subcatchment, and it can take the
outflow from its upstream subcatchment as its inflow, thus satisfying flow direction settings. However,
this approach requires building new subcatchments and establishing the corresponding LID properties.

To utilize either the first or the second LID measure layout approach, the impervious rates of the
subcatchments have to be adjusted according to the respective measures. For instance, the impervious
rate needs to be re-calculated if an originally impervious area becomes pervious, and for the second
approach specifically, the areas for the old and new subcatchments need to be adjusted.

Referring to a prior study in Shenzhen [10] and considering the actual situation of the research
area, five LID measure layout scenarios were designed to determine the hydrologic effects of LID
measures on the research area. The content of each scenario can be summarized as follows:

• Scenario A: 35% of the roofs are transformed into green roofs, through which rainwater directly
discharges into the drainage system. In addition, 50% of the green spaces are transformed into
sunken lawns, which are used to collect rain generated from roofs without transformation.

• Scenario B: 50% of the roofs are converted into green roofs, through which rainwater directly
discharges into the drainage system. In addition, 50% of the green spaces are converted into
sunken lawns, which are used to collect the rain generated from the roofs without transformation.

• Scenario C: 35% of the roads are transformed into permeable pavements, through which rainwater
directly discharges into the drainage system. In addition, 50% of the green spaces are transformed
into sunken lawns, which are responsible for the purification of rainwater generated from
the roofs.

• Scenario D: 50% of the roads are transformed into permeable pavement, through which rainwater
directly discharges into the drainage system. In addition, 50% of the green spaces are converted
into sunken lawns, which are responsible for the purification of rainwater generated from roofs.

• Scenario E: A combination of scenarios A and C; 35% of the roofs are transformed into green
roofs and 35% of the roads are converted into permeable pavement. Rainwater generated
from both discharges directly into the drainage system. In addition, 50% of the green spaces



Water 2018, 10, 894 10 of 17

are retrofitted into sunken lawns, which are used to purify rainwater produced by the roofs
without transformation.

Referring to similar studies [10,28,29] and the model manual [14], the parameters of the LID
measures previously mentioned are listed in Tables 4–6.

Table 4. Parameters of green roofs in the SWMM.

Surface
Berm

Height/mm
Vegetation Volume

Fraction
Surface

Roughness
Surface
Slope/% - - -

50 0.2 0.15 1 - - -

Soil
Thickness/mm Porosity Field

capacity
Wilting
point Conductivity/mm·h−1 Conductivity

slope
Suction

head/mm

250 0.18 0.15 0.03 18 10 90

Drainage mat Thickness/mm Void fraction Roughness - - - -

30 0.43 0.3 - - - -

Table 5. Parameters of sunken lawns in the SWMM.

Surface
Berm Height/mm Vegetation Volume

Fraction
Surface

Roughness
Surface
Slope/% - - -

200 0.2 0.15 1 - - -

Soil
Thickness/mm Porosity Field

capacity
Wilting
point Conductivity/mm·h−1 Conductivity

slope
Suction

head/mm

500 0.18 0.1 0.03 3.6 10 90

Storage Thickness/mm Void fraction Seepage
rate/mm·h−1

Clogging
factor - - -

200 0.2 500 0 - - -

Drain
Flow

coefficient/mm·h−1 Flow exponent Offset
height/mm - - - -

0 0.5 50 - - - -

Table 6. Parameters of permeable pavements in the SWMM.

Surface
Berm Height/mm Vegetation Volume

Fraction Surface Roughness Surface Slope/% -

20 0 0.11 1 -

Pavement
Thickness/mm Void ratio Impervious surface

fraction Permeability/mm·h−1 Clogging
factor

60 0.1 0 200 0

Storage Thickness/mm Void ratio Seepage
rate/mm·h−1 Clogging factor -

250 0.43 500 0 -

Drain
Flow

coefficient/mm·h−1 Flow exponent Offset height/mm - -

0 0.5 6 - -

2.4.5. Calculation of Estimated Cost for Each LID Measure Layout Scenario

Based on the construction area of each LID measure for the five scenarios (Figure 8) and the unit
price of different types of LID measures based on the investment of more than 40 domestic projects,
the estimated cost of each scenario can be calculated as shown in Table 7.
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Table 7. Estimated costs of different LID measure layout scenarios.

Scenario LID Measure Unit
Price/USD·m−2 Cost/104 USD

Total
Cost/104·USD

A
Green roof 31.18 55.18

129.72
Sunken lawn 9.35 74.54

B
Green roof 31.18 82.00

156.54
Sunken lawn 9.35 74.54

C
Permeable pavement 35.07 195.71

270.25
Sunken lawn 9.35 74.54

D
Permeable pavement 35.07 295.32

369.86
Sunken lawn 9.35 74.54

Green roof 31.18 55.18
325.43E Permeable pavement 35.07 195.71

Sunken lawn 9.35 74.54

2.4.6. Selection of the Optimal LID Measure Layout Scenario

Aiming to determine the most reasonable layout among the five scenarios, runoff coefficient,
reduction rates of runoff, peak flow, BOD5, CODcr, NH3-N, TSS, and estimated cost of each scenario
under three rainstorm design recurrence periods (i.e., P = 1, 5, and 10 years) were chosen for
comprehensive performance indices. Random forest classification of Scikit-Learn machine learning
in Python was applied to analyze the dataset. Values of the partial parameters are shown in Table 8,
while default values were used for parameters not shown.

Table 8. Partial parameters of random forest in Python.

Parameter Value

max_features sqrt
n_estimators 100

Min_sample_leaf 1
n_jobs 4

3. Results and Discussion

The water quantity simulation of the five LID measure layout scenarios under six rainstorm
design recurrence periods in the SWMM are shown in Table 9.
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Table 9. Water quantity simulation of each LID measure layout scenario under different rainstorm
design recurrence periods.

Scenario Rainstorm Design
Recurrence Period/Year Runoff Coefficient

Reduction Rate/%

Runoff Peak Flow

Without LID
measures

P = 0.5 0.458 - -
P = 1 0.483 - -
P = 2 0.522 - -
P = 5 0.570 - -
P = 10 0.602 - -
P = 20 0.603 - -

A

P = 0.5 0.306 38.00 31.05
P = 1 0.329 36.67 31.00
P = 2 0.358 36.05 30.42
P = 5 0.394 35.04 29.38
P = 10 0.418 35.00 28.52
P = 20 0.441 26.74 27.73

B

P = 0.5 0.308 37.54 30.42
P = 1 0.330 36.27 30.39
P = 2 0.359 35.72 29.87
P = 5 0.394 34.87 28.89
P = 10 0.417 34.87 28.11
P = 20 0.440 26.68 27.42

C

P = 0.5 0.234 49.67 48.76
P = 1 0.256 47.45 48.59
P = 2 0.288 44.98 47.56
P = 5 0.329 41.98 45.77
P = 10 0.357 40.56 44.40
P = 20 0.381 32.27 43.18

D

P = 0.5 0.198 57.59 56.51
P = 1 0.220 55.03 56.33
P = 2 0.251 50.99 55.15
P = 5 0.291 48.77 53.13
P = 10 0.318 47.04 51.57
P = 20 0.341 39.31 50.20

E

P = 0.5 0.232 53.64 47.43
P = 1 0.253 51.92 47.35
P = 2 0.279 50.58 46.51
P = 5 0.311 49.03 45.01
P = 10 0.333 48.30 43.78
P = 20 0.355 41.09 42.68

According to the data listed in Table 9, the following conclusions can be readily drawn. In response
to the increase in the rainstorm design recurrence period, the runoff and its coefficient, peak flow, as
well as contaminant concentration of all the scenarios increases while the reduction rates decrease.
In addition, comparing the five LID measure layout scenarios to the scenario without any LID
appliance from multiple indices, LID measures have enormous effects on reducing water quantity and
contaminant concentrations. Under three of the rainstorm design recurrence periods (i.e., P = 0.5, 1,
and 2 years), the five scenarios with runoff coefficients ranking from low to high are D, E, C, A, and
B, and the order of the reduction rates of the runoff ranking from low to high is the exact opposite.
In terms of the reduction rates of the peak flow under the same rainstorm intensities, the five scenarios
ranking from high to low are D, C, E, A, and B. Under the other three rainstorm design recurrence
periods (i.e., P = 5, 10, and 20 years), the five scenarios with runoff coefficients ranking from low to
high are E, D, C, A, and B, whose order is the opposite to the reduction rates of runoff. In terms of the
reduction rates of the peak flow under the previously mentioned three rainstorm intensities, the five
scenarios ranking from high to low are D, C, E, A, and B.
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Based on the water quality simulation of the model (Table 10), reduction rates of the six pollutants
under different rainstorm design recurrence periods can be calculated (Figure 9).

Table 10. Pollutant loads of each LID measure layout scenario under different rainstorm design
recurrence periods.

Scenario Rainstorm Design
Recurrence Period/Year

Pollutant Loads/kg

BOD5 CODcr NH3-N TN TP TSS

Without
LID

measures

P = 0.5 653.30 1833.35 25.77 56.48 2.31 974.00
P = 1 711.35 2061.94 27.55 61.27 2.84 1051.12
P = 2 763.44 2280.90 29.44 66.16 3.49 1118.65
P = 5 807.41 2501.75 31.30 71.18 4.43 1170.87
P = 10 824.09 2616.74 33.02 73.96 5.17 1191.32
P = 20 830.84 2675.02 33.69 75.15 5.60 1198.63

A

P = 0.5 347.83 984.69 13.20 27.99 1.08 471.86
P = 1 382.13 1127.40 14.18 30.59 1.34 521.48
P = 2 415.27 1267.52 15.21 33.38 1.66 569.59
P = 5 439.18 1409.41 16.07 35.89 2.15 604.45
P = 10 469.20 1523.38 17.32 38.72 2.54 640.43
P = 20 479.99 1597.27 18.11 40.40 2.95 655.01

B

P = 0.5 342.03 961.21 13.02 27.59 1.04 465.71
P = 1 377.15 1104.80 14.00 30.19 1.30 516.07
P = 2 411.04 1247.15 15.03 32.98 1.61 565.08
P = 5 435.73 1390.17 15.89 35.48 2.09 600.60
P = 10 466.04 1507.82 17.15 38.33 2.47 637.45
P = 20 477.15 1583.66 17.93 40.02 2.88 652.47

C

P = 0.5 218.38 603.60 8.69 18.38 0.66 306.30
P = 1 247.62 713.64 9.48 20.53 0.84 348.12
P = 2 278.69 836.61 10.41 23.08 1.09 393.93
P = 5 308.17 979.77 11.35 25.80 1.48 434.93
P = 10 330.25 1075.83 12.30 28.02 1.80 461.45
P = 20 340.65 1146.21 12.99 29.53 2.14 474.60

D

P = 0.5 163.26 440.89 6.80 14.26 0.48 234.64
P = 1 190.29 533.86 7.51 16.20 0.62 272.87
P = 2 220.38 643.80 8.36 18.57 0.81 316.74
P = 5 252.15 780.82 9.26 21.23 1.14 359.63
P = 10 273.23 875.13 10.10 23.25 1.41 385.39
P = 20 284.37 947.57 10.73 24.68 1.70 399.59

E

P = 0.5 205.09 544.19 8.32 17.41 0.56 287.13
P = 1 235.51 651.38 9.07 19.47 0.72 329.06
P = 2 267.71 770.57 9.95 21.88 0.92 374.57
P = 5 299.98 914.03 10.81 24.46 1.25 418.21
P = 10 323.49 1014.63 11.72 26.62 1.51 447.62
P = 20 336.13 1094.08 12.39 28.17 1.81 464.59
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Deducing from the data shown in Table 10 and the tendencies shown in Figure 9, the scenarios
with reduction rates for the six pollutants ranking from high to low are D, E, C, B, and A under all
six rainstorm design recurrence periods. Although all contaminant concentrations increase with the
increase in rainstorm intensity, the reduction rates among all the six contaminants decrease.

In virtue of the random forest algorithm in Python, the probabilities of each LID measure layout
scenario to be selected as the best scheme are listed in Table 11.



Water 2018, 10, 894 15 of 17

Table 11. Probability of five LID measure layout scenarios to be the optimal under rainstorm design
recurrence periods of P = 1, 5, and 10 years.

Scenario
Probability

P = 1 Year P = 5 Years P = 10 Years

A 0.02 0.05 0.10
B 0.07 0.04 0.07
C 0.17 0.18 0.17
D 0.54 0.44 0.38
E 0.20 0.29 0.28

From a short review of the data shown in Table 11, the following findings are evident.
Comparatively speaking, Scenario D is the optimal scenario when considering runoff coefficient,
reduction rates of runoff, peak flow, BOD5, CODcr, NH3-N, TSS, and estimated cost at the same time
under rainstorm design recurrence periods of P = 1, 5, and 10 years. The probability of Scenario D
being selected as optimal decreases with an increase in rainstorm intensity.

4. Conclusions

At present, LID utilization is increasingly important for the avoidance of substantial ecological
disasters throughout the world. To explore the effects of LID measures on water quality and quantity
in a residential area in Guangzhou, a model in the SWMM was developed and five LID measure
layout scenarios were analyzed. Focusing on the most reasonable scenario among the five, random
forest algorithm in Python was applied simultaneously considering eight indices. Overall, it was
demonstrated that there are far-reaching effects resulting from implemented LID measures, which
play an important role in purifying water, reducing flood risk, and providing a better environment
for citizens. Moreover, via the case study in a residential area in the LiWan district in Guangzhou,
the hypothesis that the random forest algorithm can select the most reasonable LID measure layout
scenario was tested. Despite the limitations, these conclusions are valuable for sponge city construction,
which is an important measure for sustainable urban development and storm water management.
For the future research, a systematic study based on this methodology will be carried out in accordance
with the actual planning and design scenarios of the sponge city.

Based on the results of this study, several recommendations can be made as follows. First, original
roofs can be retrofitted into green roofs and original roads can be retrofitted into permeable pavements
to decrease the level of imperviousness in residential areas, and sunken lawns are qualified to directly
purify rainwater discharged into them. Second, because the comprehensive reduction effects of LID
have a correlation with the combination of different LID measures as well as the proportion of the
identical LID measure, selecting the optimal LID layout in a more objective manner is important. Third,
because the random forest algorithm can calculate the probability of each LID layout scenario to be the
optimal under specific rainstorm design recurrence periods without considering the weight of each
selected index, it is a more reasonable and effective method than the AHP and the EWM.

Author Contributions: X.L. and J.Z. developed the model and analyzed the simulation results. C.H., X.L. and J.Z.
discussed the results, drafted the manuscript, and critically revised the paper. G.H. designed and supervised
the study.

Funding: This study was financially supported by the National Natural Science Fund of China (51739011); the
Guangzhou Science and Technology Planning Project (201707020020); the Science and Technology Planning
Project of Guangdong Province, China (2016A020223003); and the National Training Program of Innovation and
Entrepreneurship for Undergraduates (201710561185).

Acknowledgments: The authors are grateful to the editor and the three anonymous reviewers for their insightful
comments and constructive advice, which greatly improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2018, 10, 894 16 of 17

References

1. Pall, P.; Aina, T.; Stone, D.A.; Stott, P.A.; Nozawa, T.; Hilberts, A.G.; Lohmann, D.; Allen, M.R. Anthropogenic
greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 2011, 470, 382–385.
[CrossRef] [PubMed]

2. Hao, W.; Chao, M.; Liu, J.H.; Shao, W.W. A new strategy for integrated urban water management in China:
Sponge city. Sci. China Technol. Sci. 2018, 61, 1–13.

3. Loubet, P.; Roux, P.; Loiseau, E.; Bellonmaurel, V. Life cycle assessments of urban water systems:
A comparative analysis of selected peer-reviewed literature. Water Res. 2014, 67, 187–202. [CrossRef]
[PubMed]

4. Saraswat, C.; Kumar, P.; Mishra, B.K. Assessment of stormwater runoff management practices and
governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo.
Environ. Sci. Policy 2016, 64, 101–117. [CrossRef]

5. Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrological performance of a green roof test bed under UK
climatic conditions. J. Hydrol. 2012, 414, 148–161. [CrossRef]

6. Jia, H.; Ma, H.; Sun, Z.; Yu, S.; Ding, Y.; Liang, Y. A closed urban scenic river system using stormwater treated
with LID-BMP technology in a revitalized historical district in China. Ecol. Eng. 2014, 71, 448–457. [CrossRef]

7. Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices in two
urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. J. Environ. Manag.
2013, 119, 151–161. [CrossRef] [PubMed]

8. Chui, T.F.M.; Liu, X.; Zhan, W. Assessing cost-effectiveness of specific LID practice designs in response to
large storm events. J. Hydrol. 2016, 533, 353–364. [CrossRef]

9. Xing, W.; Li, P.; Cao, S.B.; Gan, L.L.; Liu, F.L.; Zuo, J.E. Layout effects and optimization of runoff storage and
filtration facilities based on SWMM simulation in a demonstration area. Water Sci. Eng. 2016, 9, 115–124.
[CrossRef]

10. Hu, A.; Ren, X.; Ding, N.; Tang, W. LID Facilities Layout and optimization in an area in Shenzhen based on
SWMM. China Water Wastewater 2015, 31, 96–100. (In Chinese)

11. Wang, T.; Diao, X.M.; Liu, J.; Luan, M.; Ding, N. Optimization of LID layout proportions in old city area
based on SWMM. South-to-North Water Transf. Water Sci. Technol. 2017, 15, 29–43, 128. (In Chinese)

12. Young, K.D.; Younos, T.; Dymond, R.L.; Kibler, D.F.; Lee, D.H. Application of the analytic hierarchy process
for selecting and modeling stormwater best management practices. J. Contemp. Water Res. Educ. 2010, 146,
50–63. [CrossRef]

13. Jake VanderPlas. Python Data Science Handbook, 1st ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016;
p. 433, ISBN 9781491912058.

14. Rossman, L.A. Storm Water Management Model User’s Manual, Version 5.0; National Risk Management Research
Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH,
USA, 2010.

15. Cipolla, S.S.; Maglionico, M.; Stojkov, I. A long-term hydrological modelling of an extensive green roof by
means of SWMM. Ecol. Eng. 2016, 95, 876–887. [CrossRef]

16. Shao, Z.; Zhang, X.; Li, S.; Deng, S.; Chai, H.; Shao, Z.; Zhang, X.; Li, S.; Deng, S.; Chai, H. A novel SWMM
based algorithm application to storm sewer network design. Water 2017, 9, 747. [CrossRef]

17. Palla, A.; Gnecco, I. Hydrologic modeling of low impact development systems at the urban catchment scale.
J. Hydrol. 2015, 528, 361–368. [CrossRef]

18. Ahiablame, L.; Shakya, R. Modeling flood reduction effects of low impact development at a watershed scale.
J. Environ. Manag. 2016, 171, 81–91. [CrossRef] [PubMed]

19. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
20. Cutler, D.R.; Edwards, E.T., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for

classification in ecology. Ecology 2007, 88, 2783–2792. [CrossRef] [PubMed]
21. Breiman, L.I.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees (CART).

Encycl. Ecol. 1984, 40, 582–588.
22. Liaw, A.; Wiener, M.; Liaw, A. Classification and regression by random forests. R News 2002, 2/3, 18–22.
23. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification.

Pattern Recognit. Lett. 2006, 27, 294–300. [CrossRef]

http://dx.doi.org/10.1038/nature09762
http://www.ncbi.nlm.nih.gov/pubmed/21331040
http://dx.doi.org/10.1016/j.watres.2014.08.048
http://www.ncbi.nlm.nih.gov/pubmed/25282088
http://dx.doi.org/10.1016/j.envsci.2016.06.018
http://dx.doi.org/10.1016/j.jhydrol.2011.10.022
http://dx.doi.org/10.1016/j.ecoleng.2014.07.049
http://dx.doi.org/10.1016/j.jenvman.2013.01.019
http://www.ncbi.nlm.nih.gov/pubmed/23474339
http://dx.doi.org/10.1016/j.jhydrol.2015.12.011
http://dx.doi.org/10.1016/j.wse.2016.06.007
http://dx.doi.org/10.1111/j.1936-704X.2010.00391.x
http://dx.doi.org/10.1016/j.ecoleng.2016.07.009
http://dx.doi.org/10.3390/w9100747
http://dx.doi.org/10.1016/j.jhydrol.2015.06.050
http://dx.doi.org/10.1016/j.jenvman.2016.01.036
http://www.ncbi.nlm.nih.gov/pubmed/26878221
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1890/07-0539.1
http://www.ncbi.nlm.nih.gov/pubmed/18051647
http://dx.doi.org/10.1016/j.patrec.2005.08.011


Water 2018, 10, 894 17 of 17

24. Zhu, Z.; Chen, Z.; Chen, X.; He, P. Approach for evaluating inundation risks in urban drainage systems.
Sci. Total Environ. 2016, 553, 1–12. [CrossRef] [PubMed]

25. Ministry of Housing and Urban-Rural Development, General Administration of Quality Supervision,
Inspection and Quarantine of the People’s Republic of China. Code for Design of Outdoor Wastewater
Engineering (GB 50014-2006); Ministry of Housing and Urban-Rural Development, General Administration
of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011.
(In Chinese)

26. Wu, H.; Huang, G.; Meng, Q.; Zhang, M.; Li, L. Deep tunnel for regulating combined sewer overflow
pollution and flood disaster: A case study in Guangzhou city, China. Water 2016, 8, 329. [CrossRef]

27. Keifer, C.J.; Chu, H.H. Synthetic storm pattern for drainage design. J. Hydraul. Div. 1957, 83, 1–25.
28. Cai, Q.; Chen, Z.; Chen, X.; Chen, X.; Zhang, D. Simulation of control efficiency of low impact development

measures for urban stormwater. Water Resour. Prot. 2017, 33, 31–36. (In Chinese)
29. Su, Y.; Wang, S.; Che, W.; Wei, Y.; Dong, Y. Optimization design of sunken greenbelt based on the concept of

“sponge city”. South Archit. 2014, 3, 39–43. (In Chinese)

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.scitotenv.2016.02.025
http://www.ncbi.nlm.nih.gov/pubmed/26897578
http://dx.doi.org/10.3390/w8080329
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Research Area 
	SWMM 
	Random Forest 
	Methodology 
	Model Building 
	Rainfall Simulation 
	Computational Principles of LID Measures 
	LID Measure Layout Approaches 
	Calculation of Estimated Cost for Each LID Measure Layout Scenario 
	Selection of the Optimal LID Measure Layout Scenario 


	Results and Discussion 
	Conclusions 
	References

