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Abstract: As a major component of the hydrologic cycle, rainfall runoff plays a key role in water
resources management and sustainable development. Conceptual models of the rainfall-runoff
process are governed by parameters that can rarely be directly determined for use in distributed
models, but should be either inferred through good judgment or calibrated against the historical
record. Artificial neural network (ANN) models require comparatively fewer such parameters,
but their accuracy needs to be checked. This paper compares a Hydrologic Engineering
Centre-Hydrologic Modeling System (HEC-HMS) conceptual model and an ANN model based
on the conjugate gradient method for streamflow prediction. Daily precipitation, temperature,
and streamflow data of the Upper Indus River for a period of 20 years (1985–2004) are used as input
for calibrating in the case of the HEC-HMS, and for training in case of the ANN. Ten years of data
(2005–2014) are used to validate the HEC-HMS model and test the ANN. The performance of the
models is assessed using different statistical indicators such as the Nash–Sutcliffe efficiency (NSE),
root mean square error (RMSE), mean bias error (MBE), and the coefficient of determination (R2).
The results show good predictions for streamflow in the case of both HEC-HMS and ANN models.
A parametric study is conducted using Monte Carlo analysis and finds that the most important
parameters for HEC-HMS models are the storage coefficient and the time of concentration; while for
ANN models, input combinations are the most important. This study investigates the sensitivity of
these parameters, which can be used to determine preliminary estimation ranges of their values for
future modeling. Finally, evaluating the impact of the simulated streamflow’s accuracy on the flow
duration curve shows that the curve is significantly affected by any streamflow simulation inaccuracy.

Keywords: artificial neural network; flow duration curves; HEC-HMS; Monte Carlo Analysis; River
Indus; sensitivity analysis; streamflow

1. Introduction

Proficient water resources management considerably affects irrigation systems, hydropower
generation, and ecological issues as well as enhances the economy and guarantees nutrition security.
Accurate streamflow simulation is imperative to the sustainability of water resources. It is exceptionally
challenging to implicate the procedure in these simulations due to its nonlinear and multidimensional
dynamics [1]. Varied modeling techniques have been utilized to predict the streamflow, such as
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physically based distributed models [1–3], stochastic models [4], lumped conceptual models [5],
and black-box models [6–8]. Although physically-based models utilize physical procedures associated
with rainfall-runoff modeling, their fruitful utilization is restricted, primarily due to challenges
in assessing the parameters involved as well as due to the governing equation’s complexity.
The uncertainties associated with the results of these models and the identities of their parameters
should be examined [9]. In this study, this task is achieved through performing a thorough
sensitivity and uncertainty analysis using Hydrologic Engineering Centre-Hydrologic Modeling
System (HEC-HMS).

The United States Army Corps of Engineers model HEC-HMS was developed to simulate
the rainfall-runoff procedures of complicated catchment systems [2]. This regards a deterministic,
semi-distributed, event-based/continuous, and mathematically-based (conceptual) model that
acknowledges other discrete models in assigning each component of the runoff process (evaporation,
surface runoff, infiltration, and groundwater recharge). This single model comprises various models
that calculate the abstractions from rainfall, direct runoff, and base flow to finally compute the
streamflow [3–11]. HEC-HMS considers the spatial dissemination of catchment landscapes by
subdividing a basin into sub-basins based on similarity regarding land use, soil type, and other features.
In order to investigate the small urban or natural catchment runoff, this model is broadly utilized as
part of an extensive variety of calculations differing from the hydrometeorological examination of the
large river basin. The HEC-HMS model has been used to predict streamflow in different regions and
climatic conditions throughout the world [12–17], but numerous studies report uncertainty concerning
the results of these predictions [18–23].

The HEC-HMS heavily relies on its complete range of components for modeling rainfall-runoff
processes [18]. HEC-HMS models tend to overestimate snow runoff when additional parameters related
to temperature are required [21]. This deficiency of HEC-HMS is due to an ineffective calibration of
critical temperature parameters, and researchers must resort to using a trial-and-error method when
calibrating for accurate runoff predictions [21]. Similarly, for ungauged catchment-flow simulations,
the HEC-HMS underestimates high flows during the early wet season, and overestimates low flows in
the late dry season [12].

An extensive study is conducted to investigate the uncertainties in the results of the HEC-HMS in
order to determine the possible range of the parameter’s values. An uncertainty analysis of HEC-HMS
models is performed to simulate the rainfall-runoff process of the Mekerra watershed, which is
located in northwestern Algeria [19]. A Markov chain Monte Carlo-based multilevel factorial analysis
technique is introduced in order to assess parameter uncertainties using a straightforward basin
inference for the HEC-HMS model [20]. The results show significant uncertainty due to forcing data
(rainfall) and model structure errors [22]. A deterministic estimate (of a reservoir pool stage frequency
curve) is compared to an estimate generated using the uncertainty manager provided in the HEC-HMS.
Although the deterministic estimates are determined to be satisfactory by the minimum and maximum
of the uncertainty analysis, there is a significant difference found between the deterministic and mean
stochastic estimates [23].

The use of time-series stochastic models is limiting due to the nonstationary behavior and
nonlinearity in the data distributions [24–27]. Therefore, with some improvements using hybrid
modeling techniques such as an artificial neural network ANN (data-driven black box), models are
gaining importance in predicting hydrologic phenomenon and streamflow forecasting. Compared to
conceptual hydrological models, data-driven models require little knowledge of physical modeling
and depend upon the data-describing input and output characteristics. ANNs are such data-driven
models, with specific characteristics appropriate for nonlinear dynamic modeling. Mathematically,
the ANN uses multi-parameter nonlinear functions that can be trained to simulate the behavior of
a known dataset [28]. ANN models are flexible regarding potential combinations of input variables.
These models can effectively address the nonlinearity of the system, and are equally effective in accurate
streamflow simulations [6,29,30]. ANN models have been used to simulate monthly streamflow for
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high-altitude catchments in Pakistan [7,8]. However, the accuracy of ANN models needs to be improved
with optimization subroutines. Furthermore, it is necessary to evaluate and compare the performance
of ANN models with hydrologic conceptual models in order to establish confidence in the results of
the ANN modeling.

Using historical data rarely reported in the past this study compares an HEC-HMS hydrological
model and an ANN model with conjugate gradient for simulating streamflow. An overall comparison
is given in Table 1, but it is most important to quantify the accuracy aspects of the model for
engineering purposes. The uncertainty in the hydrological model parameters is determined using
Monte Carlo analysis, and the models are applied to the Astore catchment of the Upper Indus Basin in
northern Pakistan.

Table 1. Comparison of the Hydrologic Engineering Centre-Hydrologic Modeling System (HEC-HMS)
and Artificial Neural Network (ANN).

HEC-HMS ANN

Can process geospatial data in ArcGIS. Cannot process geospatial data in ArcGIS

Calibration can be improved by using an
optimization technique

Training can be improved by using an
optimization technique.

The discharge as an output and other important variables
can be obtained at user defined grid locations Can generate only a limited output

Widely used throughout the world Widely used throughout the world

Cannot model backwater in the stream network Can be trained on the basis of data to generate
backwater in the stream network

No support provided for users other than United States
(U.S.) Army Corps of Engineers Easily available

Model code is not publicly available Easily manageable

Needs a lot of model parameters and uncertainties Can work with a fewer input parameters.

Can produce high accuracy Has comparatively lower accuracy

2. Materials and Methods

2.1. Study Area

The Indus River Basin includes an area of around 970,000 km2. The Upper Indus Basin begins
at the source of the Indus River, and ends at the Tarbela Reservoir, covering an area of around
175,000 km2 [30]. The snow-fed sub-catchment of the Astore (the sub-basin of Upper Indus Basin)
was selected for streamflow analysis. The Astore catchment is located in the region of Gilgit-Baltistan,
and is approximately 120 km long, with an area of 5092 km2, and an elevation range from 1213 m to
8069 m with respect to the mean sea level. The streamflow in the Upper Indus Basin is due to snow
and glacier melt. Thirteen percent of the Astore Basin is glacier covered and nourished by the westerly
circulation, bringing maximum precipitation during winter in the form of snow. Therefore, the flows of
the Astore River are influenced by the westerlies during winter; however, low-altitude winter rainfall
also overlaps the snow and glacier melt [31]. The Astore basin was selected for this study due to its
key geographical position (in the southern foothills of the Western Himalayas). The location of the
Astore catchment in the Upper Indus Basin is shown in Figure 1. Furthermore, the locations of the
Upper Indus Basin in Pakistan and in the world are shown, within the figure, in the big and small
squares, respectively.

The Astore River, a major tributary of the River Indus, contributes an average annual flow of
229 m3/s to the River Indus at Doyian. For this study, the data of the hydrometeorological station
at Doyian are collected from the Surface Water Hydrology Project of Water and Power Development
Authority and the Pakistan Meteorology Department Peshawar. The climate and hydrological stations
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are located at 35◦22′ N 74◦51′121 E, with an elevation of 2394 with respect to the mean sea level, and at
35◦45′ N 74◦30′ E, with an elevation of 1460 m with respect to the mean sea level, respectively.Water 2018, 10, x FOR PEER REVIEW  4 of 22 
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Figure 1. Astore Catchment in Upper Indus Basin.

2.2. Data Collection

• Water and Power Development Authority (Lahore Office) and Pakistan Meteorology Department
(Peshawar Office) are the main custodians of all of the hydrological and meteorological data
collected from various weather, meteorological, hydrological, and gauging stations in Upper
Indus River Basin. Data sets consisting of daily temperature (T), precipitation (P), and streamflow
(Q) were collected from the Surface Water Hydrology Project of Water and Power Development
Authority Lahore and the Pakistan Meteorology Department Peshawar. The time series data of T,
P, and Q collected in this research are from between 1985–2014.

• The base-flow data were determined through the tangential base-flow separation method using
30 average data for the 12 months of the year.

• Shuttle Radar Topography Mission 90-m resolution and digital elevation model data of the
Upper Indus River Basin were acquired from the Survey of Pakistan Rawalpindi, and were later
decorated and clipped to the boundary extent.

• Remaining necessary data required for the selected sub-basin of the Upper Indus River Basin
were collected using the Harmonized World Soil Database [32] and the United States Army Corp
of Engineers database [33].

• The Harmonized World Soil Database was used to find the curve number.

2.3. HEC-HMS Modeling

Prior to hydrological modeling, our methodology can be separated into four main stages:
(1) attaining the geographic locations of the study’s watershed; (2) processing the digital elevation
model, defining streams and watershed characteristics, processing terrain and basin; (3) importing the
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processed data to HEC-HMS; (4) integrating the observed data with the processed digital elevation
model for model simulations, and (5) performing parametric (uncertainty) analysis.

The Quantum Geographic Information Software-2.18 [34] was used to delineate the physical
characteristics from the digital elevation model and Shuttle Radar Topography Mission data.
The HEC-HMS (Version 4.2.1) was employed to conduct runoff-simulation analysis.

Obtained from Quantum Geographic Information Software [34] as a shape (.shp) file,
the delineated image was imported to the HEC-HMS as a background map. The image was then
inverted to effect a downward flow direction as required by the HEC-HMS (Figure 2).
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The HEC-HMS model was calibrated using 20-year data from 1985 to 2004, while the remaining
10 years of data (2005–2014) were used for validation. The flow chart of the model used is presented in
Figure 3.

The basin model was developed consisting of a single sub-basin and an outlet. For the sub-basin,
the Soil Conservation Service curve number and the Clark Unit Hydrograph were selected for loss and
transform methods, respectively, while the base flow was used as a constant monthly. The base flow
was determined through the tangential base-flow separation method, using 30 years’ average data for
the 12 months of the year [3].

The meteorological model was developed to prepare the meteorological boundary conditions for
sub-basins. The gage weights for precipitation and temperature index for snowmelt were carefully
considered for its development. The temperature index was divided into six bands at almost-averaged
elevations for the purposes of analysis. The values used for gage weights and the temperature index
for the selected region were obtained from the websites mentioned in Section 2.2.

The control specifications (simulation start-and-stop period and data time interval) for the runoff
simulation were considered using two thirds of the 30 years of data for training the model, and one
third of the data for testing the model. The time interval was one day.

The daily time series data concerning precipitation, temperature, and gauging stations were
entered manually. The paired data (or data arising from the same individual at different points in
time) for antecedent melt-rate function and antecedent cold-rate function were entered manually.
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An antecedent temperature index melt-rate function was used to calculate the snowpack melt rate
from the existing melt-rate index, which allows the melt rate to change as a snowpack matures and
ages. The antecedent melt rate will be zero if there is no snow at the start of the simulation. Similarly,
an antecedent temperature index cold-rate function is used to determine the cold content from the
existing cold-rate index. The cold limit is used to consider the rapid temperature changes faced by
the snowpack during high downpour rates. This function represents the heat required to increase
the temperature of the snowpack to 0 ◦C, and is expressed as a number equivalent to millimeters of
frozen water. This number can be set to zero in the absence of the snow at the start of the simulation.
All of the data for the selected sub-basin were collected online, and the results were computed using a
simulation manager. The tabulated and graphical results were exported to Microsoft Excel.
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2.4. Uncertainty Analysis

The uncertainty in HEC-HMS (Version 4.2.1) model parameters for the Astore catchment was
determined using Monte Carlo analysis. When developing a forecasting model, certain assumptions
are considered representing projections into the future, and the best option can be to estimate the
expected value. It is not possible to know the actual value, but an estimate can be determined using
historical data, expertise in the field, or past experience. This estimate is beneficial to developing a
model, but entails some innate risk and uncertainty, since it is simply an estimate of an unknown
value. Monte Carlo analysis is a method or technique used to recognize the effect of risk and
uncertainty in various forecasting models. This analysis involves repeated generation of random
parameters from probability distributions before computation of the output’s statistics. Only the
more sensitive parameters (behavior samples) are considered, while other parameters are kept
constant [35]. The possible combinations of all of the parameters are determined once the uniform
random numbers of the parameters are generated. The values of each parameter set are entered into
the rainfall-runoff model in order to determine the model’s efficiency. One or more efficiency criteria
are used as objective function(s) during automated calibrations to help identify optimal parameter sets.
Automated calibration refers to an approach in which the required model parameters are automatically
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generated, and the performance of the hydrological model or model efficiency is judged based on
criteria defined by objective functions to assess the hydrological model simulation results. The objective
functions that can be used for this purpose include NSE, RMSE, R2, etc. Details about the model
efficiencies and comparison were reported by Krause et al. [36]. In this case, the model efficiency is
known as the objective function, which is to be minimized in the case of the root mean square error
(RMSE) or maximized in case of the Nash–Sutcliffe efficiency (NSE). The process of the Monte Carlo
analysis is presented in Figure 4.Water 2018, 10, x FOR PEER REVIEW  7 of 22 
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To represent a real-world system, models use parameters that are numerical measures of
characteristics or properties that do not change under definite conditions. The parameters of a
model are considered to be its “turning knobs”, since they control the relationship between the
inputs and output. The model’s parameter values can be adjusted during the calibration process to
achieve accurate predictions. For example, a parameter in the HEC-HMS is the initial loss in the rate
of the model. If this parameter is increased, the runoff decreases, and vice versa. The HEC-HMS
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parameters studied in this research include initial loss, imperviousness, time of concentration, and
storage coefficient, all of which belong to the fitted model parameters.

The results from the HEC-HMS modeling serve as input (the general uniform sample,
four parameters set) to estimate the parameter’s magnitude of uncertainty. The uncertainty analysis
manager available in HEC-HMS 4.2.1 was used for this purpose, which is based on the Monte
Carlo analysis.

Sensitivity analysis is a technique to assess how a model’s output variable(s) are affected by
changes in the model parameters. This analysis aids in identifying the parameters that, if changed,
will not affect the model output, and can therefore be fixed later or removed, which thus reduces the
problems that can occur during the calibration phase of the modeling. The simulations differentiate the
parameter sets into behavior samples (accepted) and non-behavior samples (rejected). The behavior
sample regards the parameter set that produces a response (behavior) in the model that is similar to
the response of the hydrological system. Similarly, non-behavior means that the parameter set will
not cause a response similar to the hydrological system. The sensitivity analysis of a parameter is
intended to compare the separation of the parameter values in behavior and non-behavior samples
and the statistical Kolmogorov–Smirnov two-sample test can be used to estimate the significance of
the separation [38]. Since the resulting distributions are not known, the two-sample test must be based
on non-parametric methods.

The two-sample test is used to test whether two samples originate from the same distribution.
The greater the separation, the more distinct the two samples. Suppose that the first sample has size
m, with an observed cumulative distribution function of F(x), and that the second sample has size n,
with an observed cumulative distribution function of G(x); then:

Dm,n = max
x
|F(x)− G(x)| (1)

The null hypothesis H0 supposes that the two distributions are equal, and if the resulting
significance level of the test (α) is less than a certain specified value, the null hypothesis is rejected,
that is, Dm,n > Dm,n,α, where Dm,n,α is the critical value [39,40]. The significance level, α, regards the
probability of rejecting the null hypothesis when it is true. The significance level determines the
difference in the results from the null hypothesis value. Under these conditions, the interpretation is
that the model is sensitive to this parameter, since it is responsible for significant separation between
behavior and non-behavior.

After simulation, all of the parameters were determined while probability density function and
cumulative distribution function plots were generated from the results using Microsoft Excel 2013.
Finally, a parameter set was conditionally accepted based on the statistical indicators or objective
functions provided in Table 2.

2.5. Artificial Neural Networks (ANNs)

ANN models are used to address highly complex problems, and many investigators performing
time-series hydrologic analyses have reported their success in establishing nonlinear relationships
amongst input data and desired outputs [41–43]. ANN s consist of several “layers” of neurons,
including an input layer with nodes representing various input variables, a hidden layer with many
hidden nodes, and an output layer. The general architecture and a flowchart of ANNs are shown in
Figure 5. For streamflow simulation, the ANN method requires selecting the best variables, functions,
weights, and optimization techniques, which requires an objective function based on errors between
the simulated and measured streamflow. Therefore, during the optimization process, the values of the
parameters are selected so that the objective function achieves the minimum possible value (which is
usually called the global minimum). A number of techniques are available to alter the parameters of
the model in every iteration and search for the minimum value of the objective function. Derivatives
of the objective function and constraints are used by some optimization techniques, while others do
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not require such derivatives and constraints. In streamflow prediction models, algorithms such as the
quasi-newton, Levenberg–Marquardt, and conjugate gradient can be effectively utilized for standard
numerical optimization due to its robustness [44,45]. In this study, the conjugate gradient training
algorithm is used to simulate the streamflow for the Astore River Basin, and for comparison with the
streamflow predicted from the HEC-HMS.

An efficient technique is required to select the best combination of input with respect to time lag.
Monte Carlo analysis [46] has been used to select the input combination for the conjugate gradient-ANN
model. The input data of the model is regarded as the observed daily rainfall for the Astore catchment.
A tool enabling a Monte Carlo analysis interface with MS Excel was used to determine the required
parameter samples. The parameters that were evaluated by the Monte Carlo analysis as behavior
samples (having an objective function >80%) were accepted, while those falling under non-behavior
samples (having an objective function <80%) were rejected. The measured streamflow data for the
same river were used as the target during ANN model calibration and validation. Data from 1985
to 2004 were used for the calibration/ training and learning of ANN, while data from 2005 to 2014
were used for validation. The input combination obtained using Monte Carlo analysis provided better
results than the input combination that was developed using coefficient correlation analysis in the
previous research performed by the authors earlier this year [2].
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2.6. Performance Evaluation of the Model

Many statistical indicators are used to evaluate model performance. Table 2 presents the indicators
used in the current study. In the given relations, n stands for the total number of input samples,
i represents the time series of the observed and simulated pairs, Qs

i and Qo
i stand for simulated and

observed streamflow, and Qavg is the observed average discharge in the stream.
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Table 2. Criteria for Evaluating the Performance of the Hydrological Model and their
Corresponding Classifications.

Statistical Indicators Value Classification of Performance Reference

Root Mean Square Errors (RSME)

RMSE =

√
n
∑

i=1

(Qs
i−Qo

i )
2

n

RSR = RMSE
STDEVObs

value below half the
standard deviation Satisfactory

[47]
[48]

0.00≤ RSR ≤0.50 Very Good
0.50 < RSR ≤ 0.60 Good
0.60 < RSR ≤ 0.70 Satisfactory

RSR > 0.70 Unsatisfactory

The correlation between actual
and predicted values (R2)

R2 = 1− (Qo
i−Qs

i )

(Qo
i−Qavg)

0.85 to 1.00 Very Good

[49]
0.70 to 0.85 Good
0.60 to 0.70 Satisfactory
0.4 to 0.60 Acceptable
R2 ≤ 0.4 Unsatisfactory

Nash–Sutcliffe efficiency (NSE)

NSE = 1− ∑n
i=1(Qo

i−Qs
i )

2

∑n
i=1(Qo

i−Qavg)
2

0.75 to 1.00 Very Good

[50]
[48]

0.65 to 0.75 Good
0.50 to 0.65 Satisfactory
0.4 to 0.50 Acceptable
NSE ≤ 0.4 Unsatisfactory

Mean bias error (MBE)

MBE =
n
∑

i=1

(Qs
i−Qo

i )
n

MBE > 0 (positive) Overestimated Predictions
[51]MBE < 0 (negative) Underestimated Predictions

3. Results and Discussion

3.1. Model Calibration

The Astore catchment was used to calibrate the model. Daily rainfall data for 20 years (1985–2014),
constant monthly base flows of the river of the catchment for 20 years, and the catchment area were
inserted into the model. The flows simulated from the methods were tested using statistical indicators
(RMSE, MBE, R2, NSE).

The statistical evaluation for calibration showed a satisfactory result in its RMSE values, but a very
good result in R2 and NSE, respectively. The MBE results indicate the overall prediction overestimation.
The results are shown in Tables 3 and 4 while the correlation analysis scatter plot is given in Figure 6.
The observed and simulated hydrograph for the calibration period is shown in Figure 7, which
assesses that the model estimated fewer flows during the summer and overestimated the flows in
spring and autumn while more resembling flows during the winter. This is because the Astore
catchment entails a considerable area comprised of glaciers that melt due to high temperatures in
the summer, and contribute sufficient runoff to rainfall runoff during this period. The streamflow
showed increasing trends versus temperature, while precipitation showed decreasing trends versus
temperature; these results are supported by the literature review [52,53]. The positive trend in
temperature is comparatively higher in winter than summer in the Upper Indus Basin [52]. It is
reported that 16% to 53% of the total flow in the rivers generating from the western Greater Himalayas
and the Hindu Kush are contributed by snow and glacier melt [54].
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Figure 6. HEC-HMS results for calibration.
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Figure 7. The Hydrograph for Calibration Period.

Table 3. Model Simulation Results for Calibration and Validation Periods.

Variable
Calibration Phase Testing Phase

Observed Simulated Residual Observed Simulated Residual

Volume (×1000 m3) 91,447,988.3 87,490,381.7 3,957,606.6 47,324,538.1 39,594,381.3 7,730,156.8
Peak Flow (m3/s) 727.1 625.31 101.79 745.20 566.35 178.85
Date of Peak Flow 28 June 2003 28 June 2003 23 August 2010 23 August 2010

Table 4. Performance of the Model in Calibration and Validation Phases.

Statistics
Calibration Validation

Value Performance Value Performance

R2 0.88 Very Good 0.79 Good
NSE 0.84 Very Good 0.70 Good
RSR 0.01 Very Good 0.01 Very Good

RMSE 0.58 Satisfactory 0.86 Acceptable
MBE 24.50 Over Estimation 39.30 Over Estimation

The flow residual graph further demonstrates this result (Figure 8). The positive residual
flow clearly displays the underestimation of high flows (summer), while the negative residual
flows represent overestimation flows during the spring and autumn seasons. The low estimated
flows for both total flow volume and peak flow are shown in Table 3. The simulation of runoff is
time-biased, which increases the errors in model performance assessments that are sensitive to outliers.
The statistical evaluation for calibration found the model performance for the Astore watershed to be
very good, since both R2 and NSE >80% (Table 4).
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Figure 8. Flow Residual Graph for Calibration Period.

3.2. Model Validation

Employing the Clark unit hydrograph method for the years 2005–2014, the means of the observed
flows, the simulated flows, and the values of statistical indicators for validation results are shown
in Figure 9. The statistical indicators for the flow generated during the validation process show a
bit lower performance than those in the calibration process. The estimated flows for both the total
volume and the peak flow are given in Table 3. Since the R2 >78% and NSE >69, the validated model
performance for the Astore watershed is found to be good (Table 4).

Observed and simulated flows for the validation period between 2005–2014 are also shown in
Figure 10. The results for this validating period represent a similar pattern to that of the calibration
period, with satisfactory values of statistical indicators. However, it shows underestimated flows in
summer, but comparatively fewer overestimated flows in spring and autumn (Figure 10).

Figures 11–14 describe the relationship between precipitation and temperature with observed
and simulated streamflow. The figures clearly show that both precipitation and temperature impact
runoff. When rainfall is zero, streamflow is never zero, and there is considerable runoff in the study
region, which is obviously due to the melting of the glacier part of the catchment as a result of the
comparatively high temperatures during the summer season and obtaining a mostly subsurface flow
at the Doyian gauging station.
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Figure 12. Temperature vs. Simulated Streamflow.
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Figure 13. Temperature vs. Precipitation for Validation Period.
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Figure 14. Observed Precipitation vs. Streamflow.

Figures 11–14 also show a decreasing trend in the rainfall runoff as a result of increasing
temperatures in the region. The result shows a proportional relationship between streamflow and
temperature during the validation period (Figure 12). It is evident from Figure 15 that residual
streamflow/runoff (the flow in excess of the rainfall) is due to the melting of glaciers caused by
increasing temperatures in the region throughout the year.Water 2018, 10, x FOR PEER REVIEW  14 of 22 
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Figure 15. Temperature vs. Residual Streamflow for Validation Period.

3.3. Sensitivity Analysis

Table 5 summarizes the HEC-HMS calibrated parameters, showing significant yield agreement
between the observed and estimated flows. The results of Monte Carlo analysis for these parameters
are shown in Table 6 and Figure 16. From the sensitivity analysis, the initial loss was found to be
from 0.02 mm to 64.46 mm (mean: 33.14 mm). In case of imperviousness, the initial loss ranged from
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63.89% to 98.98% (mean: 81.22%). The simulation values for the time of concentration were found to
be in the range of 5.75 h to 8.24 h (mean: 7 h). The storage coefficient includes values from 10.83 h to
31.24 h, with a mean value of 25.05 h. The sensitivity quantified from this study regarding different
parameters and their results in form of statistical indicators can be utilized to improve the future
modeling processes.
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Table 5. Output of the HEC-HMS Parameters.

Parameters Minimum Maximum Mean Standard Deviation

Initial abstraction (mm) 0.02 64.46 33.14 18.47
Imperviousness (%) 63.89 99 81.22 10.15

Time of concentration (h) 5.75 8.24 7.00 0.71
Storage coefficient (h) 10.83 31.24 25.05 3.63

Table 6. Results of Monte Carlo Analysis with 500 Trials.

Parameters Initial Loss (mm) Imperviousness (%) Time of Concentration (h) Storage Coefficient (h)

Mean 33.14 81.22 7.00 25.05
Number of Trials 500.00 500.00 500.00 500.00
Standard Error −0.67 −0.22 0.00 0.08

Minimum 0.02 63.89 5.75 10.83
Maximum 62.46 98.98 8.24 31.24

Median 34.60 81.07 7.01 25.03
Range 62.44 35.09 2.49 20.41

Standard Deviation 18.47 10.15 0.71 3.63
Variance 341.29 103.11 0.50 13.20
Skewness −0.12 0.03 −0.05 −0.11
Kurtosis −1.22 −1.19 −1.20 −0.82

3.4. ANN Modeling

To predict the daily streamflow, the measured precipitation (P) and Temperature (T) with various
time (t in days) lags (Tt, Tt−1, Tt−2, Tt−3, Tt−4, Tt−5, Pt, Pt−1, Pt−2, Pt−3, Pt−4, Pt−5) were used as
input variables, and streamflow (Qt+1) was used as the output variable.

In the present paper, Monte Carlo analysis is used to determine the input combination for the
conjugate gradient ANN model. The parameters evaluated by Monte Carlo analysis as behavior
samples were accepted while non-behavior samples were rejected; hence, the input variables Pt−3,
Tt, Tt−1 and Tt−5, show similar behavior to the hydrological system with respect to the output
parameter (Qt+1).
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The performance of the ANN model was analyzed using various indicators (e.g. R2, RMSE,
NSE, and MBE) and selected input combinations. The determined index values are shown in Table 7,
with the best values in bold. The range of values of the four statistical indicators infer that it is
impossible to use a unique statistical indicator to define model performance, as the model shows no
excellent values amongst the four. However, the indices show that the selected input combination
produced acceptable accuracy, which demonstrates the high efficiency of selecting algorithms of Monte
Carlo analysis and the ANN models. The accuracy depends on the chosen input and optimization
method used in the ANN. As the optimization method’s efficiency increases, it provides improved
accuracy to the simulated streamflow. It is noteworthy that combining Monte Carlo analysis and the
efficient optimization technique conjugate gradient significantly improves the performance of the
ANN model.

Table 7. Indices for the Input Combination Predicted for Conjugate Gradient-ANN Modeling Based on
Monte Carlo Analysis.

Statistics
Training Testing

Value Value

R2 0.85 0.75
NSE 0.79 0.70

RMSE 0.78 0.79
MBE 19.19 9.15

3.5. Comparison of ANN and HEC-HMS

The performance of the ANN model was compared with the HEC-HMS results using four statistical
parameters (R2, RMSE, MBE, and NSE). The values of the statistical indicators for ANN and HEC-HMS
are given in Table 8 and Figure 17, and Figure 18a,b. A comparison of the observed and predicted
streamflow for the calibration/training and validation/testing phases of various ANN and HEC
models is presented in Figure 19. The high value of statistical indicators (i.e., R2, RMSE, MBE, and NSE)
indicates that the efficiency of the HEC-HMS model is better than that of the conjugate gradient ANN.

Table 8. Comparison of Index Values of ANN and HEC-HMS Modeling for Validation Period.

Statistics HEC-HMS ANN

R2 0.79 0.75
NSE 0.70 0.70

RMSE 0.86 0.79
MBE 39.30 9.15

The best results are highlighted in bold.
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Figure 17. Comparison of Statistical Indicators for ANN and HEC-HMS Modeling for Validation Period.
(a) Shows R2, RMSE and NSE for HEC-HMS and ANN, (b) Shows MSE for HEC-HMS and ANN.
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Figure 19. Comparison of the Observed vs. Predicted Streamflow by HEC-HMS and ANN Models, (a)
Calibration/Training and (b) Validation/Testing.

3.6. Flow Duration Curve Analysis

Streamflow from the River Indus is highly useful for irrigated agriculture and hydropower
generation [54,55]. A flow duration curve is an important component for designing hydropower and
represents the relation between the magnitude and frequency of daily streamflow for a particular river
basin, which evaluates the percentage of time that it takes for a certain streamflow becomes equaled or
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exceeded over a historical period [56]. The flow duration curve produces a detailed graphical view of
the complete historical changes related to streamflow in a river basin. The profile of the flow duration
curve for any river thoroughly reveals the type of flow system and influences the characteristics of
the upstream catchment including the geology, urbanization, artificial influences, and groundwater.
Therefore, in order to construct the flow duration curve, the streamflow was plotted against the
percentage of the exceedance scale, as illustrated in Figures 20 and 21. Comparisons of the flow duration
curve plotted from discharges predicted by HEC-HMS and ANN modeling with the flow duration
curve plotted from the observed flow rate and the profiles of the three flow duration curves clearly
reveal the complete historical changes related to streamflow in the Astore river basin. Considering the
flow duration curve plot, the flow at 0–25% exceedance was over 250 m3/s and 150 m3/s in the
HEC-HMS and ANN predictions, respectively, which is a higher flow rate and may result in extreme
events. For a few months of the year, this flow rate or higher at almost 95% exceedance is about 45 m3/s,
which is the lowest flow rate record, and may cause droughts for some time. So, by definition, the river
flows at this rate for 95% of the time or more. Familiarity with the flow duration curve will help provide
knowledge needed for hydrologic studies such as hydropower, water supply, irrigation planning,
river and reservoir sedimentation, sustainability of habitats, and water deliveries through the reservoirs.
Figure 20 obviously shows that the flow duration curve has changed significantly when modeled by
the HEC-HMS as compared to the ANN.
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Figure 20. Comparison of Flow Duration Curves of Observed Flow, HEC-HMS flow, and ANN flow.
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3.7. Discussion on Results (Comparison with Other Research Work)

More than one statistical indicator was used to judge the performance of the models, as it
was necessary to test the models based on various aspects. For example, statistical evaluation
during calibration indicated a satisfactory result on the basis of the RMSE, value but a very good
result in cases of R2 and NSE, respectively. Adnan et al. [57] observed a similar pattern that
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supports the idea of avoiding using a single statistical indicator for performance evaluation of rainfall
runoff models. Regarding calibration, a sensitivity analysis of hydrologic model parameters was
performed. The results show that the time of concentration and storage coefficient regard the most
influencing parameters of a hydrologic model must be estimated with a very high accuracy. Rathod and
Manekar [37] identified that the imperviousness of the catchment area is the least influencing parameter.
According to Wang and Solomatine [58], the time to peak is the most influential model parameter,
while Ghumman et al. [1] observed that the kinematic wave parameter is the most contributing
hydrologic element in rainfall runoff modeling. This discussion shows that it is wise to perform a
sensitivity analysis of hydrologic model parameters for each catchment in order to achieve better
understanding of rainfall-runoff behavior.

Following calibration, the models were compared with each other. Both the data-driven ANN
models and distributed hydrologic models entail their merits and demerits. The HEC-HMS model
is comparatively more efficient than ANN; however, the HEC-HMS requires a significant effort to
determine the model parameters. Jimeno-Sáez et al. and Derdour et al. [2,59] report similar findings
when comparing a soil and water assessment tool (hydrologic model) with the ANN.

4. Summary and Conclusions

This paper discusses runoff simulation in the Astore watershed of Pakistan’s Upper Indus River
Basin using data from 1985 to 2014. The runoff simulation was investigated with the help of Quantum
Geographic Information Software to delineate the digital elevation model that was imported to the
HEC-HMS. Daily precipitation and temperature time-series data were used as input for a period
of 20 years (1985–2004) for calibrating, and the next 10 years (2005–2014) for validating the model.
The streamflow model was evaluated by mean bias error (MBE), Nash–Sutcliffe Efficiency (NSE),
root mean square error (RMSE), and the (R2). The results demonstrated that the model estimated
much lower flows during the summer, and higher flows during winter. This is because the Astore
catchment entails a considerable glacial area that melts due to high temperatures in the summer and
results in contributing sufficient runoff to the rainfall runoff during the respective period. Decreasing
trends of the rainfall-runoff pattern as a result of increasing temperatures were observed in the region,
and the results showed the proportional relation between streamflow and temperature during the
validation period.

For the sensitivity analysis, four parameters were investigated: initial loss, imperviousness, time
of concentration, and storage coefficient. The mean, standard deviation, and range of these parameters
were determined. Sensitivity analysis using Monte Carlo analysis was performed on these parameters,
and their sensitivity was determined using 500 trials assuming simple distribution. The most important
parameters were found to be the storage coefficient and time of concentration, which are interrelated.

Furthermore, the ANN and HEC-HMS were applied to develop models for predicting streamflow.
Monte Carlo analysis was used to predict the best input combination for streamflow forecasting.
The performance of the ANN models was compared with the HEC-HMS results using four statistical
indicators (R2, RMSE, MBE, and NSE). The HEC-HMS model was found to be comparatively more
efficient than the conjugate gradient ANN.

The flow duration curves were plotted for the predicted streamflow, which presents the complete
historical changes related to streamflow in the river basin. It was evaluated that extreme events
(floods and droughts) are expected to occur in the studied river basin in the near and distant future.
Familiarity with the details of the flow duration curve will aid in understanding the characteristics of a
river basin and the knowledge needed in hydrologic studies.

In order to better estimate summer and autumn flows, further research is recommended to
simulate the seasonal runoff in the Astore basin while considering the solid snowpack runoff volume
(glacier melt). In addition, the results of this work can be used in future streamflow modeling exercises
to narrow the range of parameters to be investigated by the modeler. Moreover, the results obtained
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from the ANN model as well as Monte Carlo analysis should be compared against other input selection
methods (e.g., principal component analysis and fuzzy system).
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