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Abstract: This study showed the hydrogeological characteristics of an alluvial aquifer that is
composed of sand, silt, and clay layers in a small domain. It can be classified into a lower high-salinity
layer and an upper freshwater layer and contains shells and remnant paleo-seawater (average
5000 µS/cm) due to sea level fluctuation. Geological and electrical conductivity logging, a long-term
pumping test, and multi-depth water quality measurements were conducted at pumping, injection,
and observational wells to evaluate the hydrogeologic properties, identify the optimal recharge
rate, and assess artificial recharge. Using a hydraulic test, a large difference in drawdown and
salinity appeared at the radially located observational wells because of the difference in hydraulic
connectivity between the wells in the small study area. It was concluded that the hydraulic anisotropy
and heterogeneity of the alluvial aquifer should be carefully examined when locating an injection
well and considering the efficient design of artificial recharge.

Keywords: alluvial aquifer; hydrogeologic characteristics; remnant paleo-seawater; sea level
fluctuation; artificial recharge

1. Introduction

Because of recent rapid climate change and natural hazards, the depletion of available water
resources threatens stable water resource supplies throughout the world. Among the useful measures
confronting this water resource deficiency is aquifer artificial recharge (AAR), which is being
implemented in many countries and regions such as the U.S.A., Japan, Europe, Middle Asia, Africa, etc.
AAR is also an effective means to appropriately improve water quality in time and space [1]. The Korea
Water Corporation first surveyed riverbank filtration sites for introducing the AAR technique in
Korea [2]. Hamm et al. [3,4] characterized the hydraulic properties of a riverbank filtration site in
Changwon, Korea using groundwater modeling. Seo et al. [5] hydrogeologically assessed potential
sites for artificial recharge using a geographic information system (GIS). Kim et al. [6] analyzed artificial
recharge technologies and patents for providing water resources.

Sea level change is linked to various factors such as crustal uplift and subsidence, climate change,
glacier formation and retreat, tidal fluctuation, etc. Eustatic sea level generally rose during the Cenozoic
era, well reflecting the sea-level change in relation to the growth and decline of glaciers [7]. During the
period of the last glacial maximum (15,000–18,000 before present (BP)), sea level was 120 m lower than
the present day [8,9]. During the years 100,000–200,000 BP, sea level change caused by glaciers is closely
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related to the formation of offshore sediments. The loss of the latest continental shelf in Europe and
North America occurred at 9000–10,000 BP. Since this time, sea level has risen by at least 30 m with the
disappearance of continental glaciers, as fluvial sediments deposited during that time are located 30 m
lower than the current sea level. The impact of climate change on sea level rise will significantly affect
coastal environments including causing threats to human health [10] and a decline in groundwater
resource availability in coastal areas [11]. Sea level rise during the 20th century has mainly been a
result of ocean warming and the input of ice melt from land, which can produce an immediate effect
of submergence, increased coastal land flooding, and saltwater intrusion [12]. Movement of coastlines
during the Quaternary (present to 2.58 million years ago (Mya)) resulted in both a saltwater wedge
extending inland [13] and in substantial fresh groundwater bodies offshore [14]. In the Netherlands,
salinity in the coastal groundwater is intimately linked to the paleo-geographic setting of marine
transgression and regression [15]. Marine transgression can extensively salinize freshwater aquifers
via free-convective infiltration of seawater [16,17].

This study aimed to examine the hydrogeological and paleo-geographic characteristics of an AAR
site in Daesan-myeon, Changweon, Korea. For this purpose, a long-term pumping test and electrical
conductivity (EC) logging were conducted on the pumping, injection, and observation wells in the
alluvial aquifer.

2. Geological and Hydrogeological Setting

The study area had a small dimension of 150 m in width × 50 m in length and was near the
Nakdong River in Changwon, Korea, where an alluvial aquifer system lies with a landfill approximately
0.5–1.0 m in thickness. The study area is being used as a playground and had been used for greenhouse
agriculture until 2010 prior to Korea’s Four Main River project. The alluvium in the floodplain along
the Nakdong River mostly consists of alternating layers of sand, gravel, silt, and clay that have
been produced by numerous meandering activities of the Nakdong River (Figure 1). Site geology by
geological log showed four layers (gravel/sand, silty sand, silty clay, and sand layers of 15 m thickness)
from depth to surface (Figure 2). The gravel/sand layer serves as the main aquifer from 33 m below
the land surface, the silty sand and silty clay layer as an aquitard, and the sand layer as an unconfined
aquifer. In detail, each layer partially contains a small-scale portion of silt and clay.
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Hydrogeologically, at a depth of 10 m, the alluvium is classified into an upper freshwater bed and
a lower remnant paleo-seawater bed (average 5000 µS/cm). According to a sea-level fluctuation study
of the western coastal region in Korea for the period 9000 BP to the present, sea level rose 6.5 m with
repeated rises and falls [18]. Shell mounds deposited 3000 to 4000 years ago in the southeastern region
of the Korean Peninsula during the Neolithic age (8000 BP–2333 BP) also indicate that the ancient sea
level was approximately 10 m higher compared to that of the present (Figure 3).Water 2018, 10, x FOR PEER REVIEW  4 of 17 
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The local geology is composed of sedimentary rocks of the upper Cretaceous Yucheon group
(feldspathic sandstone, greenish shale, and cherty shale) extruded by Cretaceous volcanic rocks
(andesite, andesitic tuff, andesitic lapilli tuff, and andesitic tuff breccia) [3,19]. The sedimentary
and volcanic rocks are intruded by Bulguksa igneous rocks (biotite granite and granodiorite).
The Quaternary alluvium covers the sedimentary, volcanic, and intrusive rocks [20].

3. Methods

For AAR, a total of fourteen wells were drilled in the study area: one pumping well, six observation
wells, four injection wells, and three multi-depth observation wells for geochemical monitoring.
The injection (IW) and observation wells (OBS) are radially situated around the pumping well (PW)
at an interval of 10 or 15 m to show the hydraulic connectivity (Figure 1). The wells have depths of
approximately 34.5–35.0 m with a surface elevation of approximately 8.7–9.0 m and a depth to water
of approximately 7.0–7.3 m (Table 1).

Using water level sensors (conductivity and depth (CTD) divers), a 6-day multi-rate pumping
test was performed to examine water level change in the pumping and observation wells. A long-term
pumping test was conducted to verify the hydraulic properties and connectivity of the alluvial aquifer.
The transport/dilution effect of the remnant paleo-salt water was monitored at 25 m in the observation
wells during the pumping period as well as at 25-m depth in the injection wells.

In addition, during the pumping test, EC loggings were performed to delineate the groundwater
flow direction and rate at the study site (Table 1). One day before the pumping test, background EC
logs were obtained using the CTD-diver. Next, EC logging was conducted during the morning
and afternoon for five days during the pumping test, with a supplementary logging following
pumping completion.

Table 1. Pumping, injection, and observational wells in the study area.

Well X Y Elevation (EL. m) Well Depth (m) DTW (m) EC Logging
Depth (m)

PW 177,584.1 305,371 8.817 35.0 7.02 -
IW 1 177,567.4 305,360.2 8.725 35.0 7.0 -
IW 2 177,594.9 305,354.7 8.815 35.0 - -
IW 3 177,600.8 305,382 8.779 34.5 7.08 -
IW 4 177,571.9 305,389 8.802 35.0 - -

OBS 1 177,575.9 305,365.4 8.791 35.0 7.17 28.3
OBS2 177,589.6 305,362.6 8.81 35.0 7.17 29.8
OBS3 177,592.6 305,376.5 8.886 35.0 7.07 33.8
OBS4 177,578.6 305,379.2 8.98 35.0 7.36 32.8
OBS5 177,559.7 305,355.6 8.929 35.0 7.31 24.4
OBS6 177,609.2 305,387.4 9.002 35.0 7.36 30.5

MLW1 177,621.3 305,395.7 9.034 34.5 7.23 -
MLW2 177,633.8 305,403.7 9.034 34.5 7.35 -
MLW3 177,646.2 305,411.9 8.894 35.5 7.35 -

PW: Pumping well; IW: Injection well; OBS: Observation well; MLW: Multilayered well; EL: Elevation in mean sea
level; DTW: Depth to water.

4. Results

4.1. Hydrogeologic Characteristics

A multi-step pumping test was performed at four-step pumping rates (Q1 = 144 m3/d,
Q2 = 158 m3/d, Q3 = 455 m3/d, and Q4 = 203 m3/d) with a pump depth of 28 m. For easy detection
of the hydraulic connectivity, the rate of the third pumping step (Q3) was approximately three times
that of Q2 for 20 min. Groundwater levels of the observation wells (OBS-1, -2, -3, and -4 wells) at the
same distance from the pumping well displayed highly dissimilar drawdown during the pumping
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test. This major difference in the drawdown of the observational wells was caused by highly variable
hydraulic connectivity and different flow rates between the pumping well and the observation wells.
For instance, the groundwater level at the OBS-3 well changed at the start of the pumping whereas the
drawdown occurred at 10 min for the IW-2 well, 80 min for the OBS-5 well, and 600 min for the IW-4
well following pumping initiation (Figure 4).Water 2018, 10, x FOR PEER REVIEW  6 of 17 
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Figure 4. Changes in water level of the observational wells during the pumping test. The number in
parentheses refers to the distance from the pumping well.

The OBS-3 well showed a distinct drawdown of 12 m, similar to the level change of the pumping
well but different from the other observation wells, indicating a good hydraulic connectivity between
the OBS-3 well and the pumping well. The injection well IW-2 displayed a smaller but analogous
drawdown behavior to that of the OBS-3 well. On the other hand, the OBS-1, -2, and -4 wells
displayed smaller drawdowns of 0.11–0.16 m. Remarkably, larger drawdowns were identified for the
multilayered wells (MLWs) at 45–75 m from the pumping wells than at the observation wells (except
for the OBS-3 well) at 10–20 m from the pumping wells. The drawdowns of the MLW-1, MLW-2,
and MLW-3 wells were 1.5, 0.37, and 0.33 m, respectively, within 10 min from the start of pumping,
showing a larger drawdown at the nearer observation wells (MLW-1) and a smaller drawdown at the
farther observation wells (MLW-2 and MLW-3) from the pumping well.

During the recovery period, the water level rapidly rose to the initial level at the OBS-3, IW-2,
and OBS-5 wells. In contrast, the recovery time to the initial level was longer than 24 h at the other
observation wells, suggesting low hydraulic connectivity around the wells. As a result, complex
hydraulic connectivity and anisotropy were delineated in the small-scale riverside alluvial aquifer
from both the pumping test and the drawdown patterns of the cross-section A-A’ to the Nakdong
River as well as of the cross-section B-B’ parallel to the river (Table 2, Figure 5).
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Table 2. Hydraulic parameters at the observation wells using pumping test solutions.

Well Aquifer Model Solution Drawdown
(1 Step, m) T (m2/s) S

OBS-1 unconfined Cooper-Jacob (1946) 0.1 4.67 × 10−3 0.25
OBS-2 unconfined Cooper-Jacob (1946) 0.04 4.76 × 10−3 2.26
OBS-3 leaky Hantush-Jacob (1955) 6.48 1.14 × 10−4 1.7 × 10−4

OBS-4 unconfined Neuman (1974) 0.09 4.19 × 10−3 5.2 × 10−3

OBS-5 Leaky Hantush-Jacob (1955) 0.27 5.52 × 10−4 1.1 × 10−2

OBS-6 unconfined Neuman (1974) 0.1 1.91 × 10−3 9.6 × 10−3

MLW-1 Leaky Hantush-Jacob (1955) 4.97 1.22 × 10−4 1.5 × 10−5

MLW-2 Leaky Hantush-Jacob (1955) 3.28 2.06 × 10−4 6.3 × 10−5

MLW-3 leaky Hantush-Jacob (1955) 3.16 2.11 × 10−4 4.6 × 10−5
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4.2. Hydraulic Parameter Estimation

The pumping test was executed to estimate the hydraulic parameters (transmissivity and
storativity) and show the lateral and vertical geometry of the aquifer. Hamm et al. [3] applied a
modified confined aquifer model considering wellbore and elastic storage [21] for the alluvial aquifer
system 7 km upstream of the study site. The aquifer system is composed of a lower sand/gravel layer
(the main leaky confined aquifer) and an upper silty sand layer (the confining bed) with good hydraulic
connectivity between the upper and lower layers. In this study area, using geological logs as well as
the pumping test data, appropriate aquifer models were selected among the leaky confined aquifer
models [22,23] and the unconfined aquifer models [24,25] by using both theoretical and derivative
curves (AQTESOLV ver. 4.5) in order to precisely interpret the aquifer system. Comparative analysis
was completed using various models—Hantush–Jacob, Moench, Neuman, and unconfined Theis
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models [22–24,26]—using OBS-3 well data. Among the four models, the Hantush–Jacob model and
the Neuman model of the free-surface aquifer were superior to those of the Moench and Theis models.

The Hantush–Jacob leaky aquifer model was most suitable for the OBS-3 and the MLW-1, -2,
and -3 wells (Figure 6). The observed drawdowns at the OBS-5 well, resembling those of the Neuman
model considering gravity drainage, were actually caused by the pumping rate decrease because
of the submersible pump pressure reduction. The geological columnar section also sustains the
leaky confined aquifer model. On the other hand, the OBS-1 and -2 wells were appropriate for the
Cooper–Jacob model and the OBS-4 and -6 wells fitted the Neuman model. The OBS-1, -2, -4, and -6
wells were clogged by the precipitation of grains largely originating from the upper silty sand layer,
hindering groundwater flow from the lower main aquifer and showing a small drawdown of less than
10 cm. These wells recovered much more slowly than the wells of the leaky aquifer system, because of
a weak hydraulic connection with the lower main aquifer.
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MLW-3, and OBS-5 observation wells.

Transmissivity (T) estimates ranged from 1.14 × 10−4 to 5.52 × 10−4 m2/s and storativity (S)
estimates ranged from 1.5 × 10−5 – 1.1 × 10−2 using the leaky aquifer model [22]. The T values via the
Cooper–Jacob unconfined model ranged from 4.67 × 10−3 to 4.76 × 10−3 m2/s and the S values ranged
from 0.25 to 2.26 m, whereas the T values using the Newman unconfined model were determined as
1.91 × 10−3–4.19 × 10−3 m2/s and the S values as 9.6 × 10−3–5.2 × 10−3 (Table 2). From the T values,
the hydraulic conductivity (K) values were estimated as 6.07 × 10−6–3.51 × 10−4 m/s. According
to the comparison of the K values using the pumping test and slug tests, the OBS-1, -2, and -6 wells
showed similar K values to each other by an order of 10−4 m/s. On the other hand, for the OBS-3 well,
the K values (on the order of 10−6 m/s) using the pumping tests were lower than those (on the order of
10−4 m/s) using the slug tests. This result explains the hydraulic heterogeneity between the pumping
well and the OBS-3 well as well as the higher permeability around the OBS-3 well (Table 2). T values of
5.55 × 10−3–2.38 × 10−2 m2/s (geometric mean 1.04 × 10−2 m2/s) were estimated by [19] at riverbank
sites near the study area and were in accordance with the estimated T values in this study area.

The heterogeneity and anisotropy of the alluvial aquifer in the study area is suggested by variable
T and S values in space as well as a negative relationship between the hydraulic parameters (T and S)
vs. distance from the river (between OBS-3 and MLW-3) (Figure 7).
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4.3. Estimation of Remnant Paleo-saltwater

High salinity appears in porewater in inland aquitards having substantial thickness due to
seawater intrusion [27]. The upper (0–10 m) and lower aquifers (>25 m depth) of the study area
were discriminated by table isotopic analysis of groundwater samples (Figure 8). The upper aquifer
seems to be partially influenced by the river and the lower aquifer is not influenced by the river,
showing deep groundwater characteristics. The Na-Cl-SO4 relationship and salinity of the lower
aquifer is suggested to be linked to seawater intrusion based on shell mounds deposited 3000 to
4000 years ago. A comparison of the concentrations of the major ions and Cl− indicates a typical ion
exchange process during the seawater intrusion period and a high SO4

2− concentration derived from
the seawater intrusion.Water 2018, 10, x FOR PEER REVIEW  10 of 17 
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Figure 8. Major ions and Cl concentrations of the Nakdong River and groundwater in the upper and
lower aquifers.

During the pumping test, not only the groundwater behavior but also remnant paleo-seawater
in the lower zone of the alluvium was examined using an EC sensor at a depth of 25 m at both the
pumping well and observational wells. The EC change at the pumping well along the A-A’ cross
section displayed a gradual decrease until the fourth stage and stabilized within a range of ~2.4 mS/cm
of change. The variable EC changes in space and time at the observational wells were discovered to
be irrelevant to distance from the pumping well. The EC change at the OBS-3 well was 10 m distant
from the pumping well in the direction of the Nakdong River and showed a consistently decreasing
tendency. The OBS-6 well 20 m distant from the pumping well showed a value of 5.9 mS/cm from
the pump start and abruptly decreased to 1.0 mS/cm after a 4-h lapse. On the other hand, the OBS-1
well 10 m distant from the pumping well in the direction of the riverbank started to sharply decrease
after an ~8-h lapse and showed a gentle decrease from the fourth step during the pumping with a
resultant ~3.2 mS/cm of EC change. The IW-2 well 20 m distant from the pumping well showed a
prompt change in EC early and then a slow change rate of ~2.4 mS/cm at pump shutoff. The OBS-5
well 30 m distant from the pumping well showed rapid decrease of EC during the early period and
then the EC values became nearly stable despite a pumping increase. During the recovery period of
the pump shutoff, the observational wells, except the OBS-3 well, and the pumping well did not show
any distinct EC change (Figure 9).
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Figure 9. Changes in EC values at 25-m depth along the cross-sections (a) A-A’ and (b) B-B’ during
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The EC change in the B-B’ cross-section showed a slower EC change than that of the A-A’
cross-section. An EC change in the IW-2 well was observed from approximately 13 h since the pump
start and the lowered to 700 µS/cm with ~4.0 mS/cm of decline. At the OBS-2 well, similar to the
IW-2 well, the EC values changed after a ~56-h lapse from the pump start, reaching ~800 µS/cm with
an abrupt decline to 5.1 mS/cm. The directions of the OBS-2 and IW-2 wells displayed the greatest
decrease in the EC values among the four directions. The OBS-4 well in the opposite direction of
that of the OBS-2 well showed an EC change at ~51 h since the pump start with a smaller decrease
of ~800 µS/cm. Similarly, at the IW-4 well, an EC change appeared 32 h after the pump start with a
further gradual, small change of ~200 µS/cm (Table 3, Figure 9). The OBS-4 well exhibited the highest
EC value of 6.1 mS/cm among the observational wells while the IW-4 well 10 m from the OBS-4
well showed a low EC of 2.1 mS/cm, indicating the negligible impact of pumping with the smallest
variation in the EC values at the OBS-4 and IW-4 wells.

Table 3. Groundwater levels and EC values at 25-m depth at the wells during the pumping test.

Well No. Distance (m)
Depth to Water (h, m) EC (mS/cm)

Initial Final ∆h Initial Final ∆EC

PW 0 6.87 22.2 15.33 5.6 3.2 2.4
OBS1 10m 6.93 7.07 0.14 5.8 2.5 3.3
OBS2 10m 6.96 7.07 0.11 5.9 0.8 5.1
OBS3 10m 6.69 19.47 12.49 5.7 5.3 0.4
OBS4 10m 6.98 7.14 0.16 6.2 5.3 0.9
IW1 * 20m - - - 4.7 2.3 2.4
IW2 20m 7.05 7.63 0.58 4.7 0.7 4.0
IW4 20m 6.95 7.37 0.42 2.1 1.9 0.2

OBS5 30m 7.06 7.7 0.64 5.5 3.7 1.8
OBS6 30m 7.05 7.21 0.16 5.9 1.0 4.9

IW1 *: Pressure sensor error.
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4.4. Spatial Distribution of Paleo-saltwater

The distribution of the remnant paleo-seawater around 25-m depth was produced by the dilution
and elimination of the remnant paleo-saltwater. A higher salt concentration was identified near the
pumping well and a lower concentration appeared around the IW-4 well (Figure 10). With pumping,
the salt concentration decreased except at the pumping well and the observational wells 10 m distant
from the pumping well. At the OBS-1 well near the riverbank, EC values showed a decreasing trend
after a 16-h lapse since the pump start to ~3000 µS/cm after a 36-h lapse. In contrast, the EC of the IW-1
well 20 m from the pumping well decreased very slowly. The EC values of the OBS-5 well 30 m distant
from the pumping illustrated nearly no change after a 6-h lapse. The OBS-6 well displayed a decreasing
tendency of EC at a 6-h lapse. On the other hand, both the OBS-3 and OBS-4 wells demonstrated a
high EC as well as minor variation for a long time following the pumping start. The IW-4 well in the
direction of river flow exhibited low EC values with an insignificant change. The EC values of the
IW-2 well decreased ~2000 µS/cm at 25 h. On the other hand, the OBS-2 well showed a high EC until
64 h compared to the nearby wells, but during the late stage of the pumping presented a lower EC of
1000 µS/cm relative to the surrounding observational wells. As a result, low EC values analogous to
freshwater were identified in the direction of the OBS-2 and IW-2 wells (Figure 11).
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Figure 11. Areal EC values at 25-m depth with elapsed times during the pumping test.
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The pumping test resulted in an irregularity of dilution and an elimination effect of the remnant
paleo-seawater in terms of distance from the pumping well. The phenomenon can be explained by the
remnant paleo-seawater that is contained in the clay and silt layers rather than inside the aquifer and
is discharged while pumping, with a mixing of the remnant paleo-saltwater and freshwater from the
main aquifer. For instance, sea level rise can cause seawater intrusion deeply to the inland along rivers,
e.g., ~75 km inland from the sea [28]. The elevated salinity can be sustained in porewater in silt/clay
aquitard systems [29].

As a result, in the study area, the freshwater aquifer is underlain by a paleo-seawater layer that
was produced by sea water intrusion in the environment of the coastal region during the last glacial
ice age.

4.5. Vertical Profile of Saltwater Bed

On the vertical profile of the OBS-1 well, the EC values abruptly increase at ~12-m depth, dividing
the upper freshwater and lower paleo-saltwater. Most observation wells represent vertical profile of
typical coastal aquifer type [30]. The vertical profiles display the mixing zone of upper freshwater and
lower seawater that has 1.0–5.0 mS/cm and is located at depths between approximately 10 to 20 m on
the vertical profiles of the wells (Figure 12). This phenomenon coincides well with the Neolithic sea
level 3000–4000 years ago which was approximately 10 m higher than that of the present, as shown by
shell mounds found in the southeastern region of the Korean Peninsula. During pumping of the OBS-1
well, the EC values consistently decreased.

For the OBS-2 well, the salinity during pumping decreased at the upper zone and the EC values
were less than 1000 µS/cm in the range of freshwater at all depths during the time of shut-down,
analogous to the OBS-1 well. The OBS-3 well showed the greatest drawdown and an EC change of
~6.0–5.0 mS/cm at the lower zone. The OBS-4 well also behaved similarly to a typical coastal aquifer
with a distinct EC change with depth. The OBS-5 well showed the smallest EC change below 15-m
depth during the pumping test.

The OBS-6 well showed a high EC value of ~6.0 mS/cm at the lower zone during the initial period.
However, the mixing of fresh and paleo-salt waters occurred with progress in the pumping and the
EC values were the same from ~13-m depth to the bottom of the well after a 25-h lapse, showing a
decreasing tendency (Figure 12).
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5. Discussion and Conclusions

Pumping tests and EC logging were performed in a riverside alluvium of the Nakdong River in
South Korea in order to produce drinking water using AAR technique. Via the pumping tests, the study
area was shown to be composed of an upper freshwater layer and a lower remnant paleo-seawater layer,
representing a typical coastal aquifer that was formed during the last glacial ice age. The pumping test
analysis showed T values of 1.14 × 10−4–4.76 × 10−3 m2/s with an average of 1.86 × 10−3 m2/s and
S values of 1.5 × 10−5–1.1 × 10−2. T and S values in the direction of the river (from the pumping well
to the OBS-3 and MLW-3 wells) were highly related to distance from the pumping well.

Most of the observational wells showed a decreasing EC trend during pumping with the zonation
of upper freshwater and lower paleo-saltwater. Remarkably, the OBS-4 illustrated a high value and
minor variation of EC over a long period from the pumping start that seems to be related to a thick
clay layer of paleo-salt saltwater. The vertical profile of the OBS-4 well shows that of a typical coastal
aquifer with an increasing tendency of EC values with depth. The Na-Cl and SO4-Cl relationships of
the lower aquifer suggest river-seawater mixing that explains seawater intrusion indicated by shell
mounds formed 3000 to 4000 years ago.

As a result of the study, the aquifer in the study area was proven to be highly anisotropic and
heterogeneous while the pumping test analysis assumes the aquifer’s isotropy and homogeneity. The
varying EC values as well as irregular groundwater heads in both the vertical and lateral directions
also indicated the anisotropic and heterogeneous properties of the studied aquifer system.
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