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Abstract: At high latitudes, lake and river ecosystems are predominant and these ecosystems are
undergoing significant changes due to climate change. Although many scientists have studied lakes
and rivers in the Arctic region, the inland water dynamics in this region at the continental scale remain
unknown. In this study, the dynamics of the Arctic water were analyzed at the continental scale
using Landsat ortho-rectified surface reflectance products of fine spatial and temporal resolutions
for the period of 2000–2016, using the random forests method. The results of this study produced
the following revelations: (i) the water area is decreasing year by year in the long term; (ii) the
water loss and gain always show the same dynamic pattern spatially and temporally; (iii) the spatial
distribution of the water budget is strongly linked to permafrost, which implies that permafrost
determines the distribution pattern of the water dynamics more than climatic factors; and (iv) the
dynamics of the water show a certain rule with surface temperature, but the pattern of the dynamics
cannot be explained by temperature alone.
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1. Introduction

In the Arctic region, inland water plays a significant role. Not only does life in the Arctic depend
on the water supply from lakes and rivers but, in addition, water influences several other factors such
as surface energy balance, the carbon cycle, the habitats of organisms, and soil moisture. Nevertheless,
despite the increasing number of studies on Arctic inland water, the distribution and dynamics of
inland water in this region remain unclear. Thus, further investigation is required in this area.

Images of satellite sensing have been applied extensively to analyze the changes of surface
water in the Arctic from the local scale [1–5]. Smith et al. [3] reported that lakes in Siberia are
disappearing. Jones et al. [4] observed an increase in the number of lakes in Alaska. Early in their
research, they found a general Arctic water pattern in which lake abundance and surface area appeared
to decrease in the discontinuous, sporadic, and isolated permafrost zones while increasing in the
continuous permafrost zone [4]. However, the pattern became unclear in additional studies because
the research was conducted in a local region. Therefore, it became apparent that the trend needs to be
investigated on a regional scale.

Some recent studies used Landsat imagery to map water bodies at a finer spatial resolution [6–10],
which can detect water bodies less than 0.01 km2 and provide more details to characterize the inland
water status and dynamics. However, nearly all existing Landsat-derived regional to global inundation
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products are extremely limited by the temporal resolution as they were created only once or every ten
years [11,12].

Lately, there are some water products [13] using Landsat imagery whose temporal resolution
achieved a yearly, even monthly level. Global Surface Water v1.0 [13] shows a series of maps of global
inland water from 1984 to 2015 at a monthly resolution. Moreover, Pekel [13] concentrated on global
scale analysis and did not analyze the dynamics of the Arctic open water and often overestimated the
water (Figure 1). However, the hydrological process and the role of a factor may differ by location,
particularly in the Arctic [14], where the special climate and high latitude make the Arctic region
unique. So it is important to investigate the pattern of inland water dynamics in the Arctic on a regional
scale and at high temporal resolution.
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Figure 1. (a) The map of Global Surface Water v1.0 (GSW1_0) for 2015. (b) The combined Landsat
8 images from April to October in 2015. The red points in (a) and the yellow points in (b) denote
mismatched regions (water in GSW1_0 and land in Landsat).

This present study provides an understanding of the dynamic pattern of inland water in the
North American Arctic region (above 60◦ N) over a 17-year period (2000–2016). In the paper, data from
April to October were selected. In addition, the annual inland water dynamics were analyzed.

2. Materials and Methods

2.1. Study Area and Data

The study area includes the Arctic and boreal regions above 60◦ N in Canada and Alaska. Figure 2
shows the location of the study area.
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In this paper, Landsat 7 was used to generate data in 2000, both Landsat 5 and 7 were used to
generate data from 2001 to 2012, and Landsat 8 was used to generate data from 2013 to 2016. This paper
discusses the dynamics of surface water extent during the wet period, thus, all the ice-free data from
April to October were selected.

2.2. Methods

We quantified the changes in the Arctic surface water in North America over the past 16 years at
a 30-m resolution and used the random forests (RF) supervised classification method to generate the
water maps. The Landsat surface reflectance (SR) from April to October for a seventeen-year period
between 2000 and 2016 were downloaded from the United States Geological Survey [15]. Using a
cloud mask band (CFmask), clouds, cloud shadows, ice, and snow were removed from the scenes.
All scenes in the same year were composited by maximizing the normalized difference water index
(NDWI) values to observe the water body during the wet season. The ocean mask, terrain shadow
mask, and ice mask were applied to the composited images before they were classified.

The cloud shadows, terrain shadows, and glaciers are challenges faced in water detection.
Therefore, various indices based on Landsat SR were used to distinguish water from land and other
objects. To begin, we used masks to reduce the areas of shadows, seas, and glaciers. The SR product
includes the CFmask band, which classifies each pixel as clear, water, cloud, cloud shadow, ice, or snow.
The cloud and cloud shadows can be detected by the CFmask band, enabling the use of all the scenes
as much as possible.

Terrain shadows are often identified by hill-shade, which is calculated using the parameters of
solar azimuth and elevation in a DEM (Digital Elevation Model). Nevertheless, if only the hill-shade is
considered, the terrain shadows cannot be identified very accurately, leading to an underestimation of
the terrain shadows. The method employed to restrict the thresholds of hill-shade, elevation, and the
slope is proven to be effective [14]. In this study, we used the method that restricts the hill-shade,
elevation, and slope of DEM to detect water from terrain shadows. Glaciers can be masked by the
Randolph Glacier Inventory (RGI 5.0) and seawater can be removed by the MODIS water mask. With
the masks, errors cannot be avoided completely; therefore, these images need to be further processed
by classification.

Before masking, all the scenes in the same year were composited into an image where each pixel
was calculated by the maximum of all the NDWI values in the position of the pixel. Subsequently,
we generated water images using the random forests (RF) supervision algorithm. To avoid the
inconsistencies in the quality of the local water classification, we selected training points considering
all regions where water is present. We used various vegetation and water indices and color parameters
to improve the generalization ability of the model. NDWI, MNDWI (Modified Normalized-Difference
Water Index), and NDMI (Normalized Difference Moisture Index) were used to distinguish between
the water and other objects. NDVI (Normalized Difference Vegetation Index) was used to differentiate
the water from the vegetation. The HSV (Hue-Saturation-Value) color model helped to identify the
water in the color aspect.

2.3. High-Performance Computing Resources

The Landsat imagery used in this study is available from the Google Earth Engine (https://
earthengine.google.com). Google Earth Engine provides online access to all Landsat images and other
remote sensing images provided by the United States Geological Survey. This platform makes Landsat
data easily accessible to researchers. Furthermore, it allows classification codes to be run on any
Landsat 5, 7, and 8 images. In the study, the location of the scenes ranged from 14 to 173, and the
row ranged from 1 to 248. A total of 32,927 Landsat scenes were included, with the total data volume
exceeding 5.7 TB.

https://earthengine.google.com
https://earthengine.google.com
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2.4. Indices

Previous studies [9,10,13] have indicated that the NDWI [16], normalized difference vegetation
index (NDVI) [17], and normalized difference moisture index (NDMI) [18] can be applied to
regional-scale water detection, showing high performance in distinguishing water at different band
ranges. The modified normalized-Difference Water Index (MNDWI) [19], which has been widely used
to detect water, can differentiate water from soil and buildings. The formulas are as follows:

NDWI = (ρG − ρNIR)/(ρG + ρNIR) (1)

MNDWI = (ρG − ρSWIR1)/(ρG + ρSWIR1) (2)

NDMI = (ρNIR − ρSWIR1)/(ρNIR + ρSWIR1) (3)

NDVI = (ρNIR − ρR)/(ρNIR + ρR) (4)

ρG is the green band, ρNIP is the near-infrared band (NIR), ρSWIR1 is the shortwave infrared band
(SWIR1), and ρR is the red band.

Using a standard transformation, the Hue-Saturation-Value (HSV) and color-space transformations [3]
were performed for the following band combinations: shortwave infrared (SWIR1), near-infrared (NIR),
red and NIR, green, blue. Recently, the HSV color model has been applied to image identification
successfully. This is highly desirable because changes in observation conditions first affect the V
component and then the S component, while the H component remains relatively stable (except when
the fundamental nature of the target changes, such as when land becomes water). Consequently,
this property promotes temporal stability in the measurements and HSV-based classifications have
been successfully used for near-real-time surface water detection at continental scales.

2.5. Terrain Mask

We generated a terrain mask with the Global Multi-Resolution Terrain Elevation Data
(GMTED) [20], whose best resolution is 250 m. The mask was created by restricting slope and
elevation. The slope was calculated from the max rate that the elevation difference was divided by and
the distance difference between a pixel and its adjacent pixels. After several experiments, we set the
slope to more than 7◦ and the elevation to more than 1500 m to reduce terrain shadows. This method
identifies not only terrain shadows but also the land and parts of the glaciers, which is more effective
than using hill-shade.

2.6. Glacier Mask

To avoid interference from glacier shadows, the RGI 5.0 [21] was used to mask the images.
The glacier mask removes the areas where glaciers exist, even though it may omit the melted water in
such areas.

2.7. Ocean Mask

We removed seawater from the dataset using the MODIS water mask [22]. The MODIS water
mask is a global MODIS water mask with a product coverage from 2000 to 2002 and a resolution
of 250 m. Firstly, pixels whose elevation (GMTED) was below 5 m and above −5 m were selected
from the MODIS water dataset. Then, the analysis converted the selected data to vectors. The largest
polygon was detected as the MODIS ocean mask. Next, the Landsat ocean pixels with an elevation
below −5 were removed. Then we detected sea regions using the MODIS ocean mask and applied
the mask to water maps of this study. Then we buffered the region by 15 pixels to reduce the effect
of seawater.
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2.8. Classification

Random forests or random decision forests are classifiers containing multiple decision trees,
which are combined with “bootstrap aggregating” and the “random subspace method.” The introduction
of randomness improved the overfitting problem of the decision trees. In addition, this enabled the
processing of a large number of input variables, creating a good generalization ability and enhancing
robustness. The random forests [23] outlined in the Extended Data Figure 3 were developed to
assign each pixel to one of three target classes: water, land, or non-valid observations (snow, ice,
cloud, or sensor-related issues). Labels of the training points included two classes: water and land.
The numbers of the water and land training points are approximately equal. The selection of water
training points considered terrain, the density of water, and the type of water. The land training points
were selected from different moisture soil and areas where water was easily classified.
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2.9. Validation

The results of the classification were evaluated in terms of the errors of commission at the pixel
scale. The validation design applied the validation method in Olofsson et al. (2014) [24] and took into
account different sensors. The reference datasets were produced as follows. A random sample of 1416
pixels was generated from a region of interest. We applied 472 random points to the 2000, 2008, and 2016
water maps which represented Landsat 5, Landsat 7, and Landsat 8 results, respectively. Each map was
classified into 3 classes: water (no change compared with 2000 water map), land (no change compared
with 2000 water map), and the changing class. We applied the stratified sampling method for each
map. Then, the properties of these points were determined by visual interpretation. The dataset was
used to verify the classification of each year. Both the user’s accuracy and the producer’s accuracy
were calculated. Table 1 shows the accuracy of the classification.
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Table 1. The accuracy of classification.

Map
Reference

User’s Accuracy
Water Land Total

Landsat5

Water 90 1 91 98.90%
Land 17 364 381 95.54%
Total 107 365 472

Producer’s Accuracy 84.1% 99.7% Total Accuracy: 96.19%

Landsat7

Water 88 2 90 97.8%
Land 21 361 382 94.5%
Total 109 363 472

Producer’s Accuracy 80.7% 99.4% Total Accuracy: 95.1%

Landsat8

Water 97 1 98 99.0%
Land 15 359 374 96.0%
Total 112 360 472

Producer’s Accuracy 86.6% 99.7% Total Accuracy: 96.6%

3. Results and Discussion

3.1. Results

Water detection was performed to collect 16 years’ worth of data from 2000 to 2016. The data that
was then used to investigate the surface water dynamics in the Arctic and boreal regions of North
America. The distribution map of inland water is shown in Figure 4a. One can see that over the past
16 years, almost 3.2 km2 of water disappeared, over 1.2 km2 transitioned from land to water, and over
4.4 km2 transitioned from water to land in the study area. Figure 4b shows an example of lake changes
during the study period. Figures 5–7 shows the water dynamics in the entire region between 2000 and
2016. Figure 5 shows the trend of the dynamic in terms of the years. Figure 6 shows the trend of the
dynamic by latitude and Figure 7 shows the trend of the dynamic by longitude. The loss of water
indicates that the water in 2000 transformed into land in another year. Gain refers to the land in
2000 transforming into water in another year. Budget equals the amount of loss subtracted by the
amount of gain. The percentage of the water area dynamics is an average of the total water bodies’
dynamics from 2001 to 2016. In the statistical analysis, a 2◦ interval was set for the latitude and a
5◦ interval was set for the longitude.

From Figure 5, it seems that the water gain and loss shows a slowly increasing trend, with an
exception in 2001. This means more and more water bodies are shrinking and expanding, or that
more and more water appears and disappears. Such a finding may be related to the deepening active
layer of permafrost [25] as well as the climatic factors [26]. The deepening active layer of permafrost
can cause lateral erosion, which results in water body expansion and lateral drainage, and can also
cause settlement at the lake bottom, which results in internal drainage. Even though the loss and
gain areas increased, the budget did not change significantly as the emergence and disappearance
areas of water are roughly equivalent. Thus, the Arctic does not appear to lose significant amounts of
water. Additionally, surface water does not evaporate or drain underground much either. However,
the budget trend is slightly decreasing, which implies that the water may decrease gradually in
the future.

From Figure 6, the loss and gain areas rise abruptly at 70◦ N, where the coastal zone dominates,
possibly due to the shrinking sea ice [27]. The shrinking sea ice results in higher temperatures and
increased snowfall, which decreases the lake ice thickness. The budget dynamics of latitude shows a
different pattern. The budget at 68◦ N begins to change abruptly and decreases as the latitude increases
from 60◦ N to 68◦ N. The region above 68◦ N shows the same trend.
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Figure 6. The dynamics of inland water according to the latitude (the figure showed the yearly average
dynamics of water with latitude), the Figures (a) and (b) respectively repercent changing percentage of
loss/gain and budget over the latitude.

From Figure 7, the water with longitude shows different dynamics—the loss and gain decrease
more in the east than in the west. Moreover, budget in the east decreases more than in the west.
The distribution with longitude may be related to the terrain, climate, and permafrost. Mountains in
North America are distributed from 125◦ W to 160◦ W, which is different from the distribution pattern
of the water longitude dynamics. Thus, the terrain does not impact the water dynamics significantly.
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3.2. Discussion

Many studies on the trends of water and climate-driven effects on ponds have been conducted in
the Arctic region. Some studies observed significant decreases in size and number, and some found
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increases in the number, as well as in the area of lakes [9,28,29]. Obviously, the results are ambiguous
and the reasons for the discrepancies are unclear. Site investigations suggest that permeability of soils,
temperature, precipitation, shoreline erosion, and vegetation cover [1,4,30,31] may be related to these
discrepancies, which need to be explored further.

We found that budget changes abruptly at 68◦ N (Figure 6) and changes more from 160◦ W
to 100◦ W. This region is roughly consistent with the distribution of permafrost (Figure 8). We can
further verify that the Arctic inland water dynamics are strongly correlated to permafrost [32–34].
In order to further confirm that the permafrost process impacts inland water dynamics, we calculated
the loss, gain, budget area percentages from 2000 to 2016 with a 1◦ (latitude) × 5◦ (longitude) grid
and calculated the correlation between the dynamic area and permafrost. We assigned the weight to
the grid net based on the distribution of the permafrost. The weights of the continuous permafrost,
the discontinuous permafrost, the sporadic permafrost, and the isolated permafrost were 0.95, 0.70,
0.30, and 0.05. The mean of the weight value within each grid was calculated. From Table 2, the loss
and budget had a strong correlation with the distribution of the permafrost. The gain was unrelated to
the permafrost weakly.
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Figure 8. The permafrost map (permafrost data can be downloaded from the National Snow and Ice
Data Center [35]).

Table 2. The correlation analysis.

Correlations Gain Loss Budget

Spearman Correlations 0.35 0.62 −0.55
Kendall Correlations 0.25 0.49 −0.42

Permafrost thaw is related to the surface temperature. A different process of thaw occurs at
different temperatures and, consequently, water will change at various levels. The paper uses the
MODIS LST/Emissivity products, MYD11A2 and MOD11A2 [36,37], to analyze the water dynamics
with annual average temperature differences (Figure 9). As observed in Figure 9, the paper found
that the loss and gain of water showed the same trend. In the beginning, the loss and gain areas
declined and then the loss and gain areas increased with the rising temperatures. However, this trend
cannot be explained by temperature alone, as there are other factors (for example, Lake ice, wind,
and morphological variables) involved in the process [34]. The budget shows a different trend—as the
temperatures rise, the net loss increases at first and then decreases. This trend is consistent with the
water response to permafrost thaw [26].
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4. Conclusions

The observations of surface water in the Arctic region show that the dynamics of surface water
vary through time and space. These results help understand Arctic landscape dynamics. Many studies
have analyzed the extent and amount of inland water using Landsat products of coarser or higher
resolution. Some studies observed decreases, while some observed increases, and some found both.
These changes become increasingly ambiguous with further research. As such, the controlling
factors of these changes remain unclear. Accordingly, some studies investigated the factors from
two perspectives: climatic factors and thermokarst processes. The present study investigated water
dynamics at the continental scale and determined the spatial and temporal distribution using a high
temporal resolution. The study also analyzed the reasons for these changes. The results showed
that the water area is decreasing yearly in the long term, while water loss and gain always show
similar dynamic patterns both latitudinally and longitudinally with the loss of water and the gain
of water roughly offsetting one another. In addition, the spatial distribution of the water budget is
strongly linked to permafrost—it seems that permafrost determines the distribution pattern of the
water dynamics more than climatic factors (for example, temperature). Moreover, in continuous
permafrost regions, the water net loss decreases as the latitude increases. The same pattern was present
in the discontinuous permafrost and sporadic permafrost regions. Loss and gain water show the same
pattern with surface temperature, but the pattern of the dynamics cannot be explained by temperature
alone. The budget presents a pattern with the surface temperature, which can be explained by the fact
that temperature affects permafrost thaw.
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