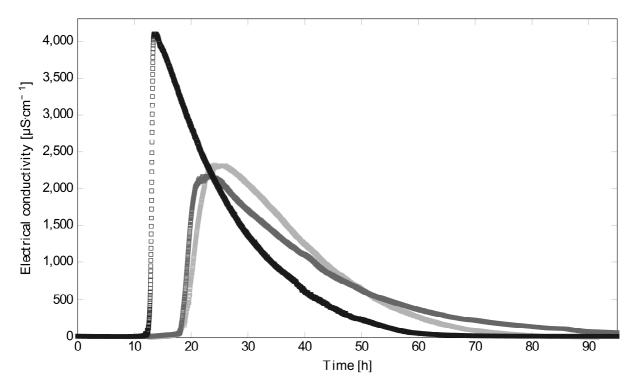
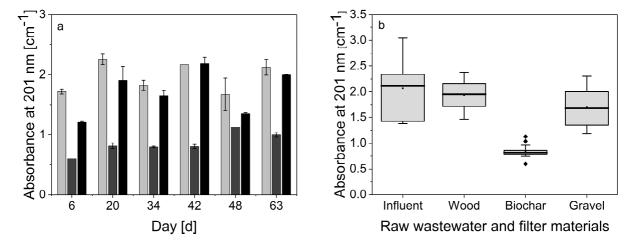
Supplementary data for

Efficient Low-Cost Anaerobic Treatment of Wastewater Using Biochar and Woodchip Filters


Korbinian Kaetzl*, Manfred Lübken, Tito Gehring and Marc Wichern

Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany


*To whom correspondence should be addressed.

E-Mail: korbinian.kaetzl@rub.de

Phone: +49 234 32 26105 Fax: +49 234 32 14503

Figure S1. Electrical conductivity over time of effluents from different filter units after adding a pulse of NaCl to influent tab water. Hydraulic loading rate of filters, gravel (black), biochar (grey) and woodchips (light grey) was 0.05 m·h⁻¹.

Figure S2. Mean UV-Extinction of filter effluents at 201 nm (a) of gravel (black), biochar (grey) and woodchips (light grey) over time. Error bars represents standard deviation. Boxplot of UV-Absorbance at 201 nm of filter effluent and raw water (b).

Figure S3. Samples of filter influent (right) and effluent of biochar filter (left).

Table S1. Chemical and physical characteristics of biochar and woodchips. Standard deviations are presented as variation range.

Parameter	Unit	Biochar	Woodchips
Specific surface area (BET)	m²⋅g ⁻¹	485	<1
Specific surface area (BET)	$m^2 \cdot m^{-3}$	$1.11 \cdot 10^8$	1.69·10 ⁵
Zeta potential	mV	-20.8 ± 0.8	-13.1 ± 1.6
Total carbon (C)	$\% \text{ w} \cdot \text{w}^{-1}$	89.2	47.1
Total nitrogen (N)	$\% \text{ w} \cdot \text{w}^{-1}$	1.0	<0.10
Oxygen (O)	$\% \text{ w} \cdot \text{w}^{-1}$	1.9	37.5
Hydrogen (H)	$\% \text{ w} \cdot \text{w}^{-1}$	1.6	7.1
Sulfur (S)	$\% \text{ w} \cdot \text{w}^{-1}$	0.04	0.031
Total phosphorous (P)	mg∙g ⁻¹	4.3	1
c/o	-	46.9	1.26
C/N	-	89.2	>471

Table S2. Chemical and physical characteristics of quartz gravel. Specific surface area was calculated according to Wichern et al. (2008)¹. Standard deviations are presented as variation range.

Parameter	Unit	Gravel	
Specific surface area	m²⋅g ⁻¹	< 0.001	
Specific surface area	$m^2 \cdot m^{-3}$	< 1.55·10³	
Zeta potential	mV	- 28.4 ± 1.3	
Na₂O	% w·w⁻¹	0.09	
MgO	% w·w⁻¹	0.02	
Al ₂ O ₃	% w·w⁻¹	1,3	
SiO ₂	% w·w ⁻¹	97.6	
K ₂ O	$\% \text{ w} \cdot \text{w}^{-1}$	0.87	
CaO	% w·w ⁻¹	0.02	
TiO ₂	$\% \text{ w} \cdot \text{w}^{-1}$	0,024	
Fe ₂ O ₃	% w·w ⁻¹	0,067	
P ₂ O ₅	% w·w ⁻¹	< 0.01	

Table S3. Porosity of different filter materials and theoretical hydraulic retention time. Porosity of dried and saturated woodchips and biochar were determined. HRT was calculated from storage reservoir to sampling port.

Porosity of fraction [%]						
Material	11/16 mm	8/11 mm	5/8 mm	HRT [h]		
Gravel	43	41.2	41.4	17.2		
Woodchips (dry)	78.8	78.2	81.4	28.5		
Woodchips (wet)	52.1	51.6	53.6	20.5		
Biochar (dry)	73.4	72.4	73	26.6		
Biochar (wet)	47.8	43.3	40.7	17.8		

Table S4. Physical parameters of filter influent and effluent. Standard deviations are presented as variation range.

Parameter	Unit	Influent	Woodchip	Biochar	Gravel
рН		7.8 ± 0.2	7.8 ±0.3	7.8 ± 0.3	8 ± 0.2
EC	μS·cm ⁻¹	1178 ± 166	1177 ± 168	1148 ± 154	1177 ± 171
Temperature	°C	5 ± 1	22 ± 1	22 ± 1	22 ± 1

References:

M. Wichern, C. Lindenblatt, M. Lübken and H. Horn, Water Res., 2008, 42, 3899–909.