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Abstract: High spatial and temporal variation in precipitation in South Korea leads to an increase in
the frequency and duration of drought. In this study, the spatial characteristics of temporal trends for
precipitation and drought severity time series were analyzed at 55 stations across South Korea for the
period 1980–2015. This study also reviewed the usefulness of different trend tests while addressing
the issue of serial correlation, which has often received less attention in previous studies. Results
showed that most significant trends in precipitation were detected along the south coast of South
Korea, especially during winter, late spring and summer, whereas no significant trend was detected in
annual precipitation. The Sen’s slope of the trends increased from January to August and decreased
from August onward. Principal component analysis applied on Standardized Precipitation Index
(SPI) at a 12-month time scale divides the whole of South Korea into four subregions with different
temporal behaviors of drought severity. Moreover, drought severity showed a significant increasing
trend, mainly on the northeast coast. Drought frequency analysis showed more frequent droughts in
late winter, early spring and early autumn, with less frequent droughts in summer.
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1. Introduction

Drought is a natural phenomenon, and it occurs with spatiotemporal variation in frequency,
severity, and duration. Moreover, drought can be characterized as both a hazard and a disaster [1].
Trends in drought frequency, duration or severity can be expressed through the changes in
precipitation [2]. Since precipitation is a highly important climatic variable and has a direct impact on
the occurrence of drought [3–5] or flood [6,7], joint trend analysis of drought and precipitation has
been gaining more importance in recent studies [2,8–10]. Identification of trends in precipitation and
drought helps to understand the long-term variation of hydrometeorological processes and explore
their periodicities [11].

Precipitation in South Korea has high spatial and temporal variability. The complex topographical
and climatic characteristics of South Korea lead to greater variation in annual precipitation in the
southern part (1000 mm to 1800 mm) than the central part (1100 mm to 1400 mm). This climatic
variability is the main problem for water resource management in South Korea, especially during
water shortage periods. To cope with this problem, the spatial and temporal variation of precipitation
has been analyzed in previous studies in South Korea [12–14]; however, the spatial and temporal
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variability of drought based on Principal Component Analysis (PCA) to compare the temporal behavior
of regional drought patterns has never been studied before.

We recognize that the robustness of significance testing for hydroclimatic indicators has been
increasingly questioned in recent literature due to difficulties in establishing a valid null hypothesis and
the impact of long-term persistence (e.g., [15,16]. This increase in criticism is because hydro-climatic
data often violate the assumptions required for statistical testing (such as distribution, correlations
and stationarity of the data). This study deals with the correlation assumption of the data. Although
several attempts have been made to analyze the precipitation trends in South Korea, with most of them
focusing only on the summer or seasonal precipitation trends [12,14,17–19] and others focusing on the
trends in total precipitation [13,20–25], no comprehensive research has been conducted on drought
severity trends in South Korea. In most of the previous studies, the precipitation trends were detected
using non-parametric techniques, especially the Mann-Kendall test, without paying any attention to
the serial structure of the time series. However, the literature review showed that the existence of serial
correlation in time series leads to adverse effects on the power of the trend test [26–30]. Therefore, it is
necessary to assess the effect of serial correlation on trend detection tests.

The main objectives of this study were (i) to identify the spatial characteristics of temporal trends
in the annual and monthly precipitation after considering the effect of serial correlation; (ii) to present
the regional review of the spatial and temporal behavior of drought and their relative frequencies
across South Korea by using SPI at a 12-month time scale; (iii) to review and evaluate the ability of
different trend tests to detect trends under the influence of serial correlation.

2. Materials and Methods

2.1. Study Area and Data

South Korea is located in East Asia and occupies an area equal to 100,210 km2. South Korea is
heavily affected by the Asian monsoon. Winter consists of dry and cold air masses from the Asian
continent, while summer consists of warm and moist air masses from South-Eastern Asia. Figure 1
shows the geographical distribution of the administrative district boundaries, rivers, and topographical
characteristics of the 55 rainfall stations used in this study. Initially, monthly precipitation data were
collected over 70 rainfall stations maintained by the Korean Meteorological Administration (KMA;
web.kma.go.kr) across South Korea. However, only 55 rainfall stations, having the precipitation data
from 1980 to 2015 (36 years), were selected, because of non-availability or missing precipitation data at
other 15 stations. Initial data analysis for monthly and annual precipitation were performed using
the Double Mass method and the Run test to evaluate the homogeneity and randomness of the data,
respectively [31].

2.2. Standardized Precipitation Index (SPI)

The SPI method proposed by McKee [32] was used to evaluate the drought trends across South
Korea. Different SPI timescales (ranges from 1 to 48 months) indicate the effect of drought on the
availability of the different water resources. For example, shorter SPI timescales (from 1 to 6 months)
indicate the drought index for agriculture practices [32,33], whereas longer SPI timescales (from 12 to
48 months) indicate the drought index for hydrology [33]. In this study, an SPI timescale of 12 months
(SPI-12) is used to analyze the spatiotemporal trends across the region. This is because South Korea has
more than 18,797 reservoirs across the country, used to supply water for irrigation and manufacturing,
and a large number of reservoirs are managed on a timescale of a single year (i.e., reservoirs are filled
during the rainy season and drained in the dry season). The SPI time scale is calculated as

SPI =
xi − x

σ
(1)



Water 2018, 10, 765 3 of 27

where xi indicates the monthly rainfall amount and x and σ are the mean and standard deviation of
rainfall calculated from the whole monthly time series. Since precipitation do not follow the normal
distribution, data are transformed to follow a normal distribution. We choose the gamma distribution
because it is found that the gamma distribution fit more closely to the precipitation of 55 stations
of South Korea [34]. Since there are a number of zero-bounded continuous variables in climatology,
it is important to give a distribution that can be used for such variables [35]. Additionally, gamma
distribution has been recommended by many researchers for SPI analysis at different time scales across
South Korea [36,37].
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Finally, the SPI value is calculated by transforming the cumulative probabilities of the Gamma
distribution to the standard normal distribution [32,38]. The graph showing the fitness of SPI data is
shown in Figure 2.
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2.3. Commonly Used Statistical Tests for Trend Detection

2.3.1. Mann-Kendall (MK) Test

The majority of the previous studies assumed that sample data are serially independent. It is
known that some hydrometeorological time series such as water quality and streamflow or rainfall
time series may show serial correlation. In such cases, the existence of serial correlation will affect the
ability of the MK test to assess the significance of trend because the Mann-Kendall and the Theil-Sen
are unable to consider the AR(1) process of the time series.

The non-parametric MK test [39,40] is the most widely applied for the detection of trends in a time
series. If the total number of data in the time series is indicated by N, then statistic S can be computed
as follows;

S =
N−1

∑
i=1

N

∑
j=i+1

sgn
(
Yj −Yi

)
(2)

where Yj indicates the value of the jth data, n indicates the number of data, and sgn(θ) is the sign function

sgn(θ) =


+1 i f θ = Yj −Yi > 0

0 i f θ = Yj −Yi = 0

−1 i f θ = Yj −Yi < 0

(3)

The positive (negative) value of S shows the upward (downward) trend. The S is considered to
be normally distributed when N ≥ 8, and its mean and variance can be computed as follows

E[S] = 0 (4)

var(S) =
[N(N − 1)(2N + 5)−∑n

i=1 tii(i− 1)(2i + 5)]
18

(5)

where ti indicates the number of data in the ith tied group. Finally, the standardized test statistics Z
can be computed as follows:
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Z =


(S− 1)/

√
Var(S) S > 0

0 S = 0
(S + 1)/

√
Var(S) S < 0

(6)

A positive value of Z shows an increasing trend, while a negative value shows a decreasing trend.
In this study, trends were tested with a significance level of α = 0.05. The null hypothesis of no trend
is rejected if the absolute value of Z is greater than 1.96.

2.3.2. Theil–Sen’s Estimator

An approach proposed by [41,42] to compute the magnitude of the trend in rainfall time series,
which is estimated as follows:

β = Median
[
Yi −Yj/i− j

]
∀j < i (7)

where 1 < j < i < n. If N is all combinations of record pairs for the entire data set, then value of slope
estimates can be n = N(N − 1)/2 and β is considered to be the median of these n values.

2.3.3. Linear Regression Estimator

The linear regression method is used to estimate the slope. Positive slope value indicates an
increasing trend, while a negative value indicates a decreasing trend. The linear regression line can be
computed as follows:

y = a + bx (8)

where x and y are the explanatory variable and the dependent variable, respectively, while b and a are
the slope and intercept, respectively [9].

2.4. Principal Component Analysis (PCA)

PCA uses a dimensional reduction technique to identify the patterns in climatic and meteorological
data [43–45]. Normalization of the climatic datasets before application of PCA analysis is common
practice [4]. However, normalization of the dataset is not required, as long as the data is not excessively
skewed [46]. SPI is itself a normalized variable, because the data has previously been transformed
using the Gamma distribution. Therefore, there is no need for further normalization of the drought
data; nevertheless, normality assessment was made before the application of PCA analysis. Given the
drought index (SPI-12) time series at 55 meteorological stations across South Korea, PCA was applied
to extract the loading for each meteorological station, as well as scores for each principal component
according to covariance matrix and the eigenvalues and eigenvectors. To explore the localized spatial
patterns of drought, the rotation of the loadings was performed using the Variance-Max approach to
obtain rather independent principal components [47]. The number of leading components retained
for rotation was evaluated using the sampling errors of eigenvalues associated with the principal
components [48]. In this study, for the SPI-12 time series, only the first four principal components were
well separated within the 95% confidence interval. Thus, the spatial variation of drought patterns
across South Korea was represented by the four rotated principal components (RPC) score time series.
It should be noticed that RPC scores could represent the common time behavior of the SPI-12 time series
across the areas with maximum loading [49]. PCA results were used to divide the subregions according
to drought characteristics and were used to explore the representative stations while considering the
internal spatial variation of drought. Since the topographical and climatic features of South Korea are
complex, recognizing the spatial patterns of drought characteristics is the main obstacle for engineers
and regional planners. In this study, a 12-month time scale was selected because it could avoid seasonal
cycles while retaining the inter-annual variability by the memory effect [49].
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2.5. Statistical Tests Considering the Effect of Serial Correlation for Trend Detection

Usually, in trend detection tests, it is assumed that the observed time series is serially independent.
However, data such as annual mean or annual maximum precipitation may show significant correlation.
In situations when significant serial correlation is present in the time series, the MK test has high chances
of showing significant trends, while no trend exists in reality [26,28]. In other words, the existence of serial
correlation leads to an increase in the probability of disproportionate rejection of the null hypothesis.

2.5.1. Pre-Whitening (PW)

To reduce the effect of serial correlation, [26,50] proposed pre-whitening of the time series before
the application of the trend detection test. This approach has been applied by many researchers for the
detection of trends in streamflow [51], precipitation and temperature records [52]. Computation of
other time series models could be fitted more closely to the precipitation data [53]; however, the PW
approach assumes that time series can be appropriately described by an autoregressive process of
order one, AR(1). The PW approach makes it possible to modify the original time series, and apply the
trend test on the reduced sample. Modification in the original time series is mainly done by computing
the lag-1 serial correlation coefficient r̂1. For a significance level α if the value of r̂1 is non-significant,
then the trend test is applied to the original time series (y1, y2, . . . , yn); otherwise, it is applied to the
pre-whitened time series (y2 − r̂1y1, y3 − r̂1y2, . . . , yn − r̂1yn−1).

2.5.2. Trend-Free Pre-Whitening (TFPW)

Removing the AR(1) component from the time series affects the magnitude of the true slope
[removal of positive (negative) AR(1) process deflates (inflates) the existing trend] [54]. The TFPW
approach is introduced to address this issue [29]. For a given time series, the slope of the trend is
estimated through Theil–Sen’s estimator, i.e., Equation (7). Then the original time series is detrended
under the assumption of a linear trend and the lag-1 serial correlation coefficient r̂1 is evaluated for the
detrended time series. For a significance level α if the value of r̂1 is non-significant, then the trend test
is applied to the original time series; otherwise, the trend test is applied to the detrended pre-whitened
series recombined with the initially estimated slope of trend.

2.5.3. Variance Correction (VC) Approach

The VC approach assumes that the N serially correlated observations have the same information
as N∗(< N) uncorrelated observations. Extensive Monte Carlo simulations were performed [29], and it
was found that the presence of serial correlation in a given time series does not change the asymptotic
normality and mean of the MK test statistic S, but it does change the variance of the distribution of S.
The positive (negative) serial correlation leads to an increase (decrease) in the variance of S. Variance
of the MK test statistic S can be corrected by using an effective sample size [28,55,56]. The corrected
variance of the MK test statistic is given as follows:

V(S)∗ = c f ∗V(S) (9)

V(S) indicates the variance (dispersion) of the MK test statistic S for the original time series and
c f indicates the correction factor as proposed by [56] (represented by c f1) and [28] (represented by c f2)
and can be expressed as follows;

c f1 = 1 +
2

N(N − 1)(N − 2)

N−1

∑
k=1

(N − k)(N − k− 1)(N − K− 2)rR
k (10)

and

c f2 = 1 + 2
N−1

∑
k=1

(1− k)/N)rk (11)
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rR
k and rk indicate the ranks and serial correlation coefficient for lag-k of the observed time series

data, respectively. In VC approaches, the trend-free time series is constructed using AR(1) (rR
1 , r1), which

is similar as in the case of the PW and TFPW approaches. Usually, variance correction is performed
considering only significant values from all available values of serial correlation coefficients. Additionally,
in this study, variance correction is also performed using only the first three serial correlation coefficients
(referred to as modMK1 lag-3), as suggested by [57], and using only the first serial correlation coefficient
(referred to as modMK2 lag-1) [28]. This flexible formulation of modified tests with the AR(1) assumption
for modMK1 and the AR(3) assumption for modMK2 provides the behavior of the statistical test, as it can
consider the effect of the finite number of serial correlations on the variance of the MK test statistic S. It is
particularly suitable to investigate the effect of increasing number of autocorrelation on the performance
of the MK test. c f1 and c f2 are referred as modMK1 and modMK2, respectively.

The usefulness of the VC approach is obvious, because the lag-1 serial correlation coefficient alone is
not sufficient to remove all significant serial correlation in the observed time series [58–60]. In order to
consider all serial correlations using effective sample size, the modMK1 approach is a better choice for
detection of trends in precipitation data. Since the results of modMK1 are comparable with the modMK2,
as mentioned by [30], due to length constraints, only the results obtained from modMK1 for precipitation
are shown in this study. However, the comparison between the candidate statistical tests is presented for
SPI-12 because of the expected strong positive serial correlation in the drought time series.

2.6. Field Significance

The problem of field significance occurs when testing a large number of gauges by simultaneous
evaluation of multiple hypotheses [61]. Due to the statistical nature of the tests, there is the possibility
of error in the results because of incorrect rejection of the null hypothesis. The significance level
0.05 indicates that in a time series from one gauge there is a 5% chance of identifying a change
that does not exist. In most cases, the field significance is calculated using binomial probability
distribution, and it is assumed that the cross-correlation (or spatial dependence) between the stations
is negligible. However, a bootstrap approach is highly recommended when there is the existence
of spatial correlation [62,63]. Field significance was calculated for the AR(1) process and for the test
statistics of VC approaches. In the bootstrap methodology, data were sampled simultaneously over
the stations to preserve the spatial correlation while removing the temporal correlation and any other
possible trend. Each bootstrap testing process started with the testing of the AR(1) process and then
different types of Mann-Kendall tests were applied to each series. The time series which was able to
pass the tests at a 5% nominal level were noted. The sampling procedure was repeated 10,000 times
for defining the sampling distribution, which was further used to set the critical values. A detailed
explanation of the bootstrap procedure is provided in [64].

3. Results and Discussion

3.1. Spatial Variability of Annual and Monthly Precipitation

The spatial patterns of basic statistical parameters, i.e., mean and coefficient of variation (CV%)
for both monthly and annual precipitation from January 1980 to December 2015 at 55 selected
meteorological stations are shown in Figure 3. It can be seen that the lowest Monthly Mean Precipitation
(MMP), less than 90 mm, occurred at the mid-latitude inland and east coastal areas of South Korea,
whereas the highest MMP, greater than 130 mm, occurred at south coast and northern portion of South
Korea, Figure 3a. High MMP and Mean Annual Precipitation (MAP) around south coastal areas is
because of typhoon-induced changes and convective system within air mass at south coastal areas
causing heavy rainfall during summer season [14]. Following the orography, the MMP and MAP
increased from all orientations towards the high-altitude areas, as the temperature gets cooler with
the increase in altitude. For example, at the top of Seoraksan mountain (located at northeast part of
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South Korea), it reaches its maximum, with MAP of greater than 1500 mm (Figure 3b). Overall spatial
patterns of MAP (Figure 3b) are similar to those of MMP (Figure 3a).Water 2018, 10, x FOR PEER REVIEW  8 of 26 
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MAP showed moderate spatial variation over a 36-year span, as its CV values vary from 19.8%
to 29.8%, with a mean of 24.7%. However, MMP time series (432 months) showed strong variation for
different meteorological stations, as CV varies from 98.6% to 141.2%, with a mean value of 113.7%. MAP
and MMP showed higher spatial variation along the east and south coast of South Korea, which is due to
typhoon-induced changes in precipitation patterns along the coastal areas during monsoon season [14].

3.2. Autocorrelation of Annual and Monthly Precipitation

The spatial distribution of 55 stations with the interpolated lag-1 significant (positive or negative)
autocorrelation coefficient (r1) and non-significant autocorrelation for annual and monthly precipitation
data across South Korea is shown in Figure 4. It can be observed that the majority of the stations
did not show any significant autocorrelation from January to December. In March almost 12% of the
stations (located at southeast coast) and in August only 7% of the stations (located at south coast)
showed significant negative autocorrelation. The existence of significant autocorrelation may be
because of the existence of spatial dependence or cross-correlation in the time series. To identify the
cross-correlation for each pair of stations and for each month, Pearson’s correlation coefficient was
calculated. This also helped to evaluate the impact of cross-correlation on field significance. The spatial
correlation quantified by Pearson’s correlation showed high values, reaching up to 0.9 during the
summer and spring months. The null hypothesis is likely to be rejected too often because of the
reduction in the effective sample size. This can be understood as being due to the mechanism whereby
when a trend is found at one station it is more likely to find the similar trend at nearby stations [64].
Therefore, there are high chances of showing significant autocorrelation (such as 12% stations in March
and 7% stations in August). In April, October and November, none of the stations showed significant
autocorrelation. Overall, the number of stations with significant negative autocorrelation (18 stations)
is substantially higher than that of significant positive autocorrelation (4 stations). It can be seen that
the highest variation in magnitude of lag-1 autocorrelation coefficient was detected during the summer
season (June, July and August), while the least variation was observed in the winter season (December,
January and February).

For example, the monthly highest lag-1 autocorrelation (0.42) was observed in July precipitation
and the monthly lowest (−0.83) was observed in August precipitation. This is because the precipitation
characteristics in South Korea are highly influenced by the summer monsoon, known as the “Changma
front”, a quasi-stationary front [25]. Extreme changes in the nature of the Changma front in the summer
season lead to abrupt changes in the duration and frequency of heavy rainfall [12,25].

In the case of annual precipitation, 9% of the stations (located on the east coast) showed significant
positive autocorrelation and 1% of the stations showed significant negative autocorrelation. Table 1
summarizes the number of stations, showing the significant and non-significant lag-1 autocorrelation
among 55 stations. It is worthwhile noting that the existence of positive autocorrelation leads to
an increase the variance of S, and negative autocorrelation leads to a decrease the variance of S.
Thus, for the simple MK test, the positive autocorrelation can increase the false rejection of null
hypothesis, and vice versa. Therefore, false rejection rates have been decreased by using corrected
variance approach.
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Figure 4. Maps showing the spatial patterns of lag-1 autocorrelation coefficient of monthly and annual
precipitation across South Korea.

3.3. Spatial Patterns of Temporal Trends in Precipitation

The spatial patterns of the temporal trends in monthly and annual precipitations and their
respective magnitudes (in mm/year) were obtained by the modMK1 test, Theil–Sen’s estimator (shown
in Figure 5). The value of the Z statistic is divided into four categories to identify the trends; Z < −1.96
indicated a significant decreasing trend, −1.96 < Z < 0 indicated a decreasing trend, 0 < Z < 1.96
indicated an increasing trend and Z > 1.96 indicated a significant increasing trend. Figure 5 shows
the changing spatial pattern of the positive (increasing) and negative (decreasing) trends, along
with the stations with significant positive and negative trends and their corresponding values of
Sen’s slope. The results showed that most of the stations in South Korea were characterized by no
significant monthly and annual precipitation trends at the 95% confidence level, as summarized in
Table 1. Significant decreasing trends were observed at only three stations (Imsil, Namwon and Buan
stations, located in the south west part of South Korea) in January, and two stations (Geoje and Busan
stations, located in the south east of South Korea) in June. The highest significant increasing trends
were observed at six stations (Yeongju, Gumi, Wando, Haenam, Mokpo, and Jeongeup) in December.
No significant trend (neither significant increasing nor significant decreasing) was detected in March,
September, November, or annual precipitation. However, when field significance was considered, none
of the stations showed trends above the limit of field significance, although December was very close to
the limit of field significance. December has the highest number of stations showing significant trends;
however, it also had a high limit of field significance. This month is dry throughout the basin, with a
baseline of low rainfall punctuated by a few high rainfall years. The spatial patterns of monthly and
annual precipitation trends revealed that most of the significant trends (either significant increasing
or significant decreasing) were detected along the south coast of South Korea. This is because of
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the synoptic disturbances, typhoons or convective system within the air mass, leading to extremely
unusual precipitation patterns at south coastal areas [14].

In South Korea, more than 50% of the annual precipitation is contributed by summer precipitation
(Changma season) and less than 10% is contributed by winter precipitation. Therefore, trends in
summer precipitation have a direct impact on trends in annual precipitation. During Changma
season, June, July, and August, more than 36%, 50% and 45% of the stations, respectively, showed an
increasing trend.
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Figure 5. Maps showing the spatial patterns of Sen’s slope (mm/year) and Z statistic using modMK1
at 5% significance level for monthly and annual precipitation across South Korea.

Table 1. Summary of the number of stations showing significant and non-significant lag-1 autocorrelation,
and significant and non-significant trends across South Korea.

Variable

Significant
Autocorrelation

No Significant
Autocorrelation Significant Trends No Significant Trends

+ - Increasing Decreasing Increasing Decreasing

January 1 1 53 0 3 9 43
February 0 1 54 1 0 46 8

March 0 7 48 0 0 20 35
April 0 0 55 2 0 41 12
May 0 1 54 3 0 32 20
June 1 0 54 0 2 20 33
July 2 1 52 1 0 28 26

August 0 4 51 2 0 25 28
September 0 1 54 0 0 21 34

October 0 0 55 1 0 32 22
November 0 0 55 0 0 40 15
December 0 2 53 6 0 41 8

Annual 5 1 49 0 0 38 17

To some extent, these results match those of previous studies [12,13,22] in which summer
precipitation trends were studied using a simple Mann-Kendall statistical test [39,40] without
considering serial correlation. In the case of [12], the number of stations showing significant trends in
summer precipitation was relatively higher than observed in this study. This is because of the existence
of serial correlation in the time series, leading to an increase in the number of stations having significant
trends, where no trend exists in reality [26,28]. Since this study also deals with serial correlation in the
time series, the number of stations with significant trends is relatively less.
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The color map represents the magnitude (mm/year) of the trend computed by Theil–Sen’s
estimator (Figure 5). It can be seen that the highest variation in the magnitude of the Sen’s slope
was detected during the summer season, while the least variation was observed in the winter
season. The highest monthly magnitude of the trends was 4.42 mm/year at Jangheung station
and the lowest was −4.88 mm/year at Daegwallyeong station, both observed in August precipitation.
Overall, the magnitude of the trends increased from January to August and decreased from August
to onward. Furthermore, the summer patterns of the Sen’s slope were completely identical to
the annual one (increasing trend was observed in the north part in June, north west part in July
and south coast in August; annual precipitation also showed an increasing trend in these areas),
which indicates the great contribution of summer precipitation to annual precipitation in South
Korea. Furthermore, the movement of the increasing trend from the north part (in June and July)
to the south part (in August) may be because the coastal areas in southern part of South Korea are
vulnerable to the landfall of typhoons in late summer. Reduction in the range of the Sen’s slope in
September (1.22 mm/year~−2.49 mm/year) and October (1.36 mm/year~−0.67 mm/year) suggests
the intervention of a mixed source of moisture after August. The rainfall in September and October is
due to both frontal systems and typhoons.

The localized impact of typhoons may lead to a reduction in the magnitude of trends. Since
frontal systems and typhoons are likely to occur simultaneously, it is difficult to separate one from the
other. In addition, after August, localized convective or orographically induced precipitation becomes
important as the Changma front disappears. Accordingly, complex mountainous terrain across South
Korea may lead to different precipitation patterns at adjacent stations.

The box plot of the linear regression, Sen’s slope and Z statistic of the modMK1 is presented in
Figure 6 for both monthly and annual time scales. The line drawn within the rectangle and rectangle
width in the upper (lower) part of Figure 6 indicates the mean values and 75th (25th) percentile,
respectively. The upper and lower ends of the lines indicate the maximum and minimum values,
respectively. It can be seen that the monthly and annual trends, as well as the magnitudes computed
by the linear regression method, were almost similar to the precipitation trends computed by the
modMK1 and Theil–Sen’s estimator in a previous study [65]. Except for in January, March, June
and September, monthly precipitation showed positive values of linear regression, Sen’s slope and Z
statistics, indicating an increasing trend in most of the selected stations over South Korea. Similarly, for
annual precipitation, more than 69% of the stations showed an increasing trend. In addition, an abrupt
increase in the range of the maximum, minimum, 75th and 25th percentiles of summer precipitation
(Jun, July, and August) was observed for linear regression and Sen’s slope. A sudden increase in trends
matches well with previous literature [12,17,18,21,24]. The first possible cause of the increase in the
trends in summer precipitation is the Asian Monsoon system, which brings the majority of summer
precipitation in a relatively short period [25]. The second possible cause is the sudden increase in the
domain-mean geopotential height at 700 hpa (Φ700) over mid-latitude Asia during summer in the
mid-1970s [66]. The higher value of geopotential height leads to a stronger northerly wind, producing
a moisture convergence and finally producing heavy rainfall over South Korea. Additionally, a recent
study has shown that the increase in summer precipitation is linked with the intensification of the
upper-level westerly Jet over Korea and the anomalously warm sea surface temperature (SST) in the
western North Pacific region [19].
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3.4. Spatial Variability of Drought Using PCA

SPI was calculated on a 12-month time scale for 55 meteorological stations to analyze the regional
conditions of drought over 432 months from 1980 to 2015. The final result of the PCA applied on SPI-12
time series is presented in Table 2. The percentage of variance explained by the first four un-rotated
principal components was 58.11%, 14.11%, 5.94% and 3.65%, respectively, with a cumulative variance
of 81.8%. The percentage of variance explained by the first four rotated principal components was
33.89%, 22.31%, 16.78% and 8.82%, respectively. Thus, variance maximum rotation leads to explaining
the total variance more evenly using four RPCs, while the cumulative variance (81.80%) is similar to
that of the unrotated case.

Table 2. Principal component analysis applied on the standardized precipitation index (SPI) for the 55
stations in South Korea.

Principal
Components

Eigen Value
for Unrotated

% Variance Explained
Unrotated

Eigen Value for
Rotated

% Variance
Explained Rotated

PC1 31.958 58.106 18.628 33.901
PC2 7.753 14.097 12.292 22.3
PC3 3.267 5.940 9.238 16.8
PC4 2.005 3.645 4.826 8.8

Cumulative
variance 81.8 81.8
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The rotated loading of the leading four RPCs for drought time series was computed for
55 meteorological stations and interpolated to characterize them by mapping (Figure 7). The leading
four RPCs were able to extract approximately 82% of the temporal variation of the drought across
the region (Table 2). The spatial distribution of the first RPC (RPC1) indicates the high positive
loading along the south coast of South Korea, with a maximum value of 0.896 at Tongyeong station.
This shows that south coastal areas had a similar temporal distribution of drought as that detected
under the SPI-12 time series. Similarly, the spatial distribution of RPC2, RPC3, and RPC4 indicate the
common temporal behavior of drought along the northwest, inland mid-latitude west and east coast
of South Korea, with maximum loadings at Yangpyeong (0.919), Gunsan (0.775) and Daegwallyeong
(0.774), respectively. Although four RPCs were unable to extract the full temporal variation of drought
across the region, their loading seems to divide the whole region into four subregions, characterized
by different drought variabilities. This should be related to the variability in seasonal precipitation
patterns and orographic effect within the regions. Major regional variability in summer precipitation
pattern is due to the gradual movement of the Changma front from south to north [67]. Variability in
winter, spring, and autumn precipitation could be mainly due to the orographic effect and variation in
ocean water temperature under global warming [68]. The corresponding RPC score time series were
also computed for SPI-12 at 55 stations across the region.

RPC scores versus the original SPI-12 time series plotted for four representative stations showed
very similar temporal behavior (Figure 8). Since the complex topographical and climatic features of
South Korea lead to changes in precipitation patterns from one subregion to another, different temporal
patterns and trends of drought were observed at the four representative stations from 1980 to 2015.
Extreme drought events were expected to occur in 1994 and 1995 at the south coastal area represented
by RPC1, in 1988 and 2015 at the northwest area represented by RPC2, in 1983 and 2003 at the inland
mid-latitude west area represented by RPC3, and in 2015 at the east coast area represented by RPC4.

3.5. Spatial Patterns of Temporal Trends in Drought

The autocorrelation coefficients for the four representative stations selected by the PCA approach
are shown in Figure 9. The results showed a strong positive and significant serial correlation up to a
time lag of approximately 10 months at all representative stations. However, abrupt reduction in the
value of the serial correlation coefficient was observed from lag 1 to lag 12. This could be correlated
with the inherent computation of SPI at the time scale of 12 months. The maximum lag time for
significant serial correlation varied from one station to another. A large number of stations followed a
similar trend, in which the acf value was significant up to a time lag of 12 months. The 12-month SPI
exhibits some finite moving average properties, where autocorrelation decreases to zero by a certain
period, as shown in Figure 8. Depending upon the coefficient in the AR(1) process, a sudden shock in
the series may take a very long time to die down, and vice versa. In other words, if a drought lasting
many months or even years ends abruptly with 1 or 2 months of intense rainfall. Therefore, the die
down period of the autocorrelation coefficient does not necessarily have to be greater than 12 months
for SPI-12 [69]. For example, Tongyeong station showed significant and weak serial correlation up to
lag 24, while Yangpyeong and Gunsan stations showed significant serial correlations up to time lags of
11 months and 10 months, respectively. It was noticed that autocorrelations were all significant and
positive up to a time lag of 7 months for 55 meteorological stations across South Korea. In Serbia [9],
it was found that 5 out of 12 stations showed positive autocorrelations in SPI-12 time series at the time
lag of 1 month, and the results encouraged the removal of positive autocorrelation to enhance the
reliability of the temporal trends identified by the Mann-Kendall test.
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Moreover, previous literature has shown that the serial structure of the time series directly affects
the ability of trend identification tests to identify trends [28,56,65]. The MK test is not robust against
serial correlation [29], sample size, seasonal components and other periodic fluctuations of time
series [70]. Therefore, trends in drought series were evaluated using various trend tests, such as
modMK1, modMK2, pwMK, and tfpwMK. Every test leads to different results because of differences
in their adopted methods to eliminate the effect of serial correlation, which reduces the number of
independent observations [60]. There were also greater differences between the tests when field
significance was considered. MK, modMK2, modMK2 lag-1 and tfpwMK showed trends above the
limit of field significance. Figure 10 shows the changing spatial pattern of the positive (increasing) and
negative (decreasing) trends, along with the stations having significant positive and negative trends
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for each trend test. The box plot in Figure 11 shows the mean, minimum, maximum, 25th and 75th
percentile of Z statistic value extracted from each statistical test. The highest number of stations (47%)
with significant trends were observed when the original SPI-12 time series data were employed in the
MK test (i.e., without considering serial correlation and assuming that data was independent), with
the few exceptions for tfpwMK (Figure 10 and Table 3). Similarly, the MK test showed an increasing
trend with a high mean value of Z statistic (nearly 2), after the tfpwMK test, as shown in Figure 11.
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Figure 9. Autocorrelation coefficients of the SPI-12 for the four representative meteorological stations
at a critical value α = 0.05.

This is because, as compared to independent cases, the trend identification tests tend to show
fewer significant trends when the serial structure of time series is taken into account (as all the stations
showed a strong positive serial correlation in our study). However, even after considering the effect of
serial correlation in the tfpwMK approach, more than 90% of the stations showed significant trends
(Figure 10 and Table 3). Furthermore, the highest value of the Z statistic, with a mean greater than
5, confirms the significant increasing trend throughout the region (Figure 11). The possible reason of
large number of significant trends as compared to other statistical tests is that the autocorrelation is
calculated from trend-free data, leading to the production of a different number of serially correlated
time series. Moreover, tfpwMK is unable to consider the effects of higher order dependencies by
imposing an AR(1) structure. A study based on the performance of a range of pre-whitening techniques
that were developed for the MK test showed flaws in the existing tfpw method [71]. Therefore, as an
alternative, they followed the modification based on the idea that the trend residuals are multiplied
by a magnification factor for the effective pre-whitening. In case of the pwMK approach, none of the
stations showed a significant trend when pre-whitened data were employed (Table 3 and Figure 10).
The pwMK test showed the lowest value of the Z statistic, with the mean value nearly equal to 0
(Figure 11).

A possible reason for the smaller number of significant trends is the effect of pre-whitening
on the true slope of untransformed SPI-12 time series. This result is in agreement with previous
studies [27,30,54]. The smallest number of stations with significant trends was observed for modMK1
lag-3 (12%) and modMK2 lag-1 (30%), as compared to modMK1 (14%) and modMK2 (34%), respectively
(Table 3, Figures 10 and 11).

This shows that the finite number of autocorrelation (i.e., without considering high order
dependencies) tend to reduce the variance of the MK test statistic S. This observation is in agreement
with the findings of a recent study [72]. Overall, the results of the modMK1 and modMK2 are similar
because neither of them place any restriction on the number of autocorrelations that can be taken into
account and are thus able to handle not only the AR(1) structure but higher-order dependencies.
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Figure 10. Changing spatial trends of drought severity based on the SPI-12 detected by the (a) regular
MK test (without removal of serial correlation), (b) the modified MK (modMK1) test and (c) modified
MK test by considering first three lags (modMK1 lag-3) only, (d) the modified MK test (modMK2) and
(e) modified MK test considering first lag (modMK2 lag-1) only, (f) pre-whitened MK (pwMK) test
and (g) trend-free pre-whitening MK (tfpwMK) test. The number of gauges showing significant trends
above the field significance are highlighted in red.

Table 3. Summary of the number of stations with significant and non-significant trends detected by
different trend tests for SPI-12 time series across South Korea.

Trend Approach
Significant Trends No Significant Trends

Increasing Decreasing Increasing Decreasing

MK 25 1 25 4
modMK1 8 0 42 5

modMK1 lag-3 7 0 43 5
modMK2 19 0 31 5

modMK2 lag-1 16 1 34 4
pwMK 0 0 44 11

tfpwMK 48 2 2 3
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Overall, the changing spatial patterns of drought severity were almost the same for all trend
detection tests. The SPI-12 time series showed a significant decreasing (in the case of MK, modMK2 lag-1,
and tfpwMK) or a decreasing (in the case of modMK1, modMK1 lag-3, modMK2) trend at Daegwallyeong
station located on the northeast coast, and thus drought severity represented a significant increasing or
increasing trend around that region. It is worthwhile to note that similar temporal behavior of drought is
also captured by the rotated loading of the fourth principal component (RPC4) with the Daegwallyeong
as a representative station, shown in Figure 7. Similarly, increasing trends of drought severity were
observed in the surrounding areas of Boryeong (adjacent to Gunsan, which is the representative station
of RPC3) and Ulsan (near to Tongyeong which is the representative station of RPC1) station located at
inland mid-latitude west and southeast coast, respectively, captured by the RPC3 and RPC1, respectively.
Many stations showed significant increasing (in case of MK, modMK1, modMK1 lag-3, modMK2 lag-1
and tfpwMK) or increasing (in case of pwMK) trends in the northwest portion of South Korea (Figure 10),
and thus the least severe droughts were observed around this region, as was successfully captured by
the RPC2. The results showed that the drought trends detected by various statistical tests approximately
matched the results obtained by rotated loadings of the leading four principal components. Exceptions
may be because the four RPCs were unable to extract the full temporal variation of drought across the
region (approximately 82%, as shown in Table 2).

3.6. Spatial Patterns of Drought Frequency

Since droughts vary time and space, the regional distribution of drought using drought events with
SPI-12 values less than−1.0 were interpolated and mapped for 12 months in a year. The spatial distribution
of relative frequency of drought (%) showed remarkable variation from January to December (Figure 12).
Overall, the relative frequency of drought changes according to seasonal variation of precipitation. For
example, an almost similar pattern of relative frequency of drought was observed from December to
February (winter), from March to May (spring), from June to August (summer) and from September to
November (autumn). Throughout the year, the approximate areas with the highest drought frequencies
were located on the south west coast of South Korea. Drought events were expected to occur more
frequently in the late winter (February), early spring (March and April) and early autumn (September),
while droughts were expected to occur least frequently in summer (June, July, August). In February,
the areas of high drought frequency expanded from the upper part of south west coast to mid-latitude
inland areas, while in March, drought frequency also covered the areas located at west coast. From April
to August, the areas of higher drought frequency shrank towards the southwest coast, with a sudden
decrease from June. This is because the first peak of the Changma front occurs at the start of June and the
second peak occurs at the end of August [19]. A sudden increase in drought frequencies was expected
in September around the southwest and south coastal areas because the Changma front disappears in
August and non-typhoon precipitation dominates throughout the region. Non-typhoon precipitation is
directly affected by the localized convective or orographically induced precipitation.
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Moreover, non-typhoon precipitation has a direct connection with the East Atlantic-West Russian
teleconnection patterns [73]. The analysis, applied on five major rivers in Korea, confirmed the existence
of a correlation between the East Atlantic-West Russian teleconnection patterns and non-typhoon
precipitation, and thus influence the hydroclimatic trends over South Korea [14,73,74].

4. Conclusions

In this study, the spatial and temporal variation of rainfall and drought severity were analyzed at
55 stations across South Korea, and the following conclusions were reached:

1. The MAP and MMP showed high quantities of rainfall in the north and south part of South Korea,
and low quantities in the south coastal areas. High spatial variation of rainfall (CV) was observed
on the south coast for MAP and the south and southwest coast for MMP.

2. Most of the stations did not show any significant lag-1 serial correlation coefficient for monthly
and annual precipitation series, whereas autocorrelations of SPI-12 series were all significant and
positive up to a time lag of 7 months for 55 stations across South Korea.

3. The spatial patterns of monthly precipitation trends revealed that most of the significant
trends were detected along the south coast of South Korea, especially during winter (February,
December), late spring (May) and summer (June, August), whereas no significant trend was
detected in annual precipitation. The magnitude of the trends increased from January to August
and decreased from August onward. Moreover, annual precipitation tends to show similar trends
to summer precipitation. When field significance was considered, none of the stations showed
trends above the limit of field significance.

4. Principal component analysis applied on SPI-12 series indicated that the whole of South
Korea could be divided into four subregions with the different temporal drought behavior,
and corresponding representative stations were identified for future drought monitoring.

5. Removing the serial correlation using the tfpwMK test led to more than 90% of stations having
significant trends, which indicates its inability to consider high-order dependencies by imposing
the AR(1) structure. Furthermore, the tfpwMK test has serious problems in terms of preserving
the nominal significance level. These results match well with previous studies [75]. The pwMK
approach showed the lowest value of the Z statistic because of its adverse effect on the true
slope of the drought time series. This observation is in agreement with the findings of [76].
VC approaches can handle not only the AR(1) structure, but also higher-order dependencies,
and therefore has broader applications. MK, modMK2, modMK2 lag-1 and tfpwMK showed
trends above the limit of field significance.

6. Trend analysis applied on SPI-12 time series showed significant increasing or increasing trends of
drought severity at the stations located at northeast coast, inland mid-latitude west and southeast
coastal areas of South Korea. The four representative stations identified by rotated loadings of
the leading four principal components were located nearly at the same location.

7. Monthly drought frequencies showed that the areas with the highest drought frequencies were in
the southwest coastal areas. Drought events were expected to occur more frequently in the late
winter, early spring and early autumn, while droughts were expected to occur least frequently
in summer.

Overall, increasing trends in summer and annual precipitation with the reduction in drought
frequencies in summer suggest the intervention of typhoon-induced precipitation. However, it is
difficult to suggest from this study the exact forcing mechanism behind the spatial and temporal trends
detected in monthly precipitation and drought time series. As large-scale circulation, global warming,
climate change, changes in sea surface temperature in Pacific Ocean and variation in geopotential
height might have played an important role, at present, it is difficult to conclude whether the detected
trends are related to localized convective and orographical impacts or whether they are a part of
decadal variation.
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