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Abstract: In the absence of long-series streamflow records in plain areas, design storm, which serves
as the most important input in a hydrologic model, plays an important role in flood control and water
resources management. For a large drainage basin, design storm may be estimated for sub-basins
separately; thus the spatial distribution of design storm needs to be carefully treated. However,
few studies have been carried out to evaluate the rationality of the spatial distribution in a design
storm, which means the storm over space should be in accordance with actual needs or its distributing
patterns. Taking the Tai Lake Basin (TLB), 3-d Copula-based models combining extreme rainfall
of different sub-basins were built using long-term rainfall data, and conditional probabilities of
sub-basins encountering certain amounts of rainfall were investigated to evaluate the rationality of
the design storm. Results show that the spatial distribution of the design storm based on a typical
year is hardly rational, in which rainfall of the northeastern part of the basin is suggested to be
weakened while in the southwest to be strengthened; after the rainfall is redistributed based on
long-term information, it shows a better rationality of spatial distribution. Such information provides
valuable significance in guiding flood control of TLB, and the considered evaluating method can be
used for similar basins in plain areas.

Keywords: Copula function; flood control planning; extreme rainfall; conditional probability;
Tai Lake Basin; design storm

1. Introduction

Flood control planning is used strategically in dealing with flood events in a basin or river. In flood
control planning, design flood, which is usually derived from long-series streamflow data, provides
the basis for flood control standards (usually described as a return period). In a way, it serves as macro
guidance of the construction and operation of hydraulic structures. However, this method is practically
impossible for plain areas where it is ungauged or streamflow is difficult to measure because it can
flow back and forth. Under this circumstance, an alternative method came into being with the rapid
development of hydrologic models [1–3], through which design flood can be derived using design
storm as a model input. Hence, in such areas design storm becomes important since it can have an
indirect but far-reaching influence on flood control planning of the whole basin. There are basins all
over the world using design storm as a model input (as long as the long-term rainfall data is available)
to get design flood [4,5]. Researchers have been applying this idea to estimate design flood in different
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works [6–9] even though there exist some disputes concerning whether return periods of rainfall and
discharge can be regarded as equal [10].

Since design storm can determine design flood, it is significant to offer a rational spatial
distribution of the storm in accordance with our actual needs or its natural distribution patterns;
otherwise, it can implement an influence on design flood far from our intention. Such actual needs
include flood control purpose, such as strengthening the design rainfall in partial areas of the basin
more worthy of protecting, so that the authorities can attach more importance or attention to flood
control of these particular areas (we can name them “prioritized areas”).

When it comes to design storm of the rest of sub-basins (similarly, we can name them
“non-prioritized areas”), one method which is commonly used in deriving design storm is called
“typical year method”—To derive rainfall from a historical outstanding rainfall event/year [11].
This method tends to get a design storm which has a similar spatial distribution to historical rainfall
events; the main interest consists in the fact that administrators might consider the ability of a hydraulic
structure to cope with an extreme recorded event/year. However, a rational problem can arise because
rainfall in these non-prioritized sub-basins is usually accompanied by being strengthened or being
weakened during the designing process; rainfall disparity between these non-prioritized sub-basins
can be amplified, let alone rainfall of a typical year in these areas may not be able to represent rational
distribution. It is noteworthy that we can significantly overestimate or underestimate flood risks if
we do not provide a rational rainfall variation over space. For one thing, a different design storm in a
sub-basin will definitely result in a corresponding water level change in this sub-basin; for another,
model experiments show that rainfall of one sub-basin can have a huge impact on the results of its
surrounding sub-basins because it provides different boundary conditions to them [12–15]. In a word,
it is crucial to evaluate the spatial distribution rationality of a storm in non-prioritized areas, and it’s
better to come up with an alternative if the previous one is not rational.

If two sub-basins are far enough from each other, it can be assumed that their rainfall events
are statistically independent. Therefore, the return periods of a design storm in these sub-basins
can be estimated separately. However, if sub-basins are close to each other, it can be problematic to
ignore the correlations between rainfall events of different sub-basins, especially when administrators
try to maintain a certain amount of design rainfall in the whole basin and prioritized sub-basins
simultaneously. That means there are “preconditions” to be taken into consideration when designing
rainfall in non-prioritized sub-basins.

In recent years, the application of Copula functions have witnessed huge developments owing
to their diverse forms, flexible usage and simple solutions [16–18], and these functions have shown a
great advantage in dealing with “precondition” problems. Researchers have been utilizing them in
all kinds of multivariate hydrological problems, for instance, (1) rainfall and flood analysis [19–23],
where bivariate frequency analysis between peak volume, duration and rainfall amount are carried
out instead of conventional univariate frequency analysis; (2) meteorological drought analysis [24,25],
where joint behaviors of drought variables including duration, area and severity are identified and
characterized spatio-temporally; (3) encountering between rainfall and storm tide [26,27], in which joint
probability of extreme rainfall and storm tide are investigated in coastal areas. All these studies have
indicated that Copula functions perform well in capturing joint behaviors of hydrological variables.

In order to provide an assessment of the distribution rationality of design storm in non-prioritized
areas, this study takes the Tai Lake Basin (TLB) as an example, and proposes a 3-dimensional
(3-d) Copula-based method for the joint distribution among extreme rainfall of different sub-basins,
and investigates conditional probability equations of 3-d Copula models. Also, aiming at the potential
problem caused by the “typical year method”, this study proposes a spatial distributing method which
is based on the long-term average information of rainfall, and evaluates the spatial rationality of both
rainfall distributing schemes in the non-prioritized sub-basins using the proposed method.

The study consists of three parts. Part 1 focuses on the methods, including the marginal and joint
distributions, goodness of fit and derivation of conditional probability equations based on 3-d Copulas.
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Part 2 serves as an overview of the study domain and basic data. Part 3 establishes and selects the
optimal marginal and joint distributions for the 3-d relationship, performs calculation on coincidence
and conditional probabilities of rainfall combinations, and evaluates the distribution rationality of two
distributing schemes based on the derived conditional probability equations.

2. Methods

In the flood control planning text of TLB, administrators are designing a storm in which rainfall
values of the whole basin and the prioritized sub-basin are fixed (assume that return periods of both
are 50/100 years), while, rainfall values over the non-prioritized sub-basins are spatially distributed
based on a typical year. Since rainfall of the whole basin and prioritized area is settled, the problem
lies in how the remaining rainfall is spatially distributed over the non-prioritized sub-basins.

3-d Copulas are utilized to establish joint distributions among three extreme rainfall variables.
Figure 1 shows the flow chart of how to build joint distributions among the three variables. The first
and the second variables are rainfall of the whole basin and prioritized sub-basin, respectively, and are
regarded as conditional ones. Then, each one of the non-prioritized sub-basins is taken out as the
third variable to build a 3-d joint distribution along with the two conditional variables. Afterwards,
the probability of each non-prioritized sub-basin encountering a certain amount of rainfall is derived
under the two conditional variables. Based on the results, analysis and evaluation is carried out
accordingly. This method ensures that the potential correlations among rainfall of different sub-basins
and the intentions of administrators are all taken into consideration.
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2.1. Distributing Schemes

Two schemes of rainfall distribution in non-prioritized sub-basins need to be evaluated, one is
the so-called “typical year scheme” which is currently used in the TLB flood control, and derives
rainfall from an outstanding historical rainfall year. In consideration of the potential problem in the
current scheme, an alternative which is based on the average rainfall information in the past decades
is proposed (we may name it “average scheme”). Equation (1) shows how rainfall distribution in
different non-prioritized sub-basins is derived.

XD = (XBF− XN FN)
XM

n
∑

i=1
xi fi

(1)
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where XD represents the design rainfall we try to derive, XB and XN are the design rainfall of the
whole basin and northern part of the basin, respectively, F and FN are the area of the whole basin and
northern part of the basin respectively, n is the number of non-prioritized sub-basins, i is the ordinal
of the non-prioritized sub-basins, xi and fi are the typical rainfall and area of each non-prioritized
sub-basins, XM represents the typical rainfall of the non-prioritized sub-basins.

It is noteworthy that the difference between the “typical year scheme” and “average scheme” lies
in the value of XM, that is, if the formal scheme is chosen, XM is derived using the rainfall information
of a typical outstanding year, if the latter, an average information of rainfall over the past decades is
applied to XM.

2.2. Maginal and Joint Distribution

The first step involved in building Copulas is to decide the optimal marginal distribution.
Researchers have pointed out that some certain distributions may not be proposed as general
models [28], and one recent study [29] has presented a framework which attempts to propose a
single approach for stochastic modelling of any hydroclimatic process. However, it is hardly our
main goal here to discuss the best marginal distribution. In this study, four types of commonly used
distributions in hydrology are adopted as candidates, namely Pearson III type distribution (P-III),
Logistic distribution (LOG), Log-normal distribution (LOGN) and Weibull distribution (WEI). For the
sake of achieving better accuracy, this study selects the optimal one for every rainfall variable.

Afterwards, the second step is the joint distribution in which Copula functions are utilized.
The Copula function is a multi-variable joint distribution with a domain between 0 and 1, this offers us
convenient access to combine two or more marginal distributions into a probabilistic model. Taking a
2-d combination, assume that FX(x) = u and FY(y) = v represent cumulative distribution functions of
variable X and Y, respectively, their Copula function can be described as follows:

F(x, y) = Cθ(FX(x), FY(y)) = Cθ(u, v) (2)

where F(x, y) serves as the joint distribution function of stochastic variable X and Y, θ and Cθ represent
the parameter of the Copula function and the Copula function itself.

2-d Copulas are also involved when dealing with conditional probabilities of 3-d Copulas,
thus relevant joint distribution calculation involves both 2-d and 3-d ones. The Archimedean Copula
family, which is commonly used in hydrology [19–27], is adopted as candidates of joint distributions
in this study. This Copula family includes three main members, namely Clayton, Gumbel and
Frank; eventually, an optimal one will be selected for probability calculation for the sake of accuracy.
All of these Copulas are single-parameter functions which are easy and flexible to build and solve.
The expressions of these Copulas are shown in Table 1.

Table 1. Cumulative distribution of the 2-dimensional and 3-dimensional Copulas.

Copula Function Dimension Cumulative Distribution Expressions

Clayton Copula 2-dimensional F(p, z) = C(u1, u2) = (u1
−θ + u2

−θ − 1)
−1/θ

3-dimensional F(p, z, r) = C(u1, u2, u3) = (u1
−θ + u2

−θ + u3
−θ − 2)

−1/θ

Gumbel Copula 2-dimensional F(p, z) = C(u1, u2) = exp{−[(− ln u1)
θ + (− ln u2)

θ ]
1/θ
}

3-dimensional F(p, z, r) = C(u1, u2, u3) = exp{−[(− ln u1)
θ + (− ln u2)

θ + (− ln u3)
θ ]

1/θ
}

Frank Copula 2-dimensional F(p, z) = C(u1, u2) = − 1
θ ln[1 + (e−θu1−1)(e−θu2−1)

(e−θ−1) ]

3-dimensional F(p, z, r) = C(u1, u2, u3) = − 1
θ ln[1 + (e−θu1−1)(e−θu2−1)(e−θu3−1)

(e−θ−1)2 ]
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2.3. Goodness of Fit

Criteria are necessary to assess the fit quality of marginal and joint distributions. In terms
of marginal distributions, this study utilizes the Kolmogorov-Smimov (K-S) test and least Akaike
information criterion (AIC) to select the optimal ones; when it comes to joint distributions, we use AIC
and the criteria of ordinary least square (OLS) to assess the fitting quality between theoretical and
empirical distributions of samples. The OLS and AIC are specifically the following equations:

OLS =

√
1
n

n

∑
1
[Femp(xi1, xi2, · · · , xim)− C(ui1, ui2, · · · , uim)]

2 (3)

MSE =
1
n

n

∑
1
[Femp(xi1, xi2, · · · , xim)− C(ui1, ui2, · · · , uim)]

2 (4)

AIC = n log(MSE) + 2k (5)

where Femp(xi1 , xi2 , . . . , xim ), C( ui1 , ui2 , . . . , uim ) are empirical and theoretical cumulative
probabilities respectively; m is the dimension of the function; n is the number of observations; k is the
number of parameters; MSE is the root mean square error. The goodness of fit is believed to be better
when a smaller AIC or OLS value is obtained.

For 3-d observations (pi, qj, zk), the empirical frequency can be calculated using the equation below:

Femp(pi, qj, zk) = P(P ≤ pi, Q ≤ qj, Z ≤ zk, ) =
nijk

N + 1
(6)

where Femp(pi, qj, zk) is the empirical frequency, N is the number of observations, nijk represents the
times when measured data is less than (pi, qj, zk) simultaneously.

2.4. Conditional Probability

A 3-d conditional probability of the joint distribution can be derived using expressions of 2-d and
3-d Copulas. According to the requirements of calculation, for a data group (X1, X2, X3), the probability
of X1 ≤ x1 under condition of X2 = x2, X3 = x3 can be derived using Equation (7).

P(X1 ≤ x1|X2 = x2, X3 = x3) =
∂2

∂x2∂x3
F(x1,x2,x3)

∂2
∂x2x3

F(x2,x3)
= C(u1|U2 = u2, U3 = u3)

=
∂2

∂u1∂u2
C(u1,u2,u3)

∂2
∂u∂u2

C(u1,u2)

∣∣∣∣∣
U2=u2,U3=u3

(7)

where P(X1 ≤ x1|X2 = x2, X3 = x3) is the conditional probability, F(x1, x2, x3), C(u, v, w) are 3-d joint
distributions, while F(x2, x3), C(u, v) are 2-d joint distributions.

On the basis of Equation (7), Equations (8)–(11) show the derivation process of probability
U3 ≤ u3 under the condition of U1 = u1, U2 = u2. The following derivations are based on Clayton
Copula because it was proven to outperform the other two types, Frank and Gumbel Copula in this
study (see Section 4.2 for discussion).

First, the joint distribution of the 3-d Clayton Copula can be described as the following:

C3(u1, u2, u3) = C(u1, u2, u3, 1, · · · · · · , 1) = (u1
−θ , u2

−θ , u3
−θ)
− 1

θ (8)
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The partial derivative of C3 over u1, u2 is derived:

∂2C3(u1,u2,u3)
∂u1∂u2

= ∂
∂u2

[
∂

∂u1
(u1
−θ , u2

−θ , u3
−θ)
− 1

θ

]
= ∂

∂u2

[
u1
−θ−1(u1

−θ , u2
−θ , u3

−θ − 2)−
1
θ−1
]

= u1
−θ−1u2

−θ−1(1 + θ)(u1
−θ + u2

−θ + u3
−θ − 2)−

1
θ−2

(9)

The partial derivative of C2 over u1, u2 is derived:

∂2C2(u1,u2)
∂u1∂u2

= ∂
∂u2

[
∂

∂u1
(u1
−θ , u2

−θ − 1)−
1
θ

]
= ∂

∂u2

[
u1
−θ−1(u1

−θ + u2
−θ − 1)−

1
θ−1
]

= u1
−θ−1u2

−θ−1(1 + θ)(u1
−θ + u2

−θ − 1)−
1
θ−2

(10)

According to Equation (7), the conditional probability of Clayton Copula C3(u3|u1, u2) can be
derived using the following:

C3(u3|u1, u2) =
∂2C3(u1,u2,u3)

∂u1∂u2

/
∂2C2(u1,u2)

∂u1∂u2

= u1
−θ−1u2

−θ−1(1+θ)(u1
−θ+u2

−θ+u3
−θ−2)

− 1
θ
−2

u1
−θ−1u2

−θ−1(1+θ)(u1
−θ+u2

−θ−1)−
1
θ
−2

=
(

u1
−θ+u2

−θ+u3
−θ−2

u1
−θ+u2

−θ−1

)− 1
θ−2 (11)

3. Study Domain and Data

3.1. Study Domain

The TLB, located in the southern part of Yangtze River Delta, China (within 119◦3′1”–121◦54′26”
E, 30◦7′19”–32◦14′56” N), has a typical humid sub-tropical monsoon climate, with the annual mean
rainfall of about 1177 mm. The area of the basin is around 36,500 km2, which is definitely a rather
large one. Figure 2 depicts the relative geographical location of TLB and its seven sub-basins which
are divided according to terrain and flood control needs. The area of North, YCDM, SH, HJH, HQ
and ZX is 11,510, 4314, 4466, 7480, 3192 and 5930 km2, respectively. As is revealed from the elevation,
the TLB shows a high altitude in the West mountainous area while the rest is basically plain areas.
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As one of the most developed regions of China, the TLB has witnessed impressive economic
achievements in the past decades. With the degree of urbanization of 80% in 2015 [30], the basin



Water 2018, 10, 758 7 of 14

supports 4.8% of the nation’s population (1.39 billion) and produces 11.6% of the gross domestic
product (GDP), with 0.38% of the land area of China [31]. Also, flood disasters have been taking place
frequently in the basin due to the long duration of rainfall in summer [32]. According to the most
outstanding flood disasters of TLB in recent decades, the northern part of the basin (namely sub-basin
HX and WCXY) has been suffering more rainfall compared with the rest of the sub-basins. With several
big cities (such as the city of Wuxi and Changzhou) located within the North, this area is suffering
heavy losses in the economy and has drawn attention from administrators. This explains why the
northern part of the basin is considered to be the so called “prioritized area”; accordingly, the rest of
the sub-basins (namely YCDM, SH, HQ, HJH, and ZX) are the non-prioritized ones.

According to the flood control planning of TLB, when a 50 years return period storm is designed
for the whole basin, it is suggested that rainfall in the prioritized area remains a relatively high return
period (50 years also), due to frequent disasters and heavy economic losses; meanwhile, rainfall of the
non-prioritized sub-basins is spatially distributed based on the measurement of a typical year (namely
1991). Nevertheless, it turned out the real rainfall of year 1991 varies significantly in space over the rest
of the sub-basins, that is to say, its spatial distribution needs to be evaluated and furtherly replaced
with an alternative if necessary.

3.2. Data Collection

High-density rainfall gauges (see Figure 1) have been established in the basin, thus, the long-time
series rainfall data is collected. According to hydrological yearbooks and the latest monitoring data
from the administration, the Arithmetical Average Method is adopted to derive daily rainfall series
between 1951~2014 as the research data; the Annual Maximum method is used to extract the maximum
30-day, 60-day and 90-day rainfall of the whole basin or different sub-basins, which will be used for
building marginal and joint distribution models.

Figure 3 provides daily rainfall of TLB between 1951~2014, the grey dotted lines represent daily
rainfall of all the years except 1991, the dotted blue one is the average of them, and the solid black one
represents 1991. Compared with the average, the year 1991 saw a significantly outstanding rainfall
during flood season in the historical records; especially, there were two tight rainfall periods in the
middle of June and beginning of July, respectively, which were rather harsh for the flood control,
it explains why rainfall of 1991 is widely used as a model input in previous studies of TLB [33], and of
course, it is picked as “typical year” in this study.
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The rainfall data from stations have undergone quality control, including analytical processing to
ensure their consistency, reliability and representativeness.

4. Results and Discussion

4.1. Marginal Distribution

Table 2 shows the test results for four marginal distributions of extreme rainfall of different
sub-basins (including the whole basin and North part of the basin), the bold numbers, which are
smallest among the four candidate distributions, represent the best fitting according to the AIC. Results
indicate that all distributions have shown good linear fitting except for relatively poor fitting with
Weibull distribution. All four distributions are all below the K-S threshold of 0.2098, which means the
marginal distributions are all qualified for the fitting. According to the AIC criteria, extreme rainfall of
the basin, HQ, SH, HJH and ZX follow the log-normal distribution best, while the North part of the
basin and YCDM follow P-III distribution. Results seem consistent when analyzing for the maximum
30-day, 60-day, and 90-day rainfall data.

Table 2. Marginal distribution fitting test results for extreme rainfall in different sub-basins.

Indexes
Max-30 (1951~2014) Max-60 (1951~2014) Max-90 (1951~2014)

P-III LOG LOGN WEI P-III LOG LOGN WEI P-III LOG LOGN WEI

BASIN
K-S 0.092 0.089 0.073 0.115 0.054 0.063 0.052 0.095 0.083 0.081 0.067 0.112
AIC 702.1 704.6 700.2 716.6 739.0 741.9 738.9 747.3 770.1 773.3 769.0 782.1

NORTH
K-S 0.099 0.079 0.119 0.122 0.094 0.079 0.088 0.136 0.100 0.082 0.094 0.145
AIC 722.1 723.6 725.3 732.3 755.9 756.7 758.1 764.3 781.5 782.7 781.3 791.8

YCDM
K-S 0.093 0.098 0.073 0.129 0.067 0.070 0.064 0.095 0.065 0.060 0.083 0.106
AIC 723.4 728.5 723.3 730.6 756.4 760.5 757.1 760.9 779.7 783.1 780.3 785.4

HQ
K-S 0.074 0.073 0.067 0.121 0.064 0.083 0.081 0.096 0.067 0.077 0.054 0.124
AIC 719.5 723.7 716.6 734.3 751.1 754.3 750.9 760.2 776.9 780.3 775.4 790.4

SH
K-S 0.066 0.044 0.078 0.105 0.055 0.062 0.060 0.098 0.077 0.090 0.070 0.107
AIC 715.4 716.8 714.3 728.3 751.8 756.1 751.1 760.8 771.3 774.3 769.4 786.1

HJH
K-S 0.098 0.111 0.084 0.105 0.056 0.069 0.048 0.087 0.086 0.096 0.071 0.090
AIC 715.3 720.6 714.0 725.5 749.1 753.7 748.6 757.1 779.4 783.7 777.7 791.2

ZX
K-S 0.066 0.077 0.065 0.119 0.070 0.078 0.069 0.095 0.091 0.095 0.082 0.105
AIC 728.5 733.0 726.3 741.9 764.9 769.6 763.8 774.6 793.2 797.5 791.0 807.0

4.2. Joint Distribution

With the 3-d Copulas, theoretical frequencies are derived with the equations in Table 1, while
empirical frequencies are obtained using Equation (6). In order to select the optimal Copula type for
fitting the joint distributions, AIC and OLS values are calculated and shown below as Figures 4 and 5.
The labels of horizontal axis represent the sub-basin names in “non-prioritized areas”. It is obvious
that all three Copula functions show a good fitting accuracy but generally Clayton has the least errors.
To be more detailed, Clayton Copula fits the joint distributions best in all types, except for the AIC
value of Max 90-d HJH, where Frank Copula is slightly better. Frank Copula is the second best in
terms of AIC values, while regarding OLS values, Frank and Gumbel are similar and both are worse
than Clayton. Therefore, Clayton Copula should be selected as the optimal type in fitting the joint
distributions, which consists of the generally accepted conclusion that Clayton may perform better
than others when applied to positive dependence [34].
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4.3. Conditional Probability

Two schemes of design storm (namely “typical year scheme” and “average scheme”) remain
to be evaluated. Based on the selected 3-d joint distributions, conditional probabilities of the five
non-prioritized sub-basins encountering a corresponding rainfall are calculated using Equation (11).
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Rationality of spatial distribution is evaluated and analyzed afterwards. Before analysis, there is one
thing we should highlight: In previous studies (for instance [35]), researches usually get conditional
probabilities of U2 ≤ u2 under the condition of U1 > u1, while in this study, we derived the conditional
probability of U3 ≤ u3 under the condition of (U1 = u1, U2 = u2) instead. The equation has to be derived
in this way because it needs to keep consistent with the rainfall we are studying.

In scheme 1, conditional probabilities of the five non-prioritized sub-basins are shown in
Table 3. It is notable that only a max-90-day rainfall result with 100 years return period is provided,
since administrators did not derive the other two durations with 100 years return period in the manual.
Taking the 50-year return-period and max-30-day rainfall for the example, conditional probabilities for
YCDM, SH and ZX encountering a rainfall which exceeds 601.0, 532.5, and 456.3 mm are 1.42%, 2.73%,
and 44.32%, respectively. It means when a max-30-day rainfall of an exact 50 years return period takes
place in the whole basin and in the North simultaneously, there exists huge differences among the
probabilities of YCDM, SH and ZX encountering the corresponding rainfall. Obviously, if we take
the rainfall of the whole basin and North as a premise, the spatial distribution of max-30-day rainfall
over the non-prioritized sub-basins is considered to be quite uneven, which we believe is too big for
YCDM and SH while too small for ZX (no problem with this expression because the total rainfall of the
non-prioritized sub-basins is fixed). The analysis with max-60-day and max-90-day rainfall shows a
similar situation but less remarkable, one possible reason is that max-30-day rainfall of 1991 is more
unevenly distributed than the other two durations over the non-prioritized sub-basins, it illustrates
the fact that deriving a storm from only one typical year is in a way arbitrary and can be problematic.

Table 3. Conditional probabilities of the five non-prioritized sub-basins encountering corresponding
rainfall in scheme 1 (“typical year scheme”).

Return
Period

Duration of Extreme
Rainfall

Conditional Rainy
Zone (mm)

Rainfall (mm) of Non-Prioritized Sub-Basins
and Corresponding Conditional Probabilities

Basin North YCDM HQ SH HJH ZX

50 years

Max 30-day rainfall 514.8 540.8 601.0 546.1 532.5 447.6 456.3
Conditional probability - - 1.4% 4.9% 2.7% 18.7% 44.3%

Max 60-day rainfall 727.7 740.4 768.2 708.3 723.8 667.4 763.0
Conditional probability - - 4.1% 12.2% 4.2% 12.8% 16.6%

Max 90-day rainfall 908.1 936.3 946.3 881.1 889.8 820.1 964.9
Conditional probability - - 5.3% 14.9% 4.9% 22.6% 24.9%

100 years Max 90-day rainfall 975.1 1000.0 1013.1 943.3 952.5 877.9 1033.0
Conditional probability - - 2.2% 7.1% 2.0% 12.2% 12.9%

For rainfall of a 100 years return period, there still exists pretty huge gaps among probabilities,
the probabilities of HJH and ZX are 12.29% and 12.96%, while YCDM and HQ are 2.26% and 2.04%.
Moreover, it is seen that the probabilities decrease in general from 50 years return period to 100 years
return period, this is comprehensible since it always becomes less probable to encounter a larger
quantity of rainfall. In order to make a comparison straightforwardly among the possibilities, radar
plots are shown in Figure 7. It is clearly seen that the shapes of radar plots are quite irregular.

Hence, considering the five non-prioritized sub-basins, the spatial distribution of design storm
in the flood control planning (scheme 1) is not quite reasonable. Extreme rainfall would be too large
in YCDM and SH, but too small in ZX. It shows a different degree of reasonability when it comes to
different durations or different return periods.

Similarly, conditional probabilities in non-prioritized sub-basins of scheme 2 are shown in Table 4,
and accordingly, radar plots are also provided in Figure 8. For extreme rainfall of 50 years return period,
conditional probabilities of the five sub-basins are between 9.0%~13.7%, 9.0%~16.3%, and 10.5%~17.7%,
respectively, for max-30-day, max-60-day and max-90-day rainfall. For max-90-day rainfall of 100 years
return period, probabilities are between 5.4%~9.5%. It is obvious that compared with scheme 1,
the values of probabilities are all bounded to a much smaller range, also, radar plots also show a



Water 2018, 10, 758 11 of 14

much more regular shape with different duration periods. In other words, conditional probabilities of
the non-prioritized sub-basins become more uniform after the rainfall is redistributed over the space
based on a long-term information of rainfall data. Thus, scheme 2 can show a more reasonable spatial
distribution in terms of different durations and return periods.

Water 2018, 10, x FOR PEER REVIEW  10 of 14 

 

rainfall of the non-prioritized sub-basins is fixed). The analysis with max-60-day and max-90-day 

rainfall shows a similar situation but less remarkable, one possible reason is that max-30-day rainfall 

of 1991 is more unevenly distributed than the other two durations over the non-prioritized sub-

basins, it illustrates the fact that deriving a storm from only one typical year is in a way arbitrary and 

can be problematic. 

Table 3. Conditional probabilities of the five non-prioritized sub-basins encountering corresponding 

rainfall in scheme 1 (“typical year scheme”). 

Return 

Period 

Duration of Extreme 

Rainfall 

Conditional Rainy 

Zone (mm) 

Rainfall (mm) of Non-Prioritized Sub-Basins 

and Corresponding Conditional Probabilities 

Basin North YCDM HQ SH HJH ZX 

50 

years 

Max 30-day rainfall 514.8 540.8 601.0 546.1 532.5 447.6 456.3 

Conditional probability - - 1.4% 4.9% 2.7% 18.7% 44.3% 

Max 60-day rainfall 727.7 740.4 768.2 708.3 723.8 667.4 763.0 

Conditional probability - - 4.1% 12.2% 4.2% 12.8% 16.6% 

Max 90-day rainfall  908.1 936.3 946.3 881.1 889.8 820.1 964.9 

Conditional probability - - 5.3% 14.9% 4.9% 22.6% 24.9% 

100 

years 

Max 90-day rainfall  975.1 1000.0 1013.1 943.3 952.5 877.9 1033.0 

Conditional probability - - 2.2% 7.1% 2.0% 12.2% 12.9% 

For rainfall of a 100 years return period, there still exists pretty huge gaps among probabilities, 

the probabilities of HJH and ZX are 12.29% and 12.96%, while YCDM and HQ are 2.26% and 2.04%. 

Moreover, it is seen that the probabilities decrease in general from 50 years return period to 100 years 

return period, this is comprehensible since it always becomes less probable to encounter a larger 

quantity of rainfall. In order to make a comparison straightforwardly among the possibilities, radar 

plots are shown in Figure 7. It is clearly seen that the shapes of radar plots are quite irregular. 

  

 

Figure 7. Radar plots of conditional probabilities of the five non-prioritized sub-basins encountering 

a corresponding rainfall (scheme 1 ”typical year scheme”). (a) 50 years return period; (b) 100 years 

return period.  

Hence, considering the five non-prioritized sub-basins, the spatial distribution of design storm 

in the flood control planning (scheme 1) is not quite reasonable. Extreme rainfall would be too large 

in YCDM and SH, but too small in ZX. It shows a different degree of reasonability when it comes to 

different durations or different return periods. 

Similarly, conditional probabilities in non-prioritized sub-basins of scheme 2 are shown in Table 

4, and accordingly, radar plots are also provided in Figure 8. For extreme rainfall of 50 years return 

period, conditional probabilities of the five sub-basins are between 9.0%~13.7%, 9.0%~16.3%, and 

10.5%~17.7%, respectively, for max-30-day, max-60-day and max-90-day rainfall. For max-90-day 

rainfall of 100 years return period, probabilities are between 5.4%~9.5%. It is obvious that compared 

with scheme 1, the values of probabilities are all bounded to a much smaller range, also, radar plots 
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Table 4. Conditional probabilities of the five non-prioritized sub-basins encountering corresponding
rainfall in scheme 2 (“average scheme”).

Return
Period

Duration of Extreme
Rainfall

Conditional
Rainy Zone (mm)

Rainfall (mm) of Non-Prioritized Sub-Basins
and Corresponding Conditional Probabilities

Basin North YCDM HQ SH HJH ZX

50 years

Max 30-day rainfall 514.8 540.8 480.7 482.7 465.1 484.7 569.0
Conditional probability - - 13.7% 15.5% 10.5% 10.2% 9.0%

Max 60-day rainfall 727.7 740.4 676.7 688.2 754.9 689.4 819.6
Conditional probability - - 15.6% 16.3% 12.0% 10.2% 9.0%

Max 90-day rainfall 908.1 936.3 860.7 860.7 815.5 871.3 964.9
Conditional probability - - 17.7% 17.2% 13.2% 12.9% 10.5%

100 years Max 90-day rainfall 975.1 1000.0 904.6 924.1 875.6 935.5 1125.7
Conditional probability - - 9.5% 9.2% 7.2% 7.1% 5.4%
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Based on the analysis and evaluation above, it is proven that the “typical year scheme” for 

distributing the storm over the non-prioritized sub-basins is hardly reasonable, and it can be 

problematic if applied to guiding flood control or construction of hydraulic structures in the TLB. 

To be specific, if we adopt the “typical year scheme” as the default storm of the TLB, for sub-

basin YCDM and SH, flood risk can be overestimated by hydrologic models, accordingly, this might 

lead to unnecessary public spending on flood control in these sub-basins. Moreover, higher water 

levels in these areas can further influence the water yield distribution in the whole basin. Meanwhile, 

for sub-basin ZX, it leads to a severe underestimation of flood risk which may expose the sub-basin 

itself to a higher flood risk than expected. With this sub-basin located in the mountainous area of TLB 
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Based on the analysis and evaluation above, it is proven that the “typical year scheme” for
distributing the storm over the non-prioritized sub-basins is hardly reasonable, and it can be
problematic if applied to guiding flood control or construction of hydraulic structures in the TLB.

To be specific, if we adopt the “typical year scheme” as the default storm of the TLB, for sub-basin
YCDM and SH, flood risk can be overestimated by hydrologic models, accordingly, this might lead
to unnecessary public spending on flood control in these sub-basins. Moreover, higher water levels
in these areas can further influence the water yield distribution in the whole basin. Meanwhile,
for sub-basin ZX, it leads to a severe underestimation of flood risk which may expose the sub-basin
itself to a higher flood risk than expected. With this sub-basin located in the mountainous area of
TLB (see Figure 2), it can be problematic since ZX is frequently suffering from torrential flood hazards
during the flood season. On the contrary, if the “average scheme” is adopted instead, flood risks taken
by the non-prioritized sub-basins can be more uniform, which is better for the flood control of the TLB
as a whole. Of course, this method can be applied to other similar basins if administrators have similar
“requests” for the storm of the whole basin and “prioritized sub-basin”; moreover, flexibility is also a
highlight since it provides a new perspective, for instance, a 2-d copula can be applied when we only
consider the “prioritized sub-basin” as our “pre-condition”.

5. Conclusions

Aimed at tackling the spatial distribution problem of a design storm over non-prioritized
sub-basins, this study takes the TLB as an example, it proposes 3-d Copula-based models which
can build joint distributions among extreme rainfall of different sub-basins, and investigates and
derives conditional probability solutions using mathematical methods. Afterwards, with the calculated
conditional probabilities, the rationality of two distributing schemes is analyzed and evaluated.
The following conclusions have been reached:

1. For the “typical year scheme”, the probability analysis of extreme rainfall shows huge gaps among
non-prioritized sub-basins, especially for the max-30-day rainfall of 50 years return period. If this
scheme is applied to hydrologic modelling for TLB, sub-basin YCDM and SH are considered to
take a higher flood risk than they should, which can lead to unnecessary public spending on
hydraulic structures in these sub-basins. Meanwhile, sub-basin ZX is taking a lower flood risk
than it should, and it can be dangerous since this sub-basin is suffering from torrential flood
disasters in reality. Generally, the scheme shows a different degree of rationality when it comes
to different durations or different return periods, thus it is in urgent need to be redistributed
spatially over the five non-prioritized sub-basins.

2. Conditional probabilities of the non-prioritized sub-basins can be more uniform after rainfall is
redistributed based on long-term information of data. This new scheme shows a more rational
spatial distribution, in which flood risks taken by different non-prioritized sub-basins are much
more uniform and are better for the flood prevention of the TLB as a whole.

3. The proposed 3-d Copula-based method is proven to be very useful to evaluate spatial distribution
of design storm in a large-scale drainage basin where sub-basins need to be considered separately
for design storm. Further studies are needed to propose a more reasonable scheme for design
storm of sub-basins where rainfall events are not independent.

Author Contributions: Conceptualization, L.W., Q.H. and Z.Z.; Methodology, L.W., Q.H., and Y.W.; Software,
L.W., and Q.H.; Validation, Y.W., and Z.Z.; Formal Analysis, L.W., and L.L.; Investigation, L.W.; Resources, Y.L.,
and T.C.; Data Curation, L.W., Q.H. and Z.Z.; Writing-Original Draft Preparation, L.W.; Writing-Review & Editing,
L.W., and Z.Z.; Visualization, Z.Z.; Supervision, L.W., Z.Z., and Y.W.; Project Administration, Q.H. and Y.W.;
Funding Acquisition, Q.H. and Y.W.

Funding: This research was funded by [National Key Research and Development Program of China] grant number
[2016YFC0400902], [National Non-profit Research Program of China] grant number [201501014], [National Natural
Science Foundation of China] grant number [51479118, 51509157, 51609140].

Acknowledgments: The authors appreciate the Nanjing Hydraulic Research Institute for the support of data.



Water 2018, 10, 758 13 of 14

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moradkhani, H.; Sorooshian, S. General Review of Rainfall-Runoff Modeling: Model Calibration,
Data Assimilation, and Uncertainty Analysis. In Hydrological Modelling and the Water Cycle; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 1–24.

2. Pumo, D.; Viola, F.; Noto, L.V. Generation of Natural Runoff Monthly Series at Ungauged Sites Using a
Regional Regressive Model. Water 2016, 8, 209. [CrossRef]

3. Bureau of the Tai Lake Basin, Water Resources Ministry of China. The Flood Control Planning of the Tai Lake
Basin; Bureau of the Tai Lake Basin, Water Resources Ministry of China: Shanghai, China, 2008.

4. Department of Irrigation and Drainage, Ministry of Natural Environment Malaysia. Hydrological Procedure
NO. 1-Estimation of Design Storm in Peninsular Malaysia; Department of Irrigation and Drainage, Ministry of
Natural Environment Malaysia: Kuala Lumpur, Malaysia, 2010.

5. Bureau Veritas North America, Inc. Analysis of Results for the County of San Diego Rainfall Distribution Study
Project; Bureau Veritas North America, Inc.: San Diego, CA, USA, 2013.

6. Urbonas, B. Reliability of design storms in modeling. In Proceedings of the International Symposium on
Urban Storm Runoff, Lexington, KY, USA, 23–26 July 1979.

7. Cheng, Q.W. Analysis of the design storm time-intensity pattern for medium and small watersheds. J. Hydrol.
1987, 96, 305–317.

8. Hromadka, T.V.; Whitley, R.J. The design storm concept in flood control design and planning. Stoch. Hydrol.
Hydraul. 1988, 2, 213–239. [CrossRef]

9. Kang, M.S.; Goo, J.H.; Song, I.; Chun, J.A.; Her, Y.G.; Hwang, S.W.; Park, S.W. Estimating design floods based
on the critical storm duration for small watersheds. J. Hydrol. Environ. Res. 2013, 7, 209–218. [CrossRef]

10. Rogger, M.; Kohl, B.; Pirkl, H.; Viglione, A.; Komma, J.; Kirnbauer, R.; Merz, R.; Blöschl, G. Runoff models and
flood frequency statistics for design flood estimation in Austria—Do they tell a consistent story? J. Hydrol.
2012, 456, 30–43. [CrossRef]

11. Carbone, M.; Turco, M.; Brunetti, G.; Piro, P. A cumulative rainfall function for subhourly design storm in
Mediterranean urban areas. Adv. Meteorol. 2015, 2015. [CrossRef]

12. Arnaud, P.; Bouvier, C.; Cisneros, L.; Dominguez, R. Influence of rainfall spatial variability on flood prediction.
J. Hydrol. 2002, 260, 216–230. [CrossRef]

13. Sangati, M.; Borga, M.; Rabuffetti, D.; Bechini, R. Influence of rainfall and soil properties spatial aggregation
on extreme flash flood response modelling: An evaluation based on the Sesia River Basin, North Western
Italy. Adv. Water Resour. 2009, 32, 1090–1106. [CrossRef]

14. Cristiano, E.; Veldhuis, M.-C.T.; van de Giesen, N. Spatial and temporal variability of rainfall and their effects
on hydrological response in urban areas—A review. Hydrol. Earth Syst. Sci. 2017, 21, 3859–3878. [CrossRef]

15. Zhang, J.; Han, D. Assessment of rainfall spatial variability and its influence on runoff modelling—A case
study in the Brue catchment, UK. Hydrol. Process. 2017, 31, 2972–2981. [CrossRef]

16. Favre, A.-C.; El Adlouni, S.; Perreault, L.; Thiémonge, N.; Bobée, B. Multivariate hydrological frequency
analysis using copulas. Water Resour. Res. 2004, 40. [CrossRef]

17. Genest, C.; Favre, A.C. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to
Ask. J. Hydrol. Eng. 2007, 12, 347–368. [CrossRef]

18. Dupuis, D.J. Using Copulas in Hydrology: Benefits, Cautions, and Issues. J. Hydrol. Eng. 2014, 12, 381–393.
[CrossRef]

19. Jeong, D.I.; Sushama, L.; Khaliq, M.N.; Roy, R. A copula-based multivariate analysis of Canadian RCM
projected changes to flood characteristics for Northeastern Canada. Clim. Dyn. 2014, 42, 2045. [CrossRef]

20. Kao, S.-C.; Govindaraju, R.S. Trivariate statistical analysis of extreme rainfall events via the Plackett family
of copulas. Water Resour. Res. 2008, 44. [CrossRef]

21. Wahl, T.; Jain, S.; Bender, J.; Meyers, S.D.; Luther, M.E. Increasing risk of compound flooding from storm
surge and rainfall for major US cities. Nat. Clim. Chang. 2015, 5, 1093–1097. [CrossRef]

22. Salvadori, G.; De Michele, C. Frequency analysis via copulas: Theoretical aspects and applications to
hydrological events. Water Resour. Res. 2004, 40. [CrossRef]

http://dx.doi.org/10.3390/w8050209
http://dx.doi.org/10.1007/BF01550843
http://dx.doi.org/10.1016/j.jher.2013.01.003
http://dx.doi.org/10.1016/j.jhydrol.2012.05.068
http://dx.doi.org/10.1155/2015/528564
http://dx.doi.org/10.1016/S0022-1694(01)00611-4
http://dx.doi.org/10.1016/j.advwatres.2008.12.007
http://dx.doi.org/10.5194/hess-21-3859-2017
http://dx.doi.org/10.1002/hyp.11250
http://dx.doi.org/10.1029/2003WR002456
http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:4(381)
http://dx.doi.org/10.1007/s00382-013-1851-4
http://dx.doi.org/10.1029/2007WR006261
http://dx.doi.org/10.1038/nclimate2736
http://dx.doi.org/10.1029/2004WR003133


Water 2018, 10, 758 14 of 14

23. Salvadori, G.; De Michele, C. Multivariate multiparameter extreme value models and return periods: A
copula approach. Water Resour. Res. 2010, 46, 46. [CrossRef]

24. Xu, K.; Yang, D.; Xu, X.; Lei, H. Copula based drought frequency analysis considering the spatio-temporal
variability in Southwest China. J. Hydrol. 2015, 527, 630–640. [CrossRef]

25. Kao, S.-C.; Govindaraju, R.S. A copula-based joint deficit index for droughts. J. Hydrol. 2010, 380, 121–134.
[CrossRef]

26. Xu, K.; Ma, C.; Lian, J.; Bin, L. Joint probability analysis of extreme precipitation and storm tide in a coastal
city under changing environment. PLoS ONE 2014, 9, e109341. [CrossRef] [PubMed]

27. Tu, X.; Du, Y.; Singh, V.P.; Chen, X. Joint distribution of design precipitation and tide and impact of sampling
in a coastal area. Int. J. Climatol. 2018, 38, e290–e302. [CrossRef]

28. Papalexiou, S.M.; Koutsoyiannis, D. Entropy based derivation of probability distributions: A case study to
daily rainfall. Adv. Water Resour. 2012, 45, 51–57. [CrossRef]

29. Papalexiou, S.M. Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal
distributions, correlation structures, and intermittency. Adv. Water Resour. 2018, 115, 234–252. [CrossRef]

30. Cai, W.; Liu, K. Studies on planning and layout of water sources for urban agglomeration in the Taihu Basin.
China Water Resour. 2017, 19, 53–56.

31. Xu, X.; Yang, G.; Tan, Y.; Tang, X.; Jiang, H.; Sun, X.; Zhuang, Q.; Li, H. Impacts of land use changes on net
ecosystem production in the Taihu Lake Basin of China from 1985 to 2010. J. Geophys. Res. Biogeosci. 2017,
122, 690–707. [CrossRef]

32. Harvey, G.L.; Thorne, C.R.; Cheng, X.; Evans, E.P.; Simm, J.D.; Han, S.; Wang, Y. Qualitative analysis of future
flood risk in the Taihu Basin, China. J. Flood Risk Manag. 2009, 2, 85–100. [CrossRef]

33. Sun, S.; Mao, R. An Introduction to Lake Taihu. In Lake Taihu, China; Qin, B., Ed.; Springer: Dordrecht,
The Netherlands, 2008; Volume 87, pp. 12–15.

34. Vandenberghe, S.; Verhoest, N.E.C.; De Baets, B. Fitting bivariate copulas to the dependence structure
between storm characteristics: A detailed analysis based on 105 year 10 min rainfall. Water Resour. Res. 2010,
46. [CrossRef]

35. Ghosh, S. Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in
neighbouring meteorological subdivisions using copula. Hydrol. Process. 2010, 24, 3558–3567. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/2009WR009040
http://dx.doi.org/10.1016/j.jhydrol.2015.05.030
http://dx.doi.org/10.1016/j.jhydrol.2009.10.029
http://dx.doi.org/10.1371/journal.pone.0109341
http://www.ncbi.nlm.nih.gov/pubmed/25310006
http://dx.doi.org/10.1002/joc.5368
http://dx.doi.org/10.1016/j.advwatres.2011.11.007
http://dx.doi.org/10.1016/j.advwatres.2018.02.013
http://dx.doi.org/10.1002/2016JG003444
http://dx.doi.org/10.1111/j.1753-318X.2009.01024.x
http://dx.doi.org/10.1029/2009WR007857
http://dx.doi.org/10.1002/hyp.7785
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Distributing Schemes 
	Maginal and Joint Distribution 
	Goodness of Fit 
	Conditional Probability 

	Study Domain and Data 
	Study Domain 
	Data Collection 

	Results and Discussion 
	Marginal Distribution 
	Joint Distribution 
	Conditional Probability 

	Conclusions 
	References

