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Abstract: The China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment
Tool model (CMADS) have been widely applied in recent years because of their accuracy.
An evaluation of the accuracy and efficiency of the Soil and Water Assessment Tool (SWAT) model
and CMADS for simulating hydrological processes in the fan-shaped Lijiang River Basin, China, was
carried out. The Sequential Uncertainty Fitting (SUFI-2) algorithm was used for parameter sensitivity
and uncertainty analysis at the daily scale. The pair-wise correlation between parameters and
the uncertainties associated with equifinality in model parameter estimation were investigated.
The results showed that the SWAT model performed well in predicting daily streamflow for
the calibration period (2009–2010). The correlation coefficient (R2) was 0.92, and the Nash-Sutcliffe
model efficiency coefficient (NSE) was 0.89. For the validation period (2011–2018), R2 = 0.89,
NSE = 0.88, and reasonable values for the P-factor, R-factor, and percent bias (PBIAS) were obtained.
In addition, the spatial and temporal variation of evapotranspiration (ET), surface runoff, and
groundwater discharge were analyzed. The results clearly showed that spatial variation in surface
runoff and groundwater discharge are strongly related to precipitation, while ET is largely controlled
by land use types. The contributions to the water budget by surface runoff, groundwater discharge,
and lateral flow were very different in flood years and dry years.

Keywords: SWAT model; CMADS; Lijiang River; runoff; uncertainty analysis; hydrological elements

1. Introduction

The water cycle is one of the most important of the earth’s cycles, and it plays a crucial role in
biosphere changes. Water balance elements in a basin are affected by natural and human factors, such
as the types of land use, soil properties [1], geological conditions, glacier [2] and human economic
activity [3,4]. It is necessary to study the contribution to the water budget by different hydrological
elements in a basin for the purpose of land use management, water resources management, and
hydrological process analysis. Because the contribution to the water budget by different hydrological
elements is hard to measure in the field, it is more practical to estimate the water cycle components of
a watershed using a hydrological model [5].
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The Soil and Water Assessment Tool (SWAT) model is an important tool in the development of
water management strategies [6]. At the beginning of SWAT model establishment, it is difficult to
calculate the water cycle components, especially groundwater [7]. Sophocleous et al. [8] simulated
combined surface-water, ground-water, and stream-aquifer interactions using a comprehensive
SWATMOD basin model, which was based on the Modular Three-Dimensional Finite-Difference
Ground-Water Flow Model (MODFLOW). Because the SWAT model was established using
the characteristics of a North American river basin, the accuracy of the model can be compromised
in other areas. For example, the SWAT99.2 version could not satisfactorily calculate the runoff in
low mountain regions of Germany. To address these shortcomings, Eckhardt et al. [9,10] developed
the SWAT Giessen (SWAT-G) version for simulating the runoff in catchments with predominantly
steep slopes, shallow soils, and consolidated rock aquifers. In addition, Easton et al. [11] established a
Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) model for predicting runoff by
modifying the curve number and available water content in variable source areas.

Although the SWAT hydrological model has been widely used for nutrient transport and
hydrological modeling, the model is difficult to apply in areas where meteorological data are scarce,
such as glacial and deserts areas [12]. Therefore, meteorological data are urgently needed for runoff
simulation and prediction in non-data basins [13]. The CMADS was developed by Dr. Xianyong Meng
from the China Institute of Water Resources and Hydropower Research (IWHR). The data range is from
2008 to 2016. It covers the entire East Asian region [14]. Some studies considered that CMADS+SWAT
have better results for runoff simulation [15,16]. Meng et al. [17] evaluated the water cycle in an area
without meteorological data using the CMADS meteorological data. They obtained satisfactory results
through parameter calibration in areas with a high glacial recharge rate. Meng et al. also used three
different datasets to simulate runoff in the Heihe Basin, and the results showed that the simulation
accuracy of the CMADS was higher than other datasets [18]. The uncertainty analysis based on
CMADS data has also been investigated [19]. In recent years, SWAT has been successfully applied in
the study of hydrological elements in various watersheds. For example, the SWAT model was applied
to study changes in the water budget caused by climate change [20–23]. The SWAT model was used to
study hydrological elements in ice- and snow-covered mountainous area [24–26]. The SWAT model
has also been used to study the main hydrological elements in agricultural areas [27–29].

Although the CMADS data have been applied worldwide since its release in 2016, the application
of CMADS in abundant rainfall areas in southern China is lacking [30]. Further investigations of
the applicability of the CMADS in the SWAT model are needed to better understand and evaluate
the accuracy and efficacy of the dataset. The Lijiang River is an important water system in the Pearl
River Basin, and the CMADS data have not been verified in this basin. To address this knowledge
gap, the present study applied the SWAT model to explore the applicability of the CMADS in this
basin. The Sequential Uncertainty Fitting (SUFI-2) algorithm was used for parameter sensitivity and
uncertainty analysis at a daily scale. Pair-wise correlation between parameters and the uncertainties
associated with equifinality in model parameter estimation was also investigated. The simulation
results were used to investigate the water budget and its elements in the basin. The study also
investigated the spatial variation and temporal variation of the water budget elements. In addition,
the correlation between hydrological elements and precipitation were investigated.

2. Materials and Methods

2.1. Study Area

The Lijiang River Basin (23◦23’–25◦59’ N, 110◦18’–111◦18’ E) is located in the northeast of
the Guangxi Province, within the upper reaches of the Guijiang River in the Pearl River system
(Figure 1). From north to south, the basin runs through Xingan County, Lingchuan County, Guilin City,
Yangshuo County, and Pingle County. The total area of the basin is about 6050 km2, and the climate
is characterized by high temperatures and rainfall in summer, cold and drier conditions in winter.
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The annual average precipitation is about 1800 mm, and the annual average temperature is about
18 ◦C [31,32]. The terrain is high in the north and low in the south, and the water system in the river
basin is fan-shaped. Floods may easily arise at the confluence of the river systems during heavy
rainfall. Carbonate rocks in the basin are widely distributed, forming a typical Karst topography that
accentuates droughts and floods in the basin [33]. As a result of the floods and droughts, the study of
hydrological processes in this basin has become especially important.

Figure 1. The location of the study area in China.

Guilin City is located in the lower reaches of the fan-shaped watershed, and in 2016 had a
population of about 5.34 million and an urban area of 27,800 km2. In recent years, heavy rainfall in
the Lijiang River Basin has led to flood disasters in Guilin, resulting in huge losses of life and property.
The section of the Lijiang River that flows though Guilin City was selected as the study area. The study
area covers 2531 km2, and accounts for about 42% of the total basin area.

2.2. SWAT Model Input

The Guilin Hydrological Station was used as the whole outlet. The SWAT 2012 version was used
to divide the basin into 33 sub-basins and 355 hydrological response units. The basic data needed for
the model included topography, soil, land use, and meteorological data. The data are presented in
Table 1:

(i) The digital elevation model used is the first version of the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) (grid
cell: 30 m × 30 m). The outliers have been processed, and the original Digital Elevation Model
(DEM) has been spliced, cropped, and projected using ArcMAP (ESRI, Redlands, CA, America)
software. Sub-watershed divisions, river formation, and slope reclassification were all generated
from the pre-treated DEM.
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(ii) The soil data were taken from the 1:1 million soil dataset created by the Second National Land
Survey Nanjing Soil Institute and were supplied by the Cold and Arid Regions Sciences Data
Center at Lanzhou.

(iii) The land use data were derived from Landsat-8 remote sensing data (multi-spectral band
resolution of 30 m) after supervised classification and post-processing steps. The remote sensing
data were provided by the Geospatial Data Cloud site, the Computer Network Information
Center, the Chinese Academy of Sciences.

(iv) The meteorological data are taken from the CMADS version 1.1 (http://www.cmads.org). This
dataset includes precipitation, temperature, relative humidity, solar radiation, wind speed,
location, and the elevation of each site. The data of temperature, relative humidity and wind
speed were generated using the information from 2421 national automatic stations and 39,439
regional automatic stations. Precipitation was achieved through the integration of multiple
satellite data and precipitation from ground automatic stations. The production of radiation
data was based on the Discrete Ordinates Radiative Transfer (DISORT) radiative transfer model
and the acquisition of products from the FY2E satellite primary product for inversion of solar
shortwave radiation. Two CMADS weather stations are used in the study area.

(v) The hydrological data were provided by the Guangxi Water Conservancy, and comprise measured
daily and monthly data from 2008 to 2016 at the Guilin Hydrological Station.

Table 1. Data description for the study area.

Data Type Source Spatial Resolution

DEM ASTER GDEM https://earthexplorer.usgs.gov/ 30 m
Land use Landsat-8 https://earthexplorer.usgs.gov/ 30 m

Soil HWSD http://westdc.westgis.ac.cn/data/ 30 m
Weather CMADS version 1.1 http://www.cmads.org/ 28 km

The SWAT database was constructed using CMADS meteorological data, DEM, and land use and
soil data (Figure 2). Daily and monthly scale simulations of the hydrological processes in the Lijiang
River Basin were conducted using the measured data from the Guilin Hydrological Station. The model
calibration included a 1 year warm-up period (2008), and then the calibration was performed for a
period of 2 years (2009–2010), followed by a validation period of 6 years (2011–2016). The simulation
results were evaluated using the NSE, R2, and PBIAS.

Figure 2. (a) Land use data; (b) Soil data.

http://www.cmads.org
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://westdc.westgis.ac.cn/data/
http://www.cmads.org/
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3. Results and Analysis

3.1. Model Calibration and Validation

The Computer Program for Calibration of Soil and Water Assessment Tool Models (SWAT-CUP)
software SUFI-2 algorithm was used to calibrate and validate the model. SWAT-CUP is a program that
does automatic calibration and uncertainty analysis, and was developed by EWAGE research institute
for the SWAT model [34]. The SUFI-2 algorithm uses an inversion modeling method that defines a
large range of parameters and then performs multiple iterations. By comparing the results of each
iteration, the most suitable parameter range of the model is determined, and uncertainty analysis is
conducted by evaluating the range results for each parameter [35]. SUFI-2 is an iterative procedure
that accounts for parameter uncertainty from all kinds of sources (e.g., weather, model parameters,
and model structure). It provides a comprehensive optimization and uncertainty analysis through
the global search method [36]. The calibration and validation of the modeled simulation results are
needed for the satisfactory assessment of watershed characteristics.

There are many parameters in SWAT-CUP that affect the simulation of the hydrological
cycle. Choosing appropriate parameters can play a crucial role in determining the effectiveness
of the calibration. After comparing the efficiency of each parameter, we chose 8 parameters for
the monthly simulation, and 13 parameters for the daily simulation (Tables 2 and 3).

Table 2. Ranking of the most sensitive parameters and their monthly simulation variation ranges.

Parameter Name Description Min Max Value Adopted Calibration

t-Stat p-Value Rank

R__OV_N Manning’s “n” value for
overland flow 10.00 20.00 17.25 −2.68 0.02 1

V__ALPHA_BF Baseflow alpha factor
(days) 0.00 0.50 0.41 2.48 0.03 2

R__CN2 SCS runoff curve number
for moisture condition II 0.00 0.60 0.41 1.57 0.14 3

V__CH_K2
Effective hydraulic

conductivity in main
channel alluvium

100.00 150.00 131.25 −1.25 0.24 4

V__GWQMN

Treshold depth of water
in the shallow aquifer

required for return flow
to occur (mm)

0.00 3.00 2.63 −0.45 0.66 5

R__ESCO Soil evaporation
compensation factor 0.00 0.80 0.30 0.41 0.69 6

R__SOL_AWC(1) Available water capacity
of the soil layer 0.00 0.60 0.11 −0.31 0.76 7

V__GW_DELAY Groundwater delay
(days) 0.00 170.00 46.75 0.04 0.97 8

Table 3. Ranking of the most sensitive parameters and their daily simulation variation ranges.

Parameter Name Description Min Max Value Adopted Calibration

t-Stat p-Value Rank

R__CN2 SCS runoff curve number
for moisture condition II −0.30 0.01 −0.17 8.77 0.00 1

R__HRU_SLP Average slope steepness −0.98 0.10 −0.35 6.08 0.00 2

R__SOL_K(1) Saturated hydraulic
conductivity 0.00 5.00 0.03 −4.99 0.00 3
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Table 3. Cont.

Parameter Name Description Min Max Value Adopted Calibration

t-Stat p-Value Rank

V__RCHRG_DP Deep aquifer percolation
fraction 0.10 0.40 0.15 −3.65 0.00 4

V__GW_DELAY Groundwater delay
(days) 0.00 2.00 0.17 −3.14 0.00 5

V__OV_N Manning’s “n” value for
overland flow 3.00 6.00 5.47 −2.55 0.01 6

V__ALPHA_BF Baseflow alpha factor
(days) 0.10 0.20 0.16 2.50 0.01 7

V__GWQMN

Treshold depth of water
in the shallow aquifer

required for return flow
to occur (mm)

10.00 500.00 46.75 −2.40 0.02 8

R__SOL_Z(1) Depth from soil surface to
bottom of layer −0.25 0.25 −0.11 1.52 0.13 9

V__CH_K2
Effective hydraulic

conductivity in main
channel alluvium

0.00 220.00 212.30 1.14 0.25 10

V__REVAPMN
Threshold depth of water
in the shallow aquifer for
“revap” to occur (mm)

0.00 500.00 367.5 −0.65 0.51 11

R__SOL_AWC(1) Available water capacity
of the soil layer 0.20 0.40 0.21 0.58 0.55 12

R__ESCO Soil evaporation
compensation factor 0.00 0.10 0.04 0.46 0.64 13

The results for the evaluation index after the model runs are shown in Table 4. Previous research
results show that if R2 and NSE are close to 1, then the simulated value of the model is close to
the true value. PBIAS is also used as a model evaluation criteria, and an absolute value of less than
10 is usually considered a good result [37]. In the monthly simulation, R2 and NSE were both 0.96
during the calibration period, while R2 was 0.96 and NSE was 0.95 during the validation period.
PBIAS was less than 10 during the calibration and the validation period. Figure 3 shows the results
calculated for the monthly simulated and observed values. The figure shows that the trend and values
of the simulated results are very close to the measured results. The figure also shows that runoff
characteristics (large summer runoff and a small winter runoff) of the Lijiang River Basin are similar to
those found in most regions with a monsoon climate. It is noteworthy that there was a large peak in
the Lijiang River runoff in November 2015. This was the result of a rare winter storm in Guilin. Figure 4
shows the calculated results of the daily simulated and observed values. In the daily simulation, R2

was 0.92 for the calibration period and 0.89 for the validation period. NSE values for the calibration
period were 0.89 and 0.88, respectively, and the corresponding PBIAS values were 20.70 and 14.40,
respectively. Thus, good daily simulation results were obtained. It can be concluded that the SWAT
model, driven by CMADS meteorological data, provided good results for the Lijiang River Basin in
Guangxi Province, and the data set and model can be used to further study hydrological processes in
this basin.
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Table 4. Performance statistics for the flow simulations.

Object Calibration (2009–2010) Validation (2011–2016)

P-factor (Monthly) 0.79 0.63
R-factor (Monthly) 0.33 0.37

R2 (Monthly) 0.96 0.96
NSE (Monthly) 0.96 0.95

PBIAS (Monthly) 7.70 7.80
RSR (Monthly) 0.20 0.22
P-factor (Daily) 0.70 0.77
R-factor (Daily) 0.30 0.43

R2 (Daily) 0.92 0.89
NSE (Daily) 0.89 0.88

PBIAS (Daily) 20.70 14.40
RSR (Daily) 0.33 0.35

Figure 3. Comparison of monthly runoff using Soil and Water Assessment Tool (SWAT).

Figure 4. Comparison of daily runoff using SWAT.

3.2. Uncertainty Analysis

The SUFI-2 algorithm was iterated three times, with each calibration and validation iteration
running 100 times. The R-factor and P-factor are important indicators for evaluating the uncertainty of
simulation results. It is generally assumed that the closer the R-factor is to 0 and the closer the P-factor
is 1, the closer the simulation results are to the measured data, and the lower the uncertainty in
the model results [38]. Table 3 shows that in the runoff simulation of the Guilin sites, both the R-factor
and the P-factor had reached optimal values in the calibration and validation periods, thus indicating
that the uncertainty in the simulation results was small.

In addition, the correlation between parameters is an indicator of their redundancy. Figure 5
shows the relationship between the parameters and also the relationship between the parameters
and the objective function using the NSE. The correlation between most of the parameters was very
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small, indicating that the redundancy was small in the parameterization for the Lijiang River Basin.
The relationship between the NSE and the parameters in Figure 5, shows that the NSE was always
above 0.7, and usually higher than 0.8. In the areas with a high NSE, there are many parameters
exhibiting the equifinality phenomenon. These characteristics also indicate that most of the parameters
from the model simulation results have a low uncertainty. It should be noted that the degree of
aggregation of NSE decreases as the value of the curve number for moisture condition II (CN2)
decreases, indicating that CN2 has a greater influence on the uncertainty of the simulation results.
Parameter CN2 is associated with soil permeability, land use, and initial soil water condition, and
indicates the potential for surface runoff from precipitation in a river basin. To take into account
the important impact of CN2 on the hydrological elements of surface runoff, we chose relatively stable
values in the −0.3–0.01 range for the final values of CN2.

Figure 5. Pair-wise correlations between parameters, and correlations between parameters and
Nash-Sutcliffe model efficiency coefficient (NSE).

To show the results of the operation of the SUFI-2 algorithm, we used kernel smoothing to
represent the distribution of NSE. Figure 6 shows that the NSE values for each simulation are larger
than the SUFI-2 algorithm’s default value of 0.5. Most of the values were concentrated between
0.82–0.87. These distributions show that the SUFI-2 algorithm performed well, and that the uncertainty
in the model results was low.
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Figure 6. Kernel smoothing fit of the distribution of NSE.

3.3. Water Balance Components

The SWAT model often overestimates or underestimates some elements of hydrological budgets.
Calibration ensures that the simulated values are closer to the observed values, and also ensures that
the hydrological elements are in a reasonable range. Table 5 shows the average annual contributions to
the water budget for the main hydrological elements. From 2009–2016, the average annual precipitation
was up to 2150.20 mm. The average annual values of surface runoff, evapotranspiration (ET), lateral
flow, and shallow groundwater in the Lijiang River Basin were 518.36 mm, 750.60 mm, 129.21 mm,
and 555.34 mm, respectively. Figure 7 shows the average annual values of the hydrological elements
as a relative percentage of precipitation for uncalibrated and calibrated periods. The figure shows
that the percentage of deep aquifer recharge, deep aquifer flow, shallow aquifer flow, and lateral flow
increased. Actual ET and surface runoff decreased. In the calibration period, ET caused major water
losses, and the average proportion of ET to precipitation was 34.9% per year. The low latitude and high
temperature of the basin location contributed to the high ET, and the wide distribution of agriculture
further increased the ET. The average annual contribution of lateral flow as a relative percentage of
precipitation was 6.0%. Shallow groundwater flow to streamflow accounted for 25.8% of precipitation.
Deep aquifer recharge accounted for 8.8% of the total precipitation.

It was possible to view the variation in the model’s output across the basin. Figure 8 shows
the spatial distribution of precipitation, actual ET, surface runoff contribution to streamflow, and
groundwater contribution to streamflow during the study period. When the spatial distribution of ET
(Figure 8) and land use (Figure 2) are compared, it can be seen that the lake area and the agricultural
area have high ET values. The distribution of surface runoff contribution to streamflow, and of
groundwater contribution to streamflow, is related to precipitation. There is more precipitation in
the northern part of the basin and less precipitation in the south. The contribution of surface runoff and
groundwater to streamflow in the sub-basins upstream is also consistent with the spatial distribution
of precipitation in the basin that was studied.
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Table 5. Average annual contribution by the hydrological elements to the water budget.

Hydrological Elements Calibration

Precipitation 2150.20 mm
Surface runoff 518.36 mm
Lateral flow 129.21 mm

Shallow groundwater contribute to streamflow 555.34 mm
Deep groundwater contribute to streamflow 188.62 mm

Total aquifer recharge 746.08 mm
Deep groundwater recharge 189.88 mm

Water yield 1391.51 mm
Evapotranspiration 750.6 mm

Figure 7. Average annual values of hydrological elements as a percentage of precipitation for pre- and
post-calibration periods.

Figure 8. Spatial distribution of actual evapotranspiration (ET), surface runoff, groundwater discharge,
and precipitation for the study period.

Figure 9 shows the variation in the contribution to the water budget by the main hydrological
elements in the Lijiang River Basin from 2009–2016. The contribution to the water budget by
groundwater discharge, lateral flow, and surface runoff decreased significantly in 2011, which was
a dry year. The contributions by groundwater, lateral flow, and surface runoff reached their highest
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values in 2015, which was a flood year. The annual changes in the contributions by the different
components of the water budget are consistent with the annual changes in precipitation. The change
rates for surface runoff, lateral flow, and groundwater discharge decreased the most in 2011, and
increased the most in 2012. The contribution by surface runoff decreased by about 38.4% in 2010–2011
and increased by 80.0% in 2011–2012. The contribution by lateral flow decreased by about 28.8% in
2010–2011 and increased by 56.4% in 2011–2012. The contribution by groundwater decreased by about
39.4% in 2010–2011 and increased by 81.9% in 2011–2012. It is worth noting that contributions to
the water budget may be carried over from year to year. For example, precipitation in 2012 was more
than in 2013, but surface runoff in 2012 was less than in 2013. The water balance in 2012 may have
been affected by the drought in the previous year. However, there was no significant change in ET,
which remained stable during the calibration and validation periods. The average annual change rate
for ET was only about 1.6%.

Figure 9. Annual change in contribution by the hydrological elements to the water budget.

Figure 10 shows the variation in each element of the water balance at a monthly scale. ET was an
important loss in the basin water balance, and its change shows clear seasonal variations. There was
little ET in winter and high ET in summer. The seasonal variation in surface runoff, lateral flow, and
groundwater discharge was consistent with the change in precipitation. The proportion of surface flow
to precipitation was 0.1–40.4% at the monthly scale, and there was a noticeable difference between
the winter and summer percentages. The proportion of lateral flow to precipitation was 4.2–21.7%.
Lateral flow was a large proportion of precipitation in summer and a small proportion in winter.
The groundwater discharge was also consistent with changes in the precipitation. The proportion of
groundwater discharge to precipitation varies widely between summer and winter.

Figure 10. Monthly change in the contribution by the hydrological elements to the water budget.
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The relationship between each water balance element and precipitation is shown in Figure 11.
The correlation between the contribution of each hydrological element and precipitation was analyzed
separately. In addition, the P-value is less than 0.01 in the significance test of precipitation and these
hydrological elements. Precipitation has an important influence on surface runoff. The surface flow
and precipitation in the Lijiang River Basin maintained a curvilinear relationship with a R2 of 0.903.
This relationship between surface runoff and precipitation implies that high precipitation is likely
to rapidly increase surface runoff and cause floods in the Lijiang River Basin. Lateral runoff and
precipitation maintained a linear correlation, with a R2 of 0.971. The relationship between groundwater
discharge and precipitation was also analyzed, and a R2 of 0.926 was obtained. The relationship
between ET and precipitation in summer and winter was also analyzed. The correlation between ET
and precipitation in summer was 0.153. The correlation between ET and precipitation in winter was
0.094. The results show that there was no significant relationship between ET and precipitation in
the Lijiang River Basin.

Figure 11. Regression analysis results for the hydrological elements and precipitation. (a) Surface flow
and precipitation; (b) Lateral runoff and precipitation; (c) Groundwater discharge and precipitation;
(d) ET and precipitation.

4. Conclusions

The present study used CMADS data and the SWAT model to successfully generate daily and
monthly scale runoff simulations for the Lijiang River Basin. The analysis of pair-wise correlations
between the parameters shows that the redundancy was small in the parameterization. Both
the R-factor and P-factor reached ideal values in the calibration and validation periods, which indicated
that there was low uncertainty in the simulation results and model parameters.

Using the model’s output, the average annual contribution to the water budget by hydrological
elements was analyzed. From 2009–2016, the average annual value of surface runoff, ET, lateral
flow, and shallow groundwater in the Lijiang River Basin were 518.36 mm, 750.60 mm, 129.21 mm,
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555.34 mm, respectively. The spatial distribution of surface runoff and groundwater discharge was
related to precipitation. The highest ET values were obtained in the west of the basin, where agriculture
is prevalent. The water budget of groundwater discharge, lateral flow, and surface runoff reached
the highest values in the flood year, and reached the lowest values in the driest year. The high
correlation between these elements and precipitation was reflected in the regression analysis. ET
remained stable during the calibration and validation period. The results for the hydrological
elements could provide valuable reference information for water resources management in the Lijiang
River Basin.
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