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Abstract: The reliable and accurate prediction of groundwater levels is important to improve
water-use efficiency in the development and management of water resources. Three nonlinear
time-series intelligence hybrid models were proposed to predict groundwater level fluctuations
through a combination of ensemble empirical mode decomposition (EEMD) and data-driven models
(i.e., artificial neural networks (ANN), support vector machines (SVM) and adaptive neuro fuzzy
inference systems (ANFIS)), respectively. The prediction capability of EEMD-ANN, EEMD-SVM,
and EEMD-ANFIS hybrid models was investigated using a monthly groundwater level time series
collected from two observation wells near Lake Okeechobee in Florida. The statistical parameters
correlation coefficient (R), normalized mean square error (NMSE), root mean square error (RMSE),
Nash–Sutcliffe efficiency coefficient (NS), and Akaike information criteria (AIC) were used to assess
the performance of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models. The results achieved
from the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models were compared with those from
the ANN, SVM and ANFIS models. The three hybrid models (i.e., EEMD-ANN, EEMD-SVM, and
EEMD-ANFIS) proved to be applicable to forecast the groundwater level fluctuations. The values of
the statistical parameters indicated that the EEMD-ANFIS and EEMD-SVM models achieved better
prediction results than the EEMD-ANN model. Meanwhile, the three models coupled with EEMD
were found have better prediction results than the models that were not. The findings from this
study indicate that the proposed nonlinear time-series intelligence hybrid models could improve the
prediction capability in forecasting groundwater level fluctuations, and serve as useful and helpful
guidelines for the management of sustainable water resources.

Keywords: groundwater level; ensemble empirical mode decomposition; artificial neural network;
support vector machine; adaptive neuro fuzzy inference system

1. Introduction

Groundwater is an increasingly important water resource for irrigation, and domestic and
industrial activities in many countries. More reliable and accurate estimation of groundwater levels
can help prevent groundwater overexploitation and improve water-use efficiency for water resource
management. However, in some regions, the groundwater has been pumped out much faster than
it can be replenished, which eventually reduces the groundwater level. In addition, groundwater
level time series are highly non-linear and non-stationary in nature, and prediction depends on many
complex environmental factors, such as groundwater aquifers, precipitation, etc. Groundwater aquifers
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are intrinsically heterogeneous systems that are affected by complex hydrogeological conditions with
groundwater-surface water interactions at various temporal-spatial scales [1,2]. Therefore, it is essential
to develop more effective models for groundwater level prediction. Many groundwater modeling
approaches and data-driven models have been implemented to forecast groundwater levels [2–4].
A groundwater numerical model is firstly developed from a conceptual model, which often includes
only the main and fundamental principles but neglects the complexities of groundwater systems [1].
It is hard to establish groundwater flow equations and set the values of hydrogeological parameters
for conceptual models. Also, it is difficult to obtain long time series data for groundwater numerical
modeling; there are still challenges and uncertainties in modelling processes [1,5].

Recently, data-driven models such as artificial neural networks (ANN), support vector machines
(SVM), adaptive neuro-fuzzy inference systems (ANFIS) and genetic programming (GP), and time
series methods such as autoregressive moving average (ARMA) and autoregressive integrated moving
average (ARIMA) have been proved efficient in forecasting hydrologic time series (e.g., groundwater
level, water demand and inflow) [5–18]. Yoon et al. [5] developed ANN and SVM models to
forecast groundwater level fluctuations in a coastal aquifer. The performance of the SVM was
similar to or even better than that of the ANN model, according to the results from the validation.
Shirmohammadi et al. [10] applied time series, system identification and ANFIS models to predict
groundwater levels. The obtained results showed that ANFIS is superior to time series and system
identification. Moosavi [11] proposed a model to forecast groundwater levels for different prediction
periods. The achieved results showed that predictive ability of the wavelet–ANIFIS model was more
accurate than those of the ANN, ANFIS and wavelet–ANN models. Shiri and Kişi [12] investigated
the ability of adaptive neuro-fuzzy inference systems (ANFIS) and genetic programming (GP) to
predict water table depth fluctuations. The results showed that the ANFIS and GP models can
be applied successfully in groundwater depth prediction. Fallah-Mehdipour et al. [6] investigated
the capability of ANFIS and GP to forecast and simulate groundwater levels in the Karaj plain
of Iran. These results indicated that GP is an effective method for predicting groundwater levels.
Valipour et al. [13] compared autoregressive moving average (ARMA) with autoregressive integrated
moving average (ARIMA) models in forecasting the inflow of the Dez dam reservoir. The ARIMA
model was proved have better predictive ability compared to the ARMA model. Xu et al. [14] built the
instance-based weighting and support vector regression data-driven models to reduce the predictive
error of groundwater models. The results of two real-world case studies showed that data-driven
models can be applied effectively to reduce the root mean square error of the groundwater models.
Asefa et al. [15] used support vector machines (SVMs) to monitor network design. The obtained results
showed that SVMs can select the best configurations of well networks by reproducing the behavior of
Monte Carlo flow.

Ensemble empirical mode decomposition (EEMD) is a scale-adaptive method proposed by Wu and
Huang [19], which improved on empirical mode decomposition (EMD) to avoid the drawback of mode
mixing [20]. EEMD has a high ability to decompose the original signal into intrinsic mode function
(IMF) components and residual components for nonstationary and nonlinear signal sequences. In the
hydrological and environmental research field, EEMD has been successfully applied to predict nonlinear
problems such as runoff [21–23], wind speed [24], wave height [25], particulate matter 2.5 (PM2.5) [26],
streamflow [27,28], vegetation dynamics [29], etc. Wang et al. [21] proposed an EEMD-ARIMA
model for the forecasting of annual runoff time series. Quantitative standard statistical performance
values proved that EEMD-ARIMA is a superior model to ARIMA for the forecasting of annual
runoff. Liu et al. [24] applied the fast ensemble empirical mode decomposition–multilayer perceptron
(FEEMD-MLP), Fast Ensemble Empirical Mode Decomposition-Adaptive neuro fuzzy inference system
(FEEMD-ANFIS), wavelet packet–multilayer perceptron (WP-MLP) and WP-ANFIS models to forecast
wind speed. The results suggested that all of the proposed hybrid algorithms are suitable for wind
speed prediction. Duan et al. [25] developed the improved empirical model decomposition–support
vector regression (EMD-SVR) model for the short-term prediction of wave height and found that



Water 2018, 10, 730 3 of 20

the EMD-SVR model performs better than the wavelet-decomposition-based SVR (WD-SVR) model.
Ausati and Amanollahi [26] used ensemble empirical mode decomposition–general regression neural
network (EEMD-GRNN), principal component regression (PCR), adaptive neuro-fuzzy inference
system (ANFIS) and multiple liner regression (MLR) models to predict concentrations of particulate
matter 2.5 (PM2.5) in the city of Sanandaj. It was concluded that the EEMD-GRNN hybrid model had
higher accuracy than the linear model in forecasting the particulate matter 2.5 (PM2.5) concentration.
Karthikeyan and Nagesh [28] tested the predictability of monthly streamflow time series using
wavelet- and EMD-based ARMA models. The result showed that the wavelet-based ARMA method
outperformed the EMD-based ARMA method. Hawinkel et al. [29] used EEMD to decompose the time
series of the normalized difference vegetation index (NDVI) and extracted climate-driven interannual
vegetation dynamics. The result indicated that the EEMD was a feasible method for the assessment of
climate-driven interannual vegetation dynamics.

ANN, SVN and ANFIS data-driven models and EEMD were applied in formal hydrology studies.
All of these models were used alone or in combination to predict nonlinear and nonstationary time
series. In this study, the ANN, SVN and ANFIS nonlinear time-series model coupled with EEMD were
applied to groundwater level prediction, for validity and accuracy testing. The main advantage of the
EEMD-ANN, EEMD-SVM and EEMD-ANFIS hybrid models is that exogenous factors affecting the
groundwater level do not need to be considered in the prediction. In order to compare the forecasting
performance of the three hybrid models, single ANN, SVM and ANFIS models were applied to predict
the groundwater level by considering exogenous factors, such as precipitation, temperature and
surface water level, etc. The prediction results obtained from models with and without coupling were
compared based on standard statistical analysis.

This paper is organized as follows: Section 2 briefly describes the basic theory of EEMD, ANN,
SVM and ANFIS, and presents the framework of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS
hybrid models; Section 3 introduced the study area, available data and performance criteria. Section 4
explained the groundwater level decomposition by the EEMD for modeling and application; Section 5
analyzed the predicting results of the proposed EEMD-ANN, EEMD-SVM and EEMD-ANFIS hybrid
models; Section 6 concluded this study.

2. Methods

2.1. Ensemble Empirical Mode Decomposition

Ensemble empirical mode decomposition (EEMD) is a new empirical mode decomposition
(EMD)-based algorithm, which is a fully data-adaptive method to analyze nonlinear and nonstationary
signals [19,20]. EMD can decompose the original signal into the number of intrinsic mode functions
(IMFs) when the signal meets two conditions: (1) the functions are symmetric and the mean value of
the upper and lower envelopes should be zero; (2) the number of extrema and the number of zero
crossings must be equal or differ at most by one. However, EMD still has some drawbacks, such
as mode mixing. Ensemble empirical mode decomposition (EEMD) was proposed to combine the
white-noise-assisted system based on EMD to solve the problem of mode mixing [19,30]. If x(t) is the
signal or time series to be decomposed, the EMD algorithm can be briefly summarized as follows:

Step 1. Identify all local maxima and minima points of the time series x(t);
Step 2. Interpolate between all local maxima and minima points of x(t) to form the upper envelope
emax(t) and lower envelope emin(t);
Step 3. Compute the mean envelope m(t) between the upper envelope emax(t) and the lower envelope
emin(t);

m(t) = (emax(t) + emin(t))/2 (1)
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Step 4. Calculate the IMF candidate;

h(t + 1) = x(t)− m(t) (2)

Step 5. Determine whether or not h(t + 1) satisfies the two conditions of IMF. Is h(t + 1) an IMF?

If yes, save h(t + 1), calculate the residue r(t + 1) = x(t)−
t+1
∑

i=1
h(i), t = t + 1, and treat r(t) as

input data in step 2. If no, treat h(t + 1) and as input data in step 2 until it satisfies the two conditions
of IMF.

Step 6. Continue until the final residue meets some predefined stopping criteria.

At the end of the shifting process, the final residual term rn(t) has less than two local extrema,
and the original signal or time series can be decomposed into a set of IMFs and a residue as follows:

x(t) =
n

∑
i=1

hi(t) + r(t) (3)

where n is the number of IMFs, rn(t) is the final residue and hi(t) as IMFs are nearly orthogonal to
each other.

Ensemble empirical mode decomposition (EEMD) was proposed by adding a finite amount of
Gaussian white noise to series with EMD mixture, and the mode mixing is mostly eliminated. Based on
the EMD method, the EEMD can be briefly summarized as follows [19,31]:

Step 1. Initialize the ensemble number and the amplitude of the added white noise.
Step 2. Add random white noise to produce the noise-added data.
Step 3. Identify the local maxima and minima and obtain the upper and lower envelopes.
Step 4. Compute the mean of the upper and lower envelopes.
Step 5. Decompose the data with added random white noise into IMFs.
Step 6. Repeat step 3 to step 5 until the stopping criteria. After the shift processing, the IMFs and the
residue are obtained.

2.2. Artificial Neural Network

An artificial neural network (ANN) is a black box tool that has certain performance characteristics
that resemble the biological neural networks in the human brain [32]. Feed-forward neural networks
(FFNN) are the most commonly used artificial neural networks, and have been broadly employed for
modeling and forecasting in hydrogeology [33,34]. The architecture of the FFNN model consists of an
input layer, hidden layer, output layer and artificial neurons (Figure 1). In a feed forward network,
the neurons in each layer are connected to those in the next layer. Therefore, the output of a node in
a layer only depends on the input it received from previous layer, determined weight, and type of
transform function. The present research used the three-layer FFNN model, which was trained with a
Bayesian regularization (BR) algorithm. The tan-sigmoid transfer function was selected by previous
studies [35]. The mathematical expression can be expressed as follows:

yj = f

(
N

∑
i=1

wjixi + bj

)
(4)

where xi is the input vector, yj is the output, bi is the bias, wji is a weight connecting xi and yj, N is the
number of nodes, and f is the activation function.
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2.3. Support Vector Machine

A support vector machine (SVM) is a novel machine learning technique based on statistical
learning theory [36,37]. In a regression SVM model, a regression hyperplane with a ε-insensitivity loss
function is a convex dual optimization problem. The solution can be obtained from the optimization
algorithm. The deterministic function of the SVM can be expressed as follows:

f (x) = w · φ(x) + b (5)

where wi is a weight vector, and b is a bias. x is mapped to a high-dimensional feature space by
nonlinear transfer function φ. In this study, the sequential minimal optimization (SMO) algorithm
was used to solve the dual optimization problem of SVM [38,39]. The SMO algorithm can be directly
acquired from an analytical solution without invoking a quadratic optimizer. The programming codes
of the library for support vector machines (LIBSVM) was applied to predict a non-linear time series in
the validation and calibration [40]. Figure 2 shows the schematic diagram of the SVM model.
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2.4. Adaptive Neuro Fuzzy Inference System

An adaptive neuro fuzzy inference system (ANFIS) as a hybrid algorithm is an adaptive neural
network based on a fuzzy inference system [41]. ANFIS is capable of approximating any real continuous
function in a compact set to any degree of accuracy. This study used the first order Sugeno–fuzzy model
of ANFIS [41,42]. To simplify, it was assumed that the fuzzy inference system has two inputs x and y
and one output f . For the first-order Sugeno inference system, the typical rules can be expressed as:

Rule 1: If x is A1 and y is B1; then f 1 = p1x + q1y + r1 (6)

Rule 2: If x is A2 and y is B2; then f 2 = p2x + q2y + r2 (7)

where x and y are the crisp inputs to the node i, Ai and Bi are the linguistic labels (low, medium, high,
etc.,) characterized by the convenient membership functions. pi, qi, and ri(i = 1, 2) are the parameters
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in the then part (consequent part) of the first-order Sugeno fuzzy model. The Sugeno–fuzzy structure
of ANFIS comprised a five-layer network (Figure 3). More comprehensive information about ANFIS
can be found in the literature [11,43–45].Water 2018, 10, x FOR PEER REVIEW  6 of 20 
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2.5. The Hybrid EEMD-ANN, EEMD-SVM and EEMD-ANFIS Forecasting Models

The goal of this study was to improve the forecasting accuracy of groundwater levels by coupling
the EEMD and data-driven models. A schematic diagram of the hybrid EEMD-ANN, EEMD-SVM and
EEMD-ANFIS models is illustrated in Figure 4. As shown in Figure 4, the process of running the three
hybrid models consists of three main steps:
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(1) Firstly, use the EEMD technique to decompose the original groundwater level fluctuation
time series x(t)(t = 1, 2, · · · , n; i = 1, 2, · · · , m) into an IMF component ci(t) and one residual
component rm(t).

(2) Secondly, the three data driven models ANN, SVM and ANFIS are developed to make the
corresponding prediction using extracted IMF component and the residual component, respectively.
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(3) Finally, all of the predicting results from the ANN, SVM and ANFIS models are combined
to obtain the new output values, which are the final forecasting result for the groundwater
level prediction.

3. Study Area and Available Data

3.1. Study Site and Data Preprocessing

The study area was located in Florida, United States. The annual mean temperature in the study
area was 23.36 ◦C and the average annual mean precipitation was 980.61 mm in the past 16 years.
All the observed data (including the monthly mean precipitation, monthly mean temperature, monthly
maximum temperature, monthly minimum temperature, monthly mean lake level and monthly mean
groundwater level) were collected to forecast the future groundwater fluctuations at well M1255
and STL185. For the obtained data from the past 16 years (from 1997 to 2012), data from the first
14 years was used for training and the last two years of data was used for validation. Meanwhile,
the IMF components and one residual component of the groundwater level time-series were used to
predict future groundwater fluctuations based on the EEMD. The results of the groundwater level
prediction using the EEMD were analyzed and compared with the results obtained not using the
EEMD. The locations of the observed wells in the study area are shown in Figure 5. Figure 6a–d
illustrates the monthly mean precipitation, monthly mean temperature, monthly mean lake level, and
monthly maximum temperature. Figure 7a,b illustrates the monthly groundwater levels at well M1255
and STL185.
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Figure 6. Plots of (a) precipitation (b) mean temperature (c) lake level (d) max. temperature.
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Figure 7. Plots of (a) groundwater level of M1255 (b) groundwater level of STL185.

To eliminate the dimensional differences, the time-series data was normalized using the following
equation before the training stage.

xi =
x − xmin

xmax − xmin
(8)

where xi is the normalized data, x is the time-series data, xmin is the minimum value and xmax is the
maximum value.

The partial autocorrelation function (PACF), as one of the statistical methods, was frequently
used to select suitable models [10]. The PACF of well site M1255 from lag-0 to lag-18 is shown in
Figure 8. Figure 8 suggests a significant correlation up to the lag-1 month for this time series within
the confidence interval. The partial autocorrelation coefficients indicated that there was a one-month
time lag for the monthly groundwater level time series as the input vector of the ANN, SVM and
ANFIS models.
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Figure 8. The partial autocorrelation function (PACF) of the groundwater level series at site M1255.

3.2. Performance Criteria

Five statistical performance evaluation parameters—correlation coefficient (R), normalized mean
square error (NMSE), root mean squared error (RMSE), Nash–Sutcliffe efficiency coefficient (NS) and
Akaike information criteria (AIC)—were used to estimate the performance of the models proposed in
this study.

Correlation coefficient (R):

R =
∑N

i=1
(
Oi − O

)(
Pi − P

)√
∑N

i=1
(
Oi − O

)2
∑N

i=1
(

Pi − P
)2

(9)

Normalized mean square error (NMSE):

NMSE =
n − 1

n
∑N

i=1(Oi − Pi)
2

∑N
i=1
(
Oi − O

)2 (10)

Root mean squared error (RMSE):

RMSE =

√
∑N

i=1(Oi − Pi)

N
(11)

Nash–Sutcliffe efficiency coefficient (NS):

NS = 1 − ∑N
i=1(Oi − Pi)

2

∑N
i=1
(
Oi − O

)2 (12)

Akaike information criteria (AIC):

AIC(k) = N · In

 1
N

N

∑
i=1

(Oi − Pi)

2
+ 2k (13)

where Oi is the observed groundwater level value, Pi is the predicted groundwater level value, O is
the average of the observed groundwater level value, P is the average of the predicted groundwater
level value, N is the number of input samples, and k is the number of free parameters used in those
models. Suppose k is 0 in this paper. The Akaike information criteria (AIC) was employed to select the
best time series mode [46]. The best fit between the predicted value and observed value would have
R = 1, NMSE = 0, RMSE = 0, NS = 1, AIC = −∞, respectively.
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4. Decomposing, Modeling and Application

The time series of the original groundwater levels can be decomposed into several independent
IMFs and one residue using the EEMD technique. The results are shown in Figures 9 and 10. It is
noticeable that the two time series of the groundwater levels were resolved into six independent IMF
and one residue component. Six independent IMFs were successively displayed from the highest to the
lowest frequency, respectively. The extracted IMF components and the residual component as input
variables were used to forecast the groundwater level. EEMD, as a new noise-assisted data analysis
method, overcame the scale separation problem, avoided the mode mixing problem and conserved
the physical uniqueness of the decomposition [19]. Therefore, the decomposition could be helpful to
transform non-linear and non-stationary time series to independent IMF components from high to low
frequency and could be useful to improve the forecast accuracy.

Water 2018, 10, x FOR PEER REVIEW  10 of 20 

 

noticeable that the two time series of the groundwater levels were resolved into six independent IMF 
and one residue component. Six independent IMFs were successively displayed from the highest to 
the lowest frequency, respectively. The extracted IMF components and the residual component as 
input variables were used to forecast the groundwater level. EEMD, as a new noise-assisted data 
analysis method, overcame the scale separation problem, avoided the mode mixing problem and 
conserved the physical uniqueness of the decomposition [19]. Therefore, the decomposition could be 
helpful to transform non-linear and non-stationary time series to independent IMF components from 
high to low frequency and could be useful to improve the forecast accuracy. 

 

Figure 9. Decomposition of groundwater level time-series at the M1255 observation well. 

 

Figure 10. Decomposition of groundwater level time-series at the STL185 observation well. 

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-1

0

1

IM
F1

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-2

0

2

IM
F2

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-1

0

1

IM
F3

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-0.5

0

0.5

IM
F4

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-0.5

0

0.5

IM
F5

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-0.1

0

0.1

IM
F6

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012

24

24.5

25R
es

id
ue

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-5

0

5

IM
F1

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-5

0

5

IM
F2

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-5

0

5

IM
F3

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-2

0

2

IM
F4

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-2

0

2

IM
F5

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012
-0.1

0

0.1

IM
F6

Jan-1997 Jan-1999 Jan-2001 Jan-2003 Jan-2005 Jan-2007 Jan-2009 Jan-2011 Dec-2012

23

24

25R
es

id
ue

Figure 9. Decomposition of groundwater level time-series at the M1255 observation well.
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Figure 10. Decomposition of groundwater level time-series at the STL185 observation well.
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The selection of input variables depended on the availability of the inputs and historically
observed records. Several combinations of the exogenous factors were applied in the ANN, SVM
and ANFIS models for groundwater level prediction. The input variables in the ANN model were
the monthly time-series data of the precipitation, temperature (maximum, mean and minimum), and
groundwater level. ANN+L representing the lake level was added to input variables in the ANN
model. EEMD-ANN represents that the input variables were IMF components and one residual
component. The input variables of the SVM and ANFIS models were similar to that of the ANN
models (see Tables 1–3).

5. Results and Discussion

5.1. EEMD-ANN and ANN Models

For the investigation of the effects of the input structure and input data on the performance of the
ANN model, three input structures were considered, as shown in Table 1. The results showed that
the input variables of the EEMD-ANN at two sites has the minimum RMSE and AIC values in the
validation. Meanwhile, the input variables of EEMD-ANN had the maximum R value in the validation.
At site M1255, the minimum RMSE and AIC of EEMD-ANN were 0.329 and −53.350, respectively;
at site STL185, the minimum RMSE and AIC of EEMD-ANN were 0.646 and −20.979, respectively.
The maximum R of EEMD-ANN in the validation was 0.926 at site M1255 and 0.891 at site STL185.
Table 1 suggested that R values of the four input variables of ANN+L at two sites were better than
that of three input variables of ANN in the validation stage. The R of ANN+L at site M1255 was 0.754.
The R value for ANN+L applied at site STL185 was 0.839. Figure 11 shows the observed and predicted
groundwater levels using ANN, ANN+L and EEMD-ANN in the validation stage.

Table 1. Result of modeling from the ANN model at site M1255 and STL185.

Training Validation

R NMSE RMSE NS AIC R NMSE RMSE NS AIC

EEMD-ANN 0.932 0.131 0.234 0.869 −488.040 0.926 0.317 0.329 0.669 −53.350
M1255 ANN 0.808 0.345 0.380 0.653 −325.009 0.737 0.442 0.389 0.538 −45.377

ANN+L 0.816 0.333 0.374 0.665 −330.668 0.754 0.675 0.480 0.296 −35.246

EEMD-ANN 0.977 0.044 0.281 0.955 −426.784 0.891 0.208 0.646 0.783 −20.979
STL185 ANN 0.869 0.244 0.659 0.754 −140.343 0.813 0.353 0.842 0.632 −8.239

ANN+L 0.872 0.239 0.651 0.760 −144.026 0.839 0.298 0.774 0.689 −12.323
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Figure 11. Observed and predicted groundwater level using ANN, ANN+L and EEMD-ANN (a) M1255
(b) STL185.

5.2. EEMD-SVM and SVM Models

The same input structures were introduced to the SVM model, as shown in Table 2. The results
showed that the input variables of EEMD-SVM at site M1255 and the three input variables of SVM
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at site STL185 had the minimum RMSE and AIC values in the validation. The minimum RMSE and
AIC of EEMD-SVM at site M1255 were 0.315 and 221255.373, respectively. The minimum RMSE and
AIC of SVM at site STL185 were 0.755 and −13.512, respectively. Table 2 suggests that the maximum
R value of EEMD-SVM was 0.885 at site M1255 and 0.860 at site STL185. The R values of the four input
variables of SVM+L at the two sites were higher than or equal to those of the three input variables of
SVM in the validation stage. The R values of SVM+L at site M1255 were 0.758 and 0.730 in the training
and validation stage, respectively. The R values of SVM+L at site STL185 were 0.858 and 0.845 in the
training and validation stage, respectively. Figure 12 shows the observed and predicted groundwater
levels using SVM, SVM+L and EEMD-SVM in the validation stage.

Table 2. Results of modeling from the SVM model at site M1255 and STL185.

Training Validation

R NMSE RMSE NS AIC R NMSE RMSE NS AIC

EEMD-SVM 0.948 0.102 0.206 0.898 −530.463 0.885 0.292 0.315 0.696 −55.373
M1255 SVM 0.786 0.450 0.434 0.548 −280.434 0.7089 0.508 0.416 0.470 −42.067

SVM+L 0.758 0.424 0.421 0.574 −290.376 0.730 1.149 0.626 −0.199 −22.467

EEMD-SVM 0.972 0.073 0.360 0.927 −343.467 0.860 0.507 1.009 0.471 0.447
STL185 SVM 0.931 0.134 0.488 0.865 −241.064 0.845 0.283 0.755 0.704 −13.512

SVM+L 0.858 0.273 0.696 0.725 −121.615 0.845 0.284 0.756 0.703 −13.441
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Figure 12. Observed and predicted groundwater levels using SVM, SVM+L and EEMD-SVM (a) M1255
(b) STL185.

5.3. EEMD-ANFIS and ANFIS Models

In the ANFIS model, the grid partition algorithm was used to generate a fuzzy inference system
(FIS) structure from the training data [47]. The same input structures were introduced to the ANFIS
model, the results are shown in Table 3. Table 3 suggested that the input variables of EEMD-ANFIS
at two sites had the minimum RMSE and AIC values in the validation. The minimum RMSE and
AIC of EEMD-ANFIS at site M1255 were 0.360 and −49.100, respectively. The minimum RMSE and
AIC of EEMD-ANFIS at site STL185 were 0.606 and −24.035, respectively. The result showed that
the maximum R value of EEMD-ANFIS in the validation was 0.926 at site M1255 and 0.909 at site
STL185. The R values of four input variables of ANFIS+L at two sites were greater than that of the
three input variables of ANFIS in the validation stage. The R value of ANFIS+L at site M1255 was
0.799 in the validation. The R value of ANFIS+L at site STL185 was 0.910 in the validation. Figure 13
shows the observed and predicted groundwater levels using ANFIS, ANFIS+L and EEMD-ANFIS in
the validation stage.
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Table 3. Result of modeling from the ANFIS model at site M1255 and STL185.

Training Validation

R NMSE RMSE NS AIC R NMSE RMSE NS AIC

EEMD-ANFIS 0.968 0.063 0.162 0.937 −611.840 0.926 0.379 0.360 0.605 −49.100
M1255 ANFIS 0.918 0.157 0.257 0.842 −457.099 0.785 0.496 0.412 0.482 −42.602

ANFIS+L 0.971 0.058 0.156 0.942 −624.287 0.799 0.443 0.389 0.538 −45.341

EEMD-ANFIS 0.982 0.035 0.249 0.965 −466.512 0.909 0.183 0.606 0.809 −24.035
STL185 ANFIS 0.940 0.117 0.455 0.883 −264.408 0.855 0.318 0.799 0.668 −10.756

ANFIS+L 0.980 0.039 0.264 0.961 −447.574 0.910 0.262 0.726 0.726 −15.360
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Figure 13. Observed and predicted groundwater levels using ANFIS, ANFIS+L and EEMD-ANFIS
(a) M1255 (b) STL185.

5.4. Comparison of EEMD-ANN, EEMD-SVM and EEMD-ANFIS

The best statistical parameter values of validation are shown in Tables 1–3, when the IMF
components and one residual component were considered as the input variables. Also, based on the
results of the statistical analysis, it was found that taking the lake level into account for the input
variables led to better prediction in terms of the accuracy. Since the two well sites for data collection
were close to the lake, groundwater-lake interaction could affect the groundwater level fluctuations.
The results showed that the lake level should be considered as an input variable when exogenous
factors were used to forecast the groundwater level for those well sites.

The analysis results from the model training and validation stages for two well sites are listed in
Tables 1–3. At the training stage, the RMSE values in the EEMD-ANN, EEMD-SVM and EEMD-ANFIS
models for well M1255 were 0.234, 0.206 and 0.162 respectively; the RMSE values in these models for
well STL185 were 0.281, 0.360 and 0.249 respectively. The RMSE value of the EEMD-ANFIS model was
smaller than those of other two models in the training stage, which implied that the prediction ability
of the EEMD-ANFIS model was better than that of the other two models for the given data. In the
validation stage, the RMSE values for the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models for
well M1255 were 0.329, 0.315 and 0.360 respectively; the RMSE of these models for well STL185 were
0.646, 1.009 and 0.606 respectively. For well M1255, the prediction result based on EEMD-ANFIS was
close to that obtained from the other two models; the prediction result of EEMD-ANFIS was more
accurate than that of the other two models for well STL185.

Generally, the modeling result is regarded as a perfect estimation when the NS criterion is equal
to 1. If the NS criterion is higher than 0.8, the model can be recognized as effective and accurate [48].
The NS values for the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models in the training stage were
all greater than 0.8. This indicated that the results from all these hybrid models are acceptable for
forecasting groundwater levels. In the validation stage, the NS values for the EEMD-SVM model at
site M1255 were greater than those for the EEMD-ANN and EEMD-ANFIS models. The NS values for
the EEMD-ANFIS model at site STL185 were higher than those for the EEMD-ANN and EEMD-SVM
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models in the validation stage. This indicated that EEMD-ANFIS and EEMD-SVM had an overall
better estimation quality in comparison with the EEMD-ANN model. (See Tables 1–3).

When comparing the RMSE and R values of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS
models in the validation, the RMSE value of the EEMD-SVM model at site M1255 was less than that in
both the EEMD-ANN and the EEMD-ANFIS model. The RMSE value of the EEMD-ANFIS model at
site STL185 was higher than both the EEMD-ANN and the EEMD-SVM model. For the results for the
two well sites, EEMD-ANFIS had higher R values compared to the other models. Obviously, the R and
NS values of the EEMD-ANFIS and the EEMD-SVM model in the validation stage were greater than
that of the EEMD-ANN model. Therefore, the EEMD-ANFIS and EEMD-SVM model could be good
data-driven model in the validation stage. (See Tables 1–3).

Figures 14 and 15 illustrate the coefficient of determination (R2) values, corresponding to the
predicted values in the scatter plots at the M1255 and STL185 observation wells, using the EEMD-ANN,
EEMD-SVM, EEMD-ANFIS, ANN, SVM, ANFIS, ANN+L, SVM+L and ANFIS+L models. The scatter
plots revealed the relationships between the predicted and observed groundwater levels for two
observation wells. It can be seen clearly from the scatter plots that the EEMD-ANFIS model forecast
the groundwater levels with less scatter for the two observed wells. Figures 14 and 15 show that
EEMD-ANFIS had the best fit line compared to the other models. Figure 16a,b show the forecast
groundwater levels versus observed groundwater levels using all of the models in the training stage
and the validation stage.
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Figure 14. Observed and predicted groundwater levels at the M1255 observation well using
(a) EEMD-ANN; (b) ANN; (c) ANN+L; (d) EEMD-SVM; (e) SVM; (f) SVM+L; (g) EEMD-ANFIS;
(h) ANFIS; (i) ANFIS+L. (x is observed groundwater level, y is predicted groundwater level).
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Figure 15. Observed and predicted groundwater levels at the STL185 observation well using
(a) EEMD-ANN; (b) ANN; (c) ANN+L; (d) EEMD-SVM; (e) SVM; (f) SVM+L; (g) EEMD-ANFIS;
(h) ANFIS; (i) ANFIS+L. (x is observed groundwater level, y is predicted groundwater level).

According to the analysis, the R2 value for the data at site M1255 indicated that EEMD-ANFIS
performed better than the other models, although the RMSE value for the EEMD-SVM was less than
that for EEMD-ANFIS. The R2 value of the three hybrid models (i.e., EEMD coupled) were better than
that of the other models. Therefore, both the EEMD-ANFIS and EEMD-SVM models can be considered
good data-driven models at site M1255. Figure 15 shows that the R2 value of EEMD-ANFIS at site
STL185 was nearly equal to that of ANFIS+L and was a bit higher than that of EEMD-ANN. The RMSE
value for EEMD-ANFIS was less than that for EEMD-ANN and ANFIS+L. Thus, the EEMD-ANFIS
model can be considered the best estimation model at site STL185. For the two observation sites,
the forecast results obtained from the three hybrid models were suggested to have better quality
compared to those not coupled with EEMD.

Boxplot is importantly used to check whether the data-driven models are able to forecast these
variations and corresponding prediction errors. It intuitively depicts the quartile values for the
prediction error of groundwater data. Figures 17 and 18 display that the median value of the training
errors is close to zero, which indicates the good performance of the data-driven models in the training
stage in terms of the efficiency. Figures 17 and 18 show the comparison of errors between the results
obtained by the EEMD-ANN, EEMD-SVM, EEMD-ANFIS, ANN, SVM, ANFIS, ANN+L, SVM+L and
ANFIS+L models in the training period and the validation period. The results of the boxplots indicated
that EEMD-ANFIS was the most accurate model in the training stage. In the validation stage, the result
of the EEMD-ANFIS for well M1255 was close to that of the EEMD-SVM and EEMD-ANN; while in
the prediction of the groundwater level for well STL185, the EEMD-ANFIS performed more accurately
than the EEMD-SVM and EEMD-ANN.
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Overall, the performance of the EEMD-ANFIS, EEMD-SVM and EEMD-ANN models was
superior to the other models. The results of the ANFIS+L, SVM+L and ANN+L model were better than
that of ANFIS, SVM and ANN in terms of R. It indicated that lake level fluctuations as an input variable
is important in the prediction of the groundwater level in the near-lake area. Comparing the results of
the EEMD-ANFIS, EEMD-ANN and EEMD-SVM models, the three models had their own advantages
and disadvantages. The selection of the prediction model should balance the effects and benefits of
the statistical parameters (e.g., R and RMSE) in both the training period and the validation period.
The prediction results of the EEMD-ANFIS were close to that of the EEMD-SVM and EEMD-ANN
models at site M1255; the prediction results of the EEMD-ANFIS were a bit more accurate than that of
the EEMD-SVM and EEMD-ANN models at site STL185. The results of the application suggested that
the EEMD-ANFIS, EEMD-SVM and EEMD-ANN models were feasible and effective. Also, EEMD can
be used to improve the accuracy of predicting nonlinear and nonstationary time series. The results in
this study are consistent with those acquired by [22,26,29].
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Figure 16. Model predictions versus observed data (a) M1255 and (b) STL185.
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Figure 17. Box plots of the prediction error at site M1255 (a) Tr—Training; (b) Va—Validation.
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Figure 18. Box plots of prediction error at site STL185 (a) Tr—Training; (b) Va—Validation.
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6. Conclusions

The reliable and accurate estimation of groundwater level fluctuation is essential in order to
manage water resources and improve water-use efficiency. In this study, the prediction capability of
the ANN, SVM and ANFIS models based on ensemble empirical mode decomposition (EEMD) were
investigated using monthly groundwater level data collected at the M1255 and STL185 observation
wells. The statistical parameters R, NMSE, RMSE, NS and AIC were used to assess the performance
of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models. The results from the EEMD-ANN,
EEMD-SVM and EEMD-ANFIS models were analyzed and compared with the results from the ANN,
SVM and ANFIS models. The values of the statistical parameters indicated that the EEMD-ANN,
EEMD-SVM, and EEMD-ANFIS models achieved better prediction results than the ANN, SVM and
ANFIS. The average R value of three hybrid models was higher than that of the ANN, SVM and ANFIS
models, and the average RMSE value of these hybrid models was less than that of the ANN, SVM and
ANFIS models.

The results in this study suggested that EEMD can effectively enhance predicting accuracy.
The proposed EEMD could significantly improve the performance of the ANN, SVM and ANFIS
date-driven models in groundwater level forecasting. The proposed three hybrid models based on
EEMD had several obvious advantages: (a) it was convenient and effective to combine the EEMD with
the ANN, SVM and ANFIS to forecast the nonstationary and nonlinear groundwater level fluctuations;
(b) time series data on the groundwater level was only required in the hybrid models and exogenous
factors affecting the groundwater level do not need to be considered in the research area; and (c) the
prediction results of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models were more accurate
when using the groundwater level time series decomposition. Therefore, this study supported the
validity and applicability of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models in the prediction
of groundwater levels. The results from this research would be beneficial for sustainable water
resource management.
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