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Abstract: The study aims to determine the adsorption mechanism of reactive brilliant red X-3B
(RBR) on a novel low-cost clay-biochar composite with different proportions of bagasse and natural
attapulgite (ATP). Pure bagasse, pure ATP, and two mixtures with weight ratios of 1:5 and 1:3 were
pyrolyzed at 700 °C for 4 h in a muffle furnace. Biochar samples were characterized with an element
analyzer and by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, X-ray
photoelectron spectroscopy, Brunauer-Emmett—Teller method, and zeta potential measurement.
Results of the batch and leaching experiments showed that the adsorption capacities followed the
order of 1:3 clay—biochar > 1:5 clay-biochar > bagasse biochar > pure ATP. Furthermore, ATP and
bagasse exerted a synergistic effect on the adsorption of RBR. The adsorption data showed good
correlation with the Langmuir isotherm, and the kinetic data were fitted to the pseudo-second-order
model. The adsorption of RBR on clay-biochar involved electrostatic interaction, hydrogen bond, m-m
interactions, and surface participation. The modification of biochar by ATP improved the adsorption
capacity by increasing functional groups and creating adsorption sites. Therefore, ATP-modified
clay-biochar composites could be effective adsorbents for the removal of RBR from wastewater.
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1. Introduction

Dyes are widely used in the textile, printing, leather, and gasoline industries. The wastewater from
these industries pollutes surface water [1], ground water [2], and even soils through irrigation [3,4].
Reactive brilliant red X-3B (RBR) is an azo dye that is considered stable. Every year, more than
80,000 tons of reactive dyes are consumed; during the synthesis and use of azo dyes, a large amount of
environmentally harmful wastewater is produced [5]. Therefore, azo dyes should be removed from
wastewater before it is discharged into water bodies.

Compared with other treatment methods, the adsorption method has inherent advantages
in dye removal, including low cost, low chemical reagent consumption, few secondary pollution
problems, and a high effectiveness level. This technology has also been widely used inorganic
and inorganic pollutants in aqueous solutions. The efficiency of dye removal by adsorption mainly
depends on the raw materials of the adsorbents used. Activated carbon [6-8], nanoparticles [9,10], plant
biomass [11-13], fly ash [14], and natural clay minerals [15,16] have been used to remove dyes. In recent
years, biochar has been adopted as an adsorbent for the removal of dyes from aqueous solutions.
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Under limited or no oxygen condition, biomass undergoes thermal decomposition to yield a
solid carbon-rich residue referred to as biochar [17-19]. Biochar is an environmentally friendly porous
material with a large specific surface area and rich mineral elements [20,21]. Biochar surfaces also
comprise oxygen-containing functional groups such as carbonyl group (-C=0), carboxylate (-COO™),
and hydroxyl (-OH) [22,23]; therefore, biochar can be used as a low-cost adsorbent for removing
organic pollutants and heavy metal cations from wastewater [24]. Several studies have examined
the use of biochar in the adsorptive removal of organic pollutants, such as pesticides, antibiotics,
and dyes, from aqueous solutions [25-27]. However, few studies have focused on the removal of
reactive dyes [28-30]. The adsorption mechanism of reactive dyes on biochar remains to be determined.

Attapulgite (ATP) is a naturally fibrillar hydrated magnesium aluminum silicate crystal with
moderate cationic exchange capacity, large specific surface area, and reactive hydroxyl groups on
the surface; these characteristics of ATP are beneficial to the adsorption of organic compounds from
aqueous solutions [31]. Owing to its unique structure, low cost, nontoxicity, and abundance in nature,
ATP has been widely regarded as a low-cost alternative adsorbent [32]. To reduce the cost of biochar
adsorbents and enhance their sorption capacity for contaminants, scholars have put forward many
modification methods to strengthen the adsorption capacity of biochar; these methods include the
acid-modified method [33], alkali-modified method [34], and other modification methods [22,35,36].
In two recent studies, minerals were mixed with biomass and then carbonized to adsorb organic
contaminants [31,37]. However, to date, no study has explored the use of natural ATP to modify
biochar derived from bagasse for enhancing RBR sorption capacity.

In the current work, clay-biochar composites with different ratios of clay and biochar were
derived from bagasse and natural ATP by oxygen-limited pyrolysis at 700 °C. The obtained adsorbents,
which were labeled as AB, 1-5-AB, 1-3-AB, and ATP, were evaluated for their ability to remove RBR
from aqueous solutions through batch experiments. The objectives of this study were to evaluate the
effect of the synergy between bagasse and ATP on the adsorption of RBR by pyrolysis in an argon
atmosphere, to explore the best ratio between biomass and ATP for adsorption, and to probe the
adsorption mechanism of RBR on clay-biochar.

2. Materials and Methods

2.1. Reagents

RBR (CI 18200) with a molecular weight of 615.33 g/mol was purchased from Shenshi Chemical
Company (Guangzhou, China). The maximum wavelength of the dye is 538 nm. The molecule is
negatively charged in water because of the ionization of Na*. Its chemical structure is shown in
Figure 1.
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Figure 1. Chemical structure of reactive brilliant red X-3B.

Bagasse was collected from a sugar refinery in Guangxi, China. It was washed thrice
and oven-dried overnight at 105 °C. Natural ATP was obtained from Xuyi (Jiangsu, China).
Both materials were crushed with a ball crusher and sieved through a 0.25 mm screen for use in
subsequent experiments.
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2.2. Preparation of Biochar

ATP and bagasse mixture with a ratio of 1:5 was prepared accordiong to the following process.
First, 4 g of ATP and 20 g of bagasse powder were poured into a beaker successively. Second, 50 mL of
deionized water was added into the mixture and stirred with a magnetic stirrer to form a paste. Finally,
the paste was oven-dried at 105 °C and milled to powder form. The same procedure was followed for
the preparation of the mixed powder with a ratio of 1:3.

Ceramic crucibles were filled up with either pure bagasse powder, ATP, and bagasse mixture with
a ratio of 1:5; ATP and bagasse mixture with a ratio of 1:3; or pure ATP powder. The crucibles each had
a fitting lid and were pyrolyzed in a muffle furnace in an argon atmosphere. The pyrolysis temperature
was raised to 700 °C at a rate of approximately 7 °C/min and held constant for 4 h. The crucibles were
then allowed to cool to room temperature. The resulting biochar products were washed with deionized
water and oven-dried overnight at 105 °C. Finally, the samples labeled as AB, 1-5-AB, 1-3-AB, and ATP
were stored in a closed container for further use in the adsorption experiments.

2.3. Physical and Chemical Properties of Biochar Samples

Scanning electron microscopy (SEM, QUANTA, FEI Company, Holland, The Netherlands) analysis
was performed on AB, 1-5-AB, and 1-3-AB to study their surface textures. X-ray diffraction (XRD)
was also used to characterize the surface structure. A CHNS/O analyzer (Vario EL cube, Elementar,
Langenselbold, Germany) was used to analyze the C, H, N, S, and O constituents in the samples.
The other element constituents were measured by Inductively Coupled Plasma Optical Emission
Spectrometry (ICP-OES, PerkinElmer, Waltham, MA, USA) (Prodigy 7). The Brunauer-Emmett-Teller
(BET) method (TriStar II 3020 3.02, Micromeritics Instrument Corp., Norcross, GA, USA) was used
to measure the specific surface area, total pore volume, and average pore width of the samples.
The surface chemical properties of the samples before and after the adsorption of RBR were analyzed
by Fourier transform infrared (FTIR) spectroscopy (Nexus, Thermo Nicolet, GMI, Ramsey, NJ, USA),
and X-ray photoelectron spectroscopy (XPS) (Thermo ESCALAB 250XI, AVBA Hi-Tech. Services Ltd.,
HaZafon, Israel).

For the determination of the zeta potential of the biochar samples, 0.005 g of each sample was
placed in a 100 mL centrifuge tube. Then, 20 mL of deionized water with or without 0.007 g RBR was
added to each tube. The suspension pH was adjusted with NaOH or HCI within the range of 3.0-9.0.
The suspensions were dispersed ultrasonically in a bath-type sonicator at 25 °C, 40 kHz, and 300 W for
1 h. After standing for 3 d, the zeta potential values were measured using Malvern Zetasizer Nano ZS
(Malvern Instruments Ltd., Malvern, UK). The suspension pH was determined and used to explore
the relationship between the zeta potential and pH.

2.4. Adsorption Experiments

The experiments of adsorption isotherms, adsorption kinetic, and the effect of pH were carried out
under the conditions in the Table 1.The concentration of RBR in the filtered suspension was obtained
with a UV-Vis spectrometer (UNICAM UV300, Thermo Spectronic, Waltham, MA, USA) at a maximum
adsorption wavelength of 538 nm. In the experiments of pH effect, the solution pH was adjusted
between 3.0 and 9.0 by adding NaOH (1 mol/L) or HCI (1 mol/L) solutions, and the pH was measured
with a pH meter. The adsorption capacity of biochar for RBR was calculated by

Q: = M 1)

m
in which Q; (mg/g) is the RBR adsorption capacity, Cy (mg/L) is the initial concentration of the RBR
solution (mg/L), C; (mg/L) is the RBR concentration at equilibrium, m (g) is the mass of the biochar
used, and V (L) is the volume of the RBR solution used.
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Table 1. The adsorption experimental runs and conditions.

Experimental Biochar RBR Solution Concentrations Temp. Vibration

Ttem Weight (g) (mg/L) Sampling Time (min) ©C)  Rate (rpm) SamplingMethod
Adsorption 40-200 Syringe
isotherms 0.1 (40,60,80,100,120,140,160,180,200) 1440 % 150 membrane
Adsorption 5-1440 Syringe
kinetics 0.1 100 (5,10,30,60,120,240,720,1440) % 150 membrane
Effects of pH 0.1 100 1440 25 150 Syringe
membrane

3. Results and Discussion

3.1. Biochar Properties

Table 2 presents the characterization of AB, 1-5-AB, and 1-3-AB. In this study, the BET surface area
decreased with increasing ATP content. This outcome is probably due to 1-5-AB and 1-3-AB containing
considerable proportions of mineral elements that feature smaller surface areas relative to pure biomass
biochar. However, the order of the adsorption capacity was disproportional to the order of the surface
area, suggesting that the adsorption for RBR by the as-prepared biochar could mainly depend on
chemical adsorption rather than surface participation. Nevertheless, the surface areas of all the samples
were still slightly large compared with most of the adsorbable biochar [38]; thus, surface physical
adsorption could have played a considerable role. The average pore width increased with increasing
ATP content. This outcome could be attributed to the large number of transitional pores (2-50 nm)
of the mineral elements in 1-5-AB and 1-3-AB [39], with 1-3-AB having more mineral elements than
1-5-AB. The order of total pore volume was 1-5-AB > AB > 1-3-AB. This order is probably due to the
added ATP that did not block the pore openings of the biochar sample when the ratio between ATP
and bagasse was 1:5. By contrast, the content of ATP was excessive when the ratio between ATP and
bagasse was 1:3, such that ATP partially blocked the pore openings of the biochar sample.

Table 2. Basic physical-chemical properties of AB, 1-5-AB, and 1-3-AB.

Sample AB 1-5-AB 1-3-AB
Pore characteristics

BET surface area (m?/g) 219.49 178.51 63.91
Total pore volume (m3/ g) 0.1270 0.1343 0.0644

Average pore width (nm) 2.31 3.01 4.03

Elemental analysis (%)

C 78.27 54.76 44.96

H 0.98 0.62 0.65

(@) 5.13 8.53 8.92

N 0.46 0.18 0.14

K 1.37 2.92 3.58

Na 3.25 5.58 6.57

Mg 0.71 1.80 2.69

Al 0.66 2.58 3.64

Fe 0.75 1.77 3.04

Ca 2.05 3.68 3.89

Si 6.28 16.31 20.86

The quantitative elemental compositions of AB, 1-5-AB, and 1-3-AB are listed in Table 1. ATP is a
hydrated magnesium aluminum silicate crystal that occurs in nature as a fibrillar mineral; its idealized
chemical composition is Mg5SigO20(OH),(H,0)4-4H,O. In fact, magnesium ions in crystal structure
are often replaced by aluminum ions, iron ions, and sodium ions, and it contains indefinite amounts of
Na*, Ca?*, Mg2+, AIP*, and Fe®* [32]. Therefore, the contents of Na, Ca, Mg, Al, Fe, and Si increased
with increasing ATP in the current work. The modification increased the O/C ratios in AB, 1-5-AB,
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and 1-3-AB to 0.0825, 0.1074, and 0.1488, respectively. Hence, the presence of oxygen-containing
functional groups on the clay-biochar surfaces increased with increasing ATP. The [(N + O)/C] ratios
in AB, 1-5-AB, and 1-3-AB were 0.0885, 0.1108, and 0.1523, respectively. The increase in polarity index
[(O + N)/C] indicated an increase in the polar functional groups on the surface. This condition likely
explains the increase in adsorption capacity.

The potential morphology changes caused by adding different quantities of ATP were explored
through the SEM images of the samples (Figure 2a—c). Samples 1-5-AB and 1-3-AB had rougher
surfaces than AB did. The SEM images clearly show that some fibrous particles adhered evenly onto
both clay-biochar samples, but the density of the fibrous particles was greater on 1-3-AB than on
1-5-AB. No obvious porous structure was observed, and ATP did not cover the pore openings of
1-5-AB. By contrast, some pore openings of 1-3-AB became covered as ATP. Consequently, the BET
specific surface area and total volume of the 1-3-AB were lower than those of 1-5-AB.
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Figure 2. SEM images of the three biochar samples: (a) AB, (b) 1-5-AB, and (c) 1-3-AB.

Figure 3a—c show the XRD spectra of AB, 1-5-AB, and 1-3-AB, respectively. No obvious peaks were
detected in the spectrum of AB. The main characteristic peaks of 1-5-AB at 26 values of 25.578 (0 1 2),
35.154 (1 04),37.779 (11 0), 52.556 (0 2 4), 57.507 (1 1 6), 66.524 (2 1 4), 68.214 (3 0 0), and 76.888 (1 0 10)
were extremely close to the JCPD standards of Al;O3 (PDF NO. 99-0036). The main characteristic peaks
of 1-5-AB at 20 values of 21.460 (11 1), 26.640 (0 1 1), 35.400 (2 2 0), and 43.722 (2 2 2) were ascribed to
SiO; (PDF NO. 99-0038). The main characteristic peaks of 1-3-AB at 26 values of 25.578 (0 1 2), 35.154
(104),37.779(110),43.357 (11 3), 52.556 (0 2 4), 57.507 (11 6), 66.524 (21 4), 68.214 (3 0 0), and 76.888
(1 0 10) were also close to the JCPD standards of Al,O3 (PDF NO. 99-0036). The main characteristic
peaks of 1-3-AB at 20 values of 21.460 (1 1 1) and 35.400 (2 2 0) were ascribed to SiO, (PDF NO. 99-0038).
The characteristic peaks of 1-3-AB at 26 values of 20.859 (1 0 0) and 26.640 (0 1 1) were ascribed to
SiO, (PDF NO. 99-0088). These results indicated that the surfaces of 1-5-AB and 1-3-AB were both
mainly covered by Al,O3 and SiO,. They also suggested that the ATP was successfully loaded onto
the surfaces of the biochar. The same results were obtained by SEM.

FTIR is an essential technique for determining the characteristic functional groups on adsorbents.
As shown in Figure 4, the peaks at 469 and 1560 cm~! in 1-5-AB, as well as the peaks at 469 and
1571 cm~! in 1-3-AB, did not exist in AB. The 469 cm~! peaks were ascribed to the bend vibration of
Si-O-5i [40]. The peaks at 1560 and 1571cm ™! in the spectra of 1-5-AB and 1-3-AB were ascribed to
the C=0 asymmetric vibration in carboxylate ions (<COO™) [40]. The above two peaks indicated the
production of Si-O-Si and -COO™ with the addition of ATP. The production of S5i-O-5i and -COO™ may
explain the improvement of the adsorption capacity of the biochar samples for RBR after ATP-induced
modification. The peaks at 1092, 1039, and 1039 cm ! in the spectra of AB, 1-5-AB, and 1-3-AB,
respectively, were ascribed to the aliphatic ether C-O and alcohol C-O stretching [41]. The peaks at
2919, 2897, and 2939 cm ™! in the spectra of AB, 1-5-AB, and 1-3-AB, respectively, were attributed to
the aliphatic C-H stretching [42]. The peaks at 3434, 3442, and 3437cm ™" in the spectra of AB, 1-5-AB,
and 1-3-AB, respectively, were ascribed to O-H stretching [42]. The FTIR spectra of the three biochar
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samples show that O-H, C-H, and C-O mainly existed on the surface of AB, whereas Si-O-5i, -COO,
C-0O, O-H, and C-H mainly existed on the surfaces of 1-5-AB and 1-3-AB. All of these functional

groups could have provided the adsorption sites for RBR.
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Figure 3. XRD spectra of the three biochar samples: (a) AB, (b) 1-5-AB, and (c) 1-3-AB.
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Figure 4. FTIR spectra of the three biochar samples before adsorption of RBR.

3.2.Effects of pH on Zeta Potential and the Adsorption of RBR by the Biochar Samples

Zeta potential describes the electro kinetic potential in colloidal dispersions, and its value is
related to the surface charge of such particles. The protonation and deprotonation of functional groups
can create a net charge on the surfaces of solid particles, and this surface charge can form an electrical
double layer in the solution phase near the surface [43]. In the current work the zeta potential values
were measured as a function of the solution pH for AB, 1-5-AB, and 1-3-AB (Figure 5b—d, respectively).
The three biochar samples carried positive charges in the initial stage; as the pH rose, the charges
on their surface became negative.The negative charge of the biochar samples originated from the
dissociation of the oxygen-containing groups. Moreover, the increased pH value was beneficial only to
the dissociation of the positive functional groups on the surface. Thus, the surface negative charge of
the biochar samples intensified.
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Figure 5. Effects of initial pH on the adsorption of RBR on the biochar samples: (a) effect of pH on the
adsorption capacity of the three biochar samples, (b) effect of pH on the zeta potential of AB, (c) effect
of pH on the zeta potential of 1-5-AB, and (d) effect of pH on the zeta potential of 1-3-AB.

The electrostatic adsorption of ions by solid charged surfaces does not affect the surface charge
and surface potential of colloidal particles, because the adsorbed ions exist in the diffuse layer of the
electrical double layers on the particles; however, the intermolecular interaction changes the surface
charge and surface potential of colloidal particles, because these ions enter the stern layer of the
electrical double layers and form chemical bonds with the surfaces of solid particles [44]. In this study,
the presence of RBR shifted the zeta potential-pH curves of the three samples to more negative values,
as shown in Figure 5b—d. The zeta potential of the biochar samples with RBR increased with increasing
suspension pH. These results indicated that the surface functional groups on the biochar samples
formed hydrogen bonds or 7i— interactions with RBR, and the contribution of this form of adsorption
increased with increasing suspension pH. After the adsorption of RBR by the three biochar samples,
RBR, which carried negative charge, became part of the biochar samples. This process probably made
the negative charge of the biochar samples particularly negative. This outcome provides evidence
for the intermolecular interaction between dyes and biochar. Although the shift in the zeta potential
cannot explain the existence of electrostatic adsorption, electrostatic adsorption is still one of the
adsorption mechanisms. When the pH value was 3.0, the surfaces of AB, 1-5-AB, and 1-3-AB each
carried a positive charge, and RBR, which carried a negative charge on its surface, was adsorbed
onto the surfaces of the three samples. Thus, the adsorption capacity was strongest at a pH value of
3.0 (Figure 5a). When the pH value increased, the surfaces of AB and 1-5-AB shifted to a negative
charge, and the electrostatic adsorption declined to zero and became electrostatic repulsion; however,
the repulsion between the biochar samples and RBR could promote the hydrogen bonding interaction
between them [43].

As shown in Figure 5a, the amounts of RBR sorption on the three biochar samples were
stable in the initial pH range of 3.0-9.0, and the variation in the absorption capacity was minimal.
Hence, the three biochar samples had a wide pH range of application and a high RBR removal
rate. The increased pH value was favorable for the chemical adsorption of RBR but unfavorable
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for the electrostatic attraction between the biochar samples and RBR. When the pH value was 3.0,
the three biochar samples had a strong adsorption capacity. The positively charged biochar samples
at this pH value could easily adsorb the negatively charged RBR by electrostatic attraction. AB,
1-5-AB, and 1-3-AB demonstrated a strong adsorption capacity again at pH values of 5.0, 7.0, and 9.0.
This resurgence in the adsorption capacity could be the result of the combined effects of chemical
adsorption and electrostatic interaction.

3.2. Adsorption Isotherms of RBR by the Biochar Samples

The biochar samples with different ATP contents demonstrated different adsorption capacities for
RBR. Figure 6a shows that 1-3-AB demonstrated the greatest adsorption capacity for RBR, followed
by 1-5-AB. AB had the lowest adsorption capacity. This order is generally consistent with the
order of the ATP contents of the biochar samples. However, pure ATP had the lowest adsorption
capacity, thereby suggesting that the increased adsorption capacity did not depend on the ATP content
alone. Bagasse and ATP exerted a synergistic effect on RBR by high temperature pyrolysis in a
limited-oxygen environment.
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Figure 6. Sorption isotherms of RBR on the biochar samples: (a) initial concentration vs. sorption
capacity of the three biochar samples for RBR, (b) Freundlich isotherm parameter, and (¢) Langmuir
isotherm parameter (dosage, 0.1 g; temperature, 25 °C; initial concentration, 40-200 mg/L; initial pH,
6.0-7.0).

After the adsorption experiments, the equilibrium solution pH values were measured.
The solutions were alkaline, and the equilibrium solution pH values for AB, 1-5-AB, and 1-3-AB
were in the ranges of 7.17-7.45, 8.36-9.02, and 8.79-9.19, respectively. Alkaline pH is favorable for
chemical attraction but unfavorable for electrostatic attraction. The negative charge of the biochar
samples originated from the dissociation of their oxygen-containing groups. Thus, the negative charge
intensified with increased pH. As a result, the chemical attraction improved, whereas the electrostatic
attraction weakened.

Two common isotherm equations were used to describe the process of the experimental isotherms.
The Langmuir model describes the monolayer sorption of a target compound on a homogenous surface,
whereas the Freundlich model explains a multilayer adsorption process [45].

Langmuir isotherm:

1 1 1
o, - Ka.c o, @)

Freundlich isotherm:
Q, = KrC} 3)

in which Qy, denotes the Langmuir maximum capacity, C, is the equilibrium concentration of RBR in
the solution, Q, is the amount of dye adsorbed at equilibrium, K}, represents the Langmuir bonding



Water 2018, 10, 703 9of 16

term related to the interaction energies, Kr represents the Freundlich affinity coefficient, and 7 is the
Freundlich linearity constant.

Figure 6b,c shows that the simulation of the Langmuir model fitted the isotherms effectively,
as confirmed in the results presented in Table 3. The Langmuir isotherm indicated that the adsorption
process was attributable to the surface coverage and the formation of a monolayer when the surface of
the adsorbent reached saturation [33]. The results showed that the monolayer adsorption capacities of
AB, 1-5-AB, and 1-3-AB were dominant. The maximum sorption capacity from the Langmuir equation
may be useful for comparing the RBR sorption capacities of the three biochar samples. The maximum
adsorption capacities of AB, 1-5-AB, 1-3-AB, and ATP were 40.50, 65.15, 72.20, and 42.59 mg/g,
respectively. Apparently, these results confirmed that the modification by ATP enhanced the sorption
capacity of the biochar samples for RBR in an aqueous solution. Notably, the K} values of 1-5-AB and
1-3-AB were higher than those of AB, thereby indicating the formation of new functional groups on
the surfaces of 1-5-AB and 1-3-AB as a result of the high adsorption energy. K;, of 1-3-AB was higher
than that of 1-5-AB, suggesting that K; was related to the content of ATP.

Table 3. Isotherm parameters for the adsorption of RBR.

Biochar Langmuir Freundlich
Samples Q. (mg/g) K (L/mg) R2 Kr (mg/g(mg/L)V/") n R2
AB 40.50 0.039 0.995 1.512 0.413 0.986
1-5-AB 65.15 0.401 0.993 1.218 0.197 0.988
1-3-AB 72.20 0.581 0.992 1.182 0.167 0.988
ATP 42.59 0.022 0.991 1.629 0.488 0.981

Table 4 compares the maximum adsorption capacities of AB, 1-5-AB, and 1-3-AB with different
types of adsorbents previously reported [46-52] for the removal of RBR. The experimental maximum
adsorption capacity (Qm,exp) of RBR on 1-3-AB was moderate compared with previously reported
adsorbents. Nevertheless, it is low-cost and environmentally friendly. Thus, 1-3-AB is an efficient
adsorbent material for the removal of RBR from aqueous solutions.

Table 4. Comparison of the maximum adsorption capacities (Qy;) of RBR on different absorbents.

Adsorbent Qm (mg/g) Ref.
AB 40.5 This study
1-5-AB 65.1 This study
1-3-AB 722 This study
CB[6] 158.5 [45]
Py-MS 891.1 [46]
MFe304/CsNPS 476.8 [47]
NiO nanosheets 304 [48]
MgO nanoplates 303.0 [49]
Organic aerogels 90.0 [50]
Carbon aerogels 450.0 [50]
Ni/Al-LDH 4.9 [51]
Mg/Al-LDH 3.8 [51]
Co/Al-LDH 2.3 [51]

3.3. Adsorption Kinetics

The RBR adsorption capacities of AB, 1-5-AB, and 1-3-AB at different times are shown in Figure 7a.
The RBR adsorption capacity increased rapidly within the first 240-300 min, then slowly stabilized
until the adsorption equilibrium was reached after 24 h.
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For the determination of the controlling mechanism of the RBR adsorption process of the three
biochar samples, the pseudo-first-order kinetic model and pseudo-second-order kinetic model were

applied to simulate the dynamic experimental data.
Pseudo-first-order kinetic model:

In(ge — q¢) = Inge — kyt

Pseudo-second-order kinetic model:

1

=
q kog?

t

7

(4)

©)

in which g, and g; (mg/g) are the amounts of RBR absorbed onto the solid phase at equilibrium and at
time ¢, respectively; k; (min~!) is the rate constant of the pseudo-first-order adsorption model; and k,
[g/(mg min)] is the rate constant of the pseudo-second-order adsorption model.
The values of calculated ge (g car), k1, ko, correlation coefficient (r?), and experimental ge (e exp)
are listed in Table 5, which shows that the pseudo-second-order model fitted the adsorption process
effectively. The plots of the pseudo-first-order model and pseudo-second-order model for RBR
adsorption on AB, 1-5-AB, and 1-3-AB are shown in Figure 7b,c.

Table 5. Pseudo-first-order and pseudo-second-order constants and correlation coefficients for the

adsorption of RBR on the biochar samples.

Kinetic

Models AB 1-5-AB 1-3-AB ATP

Ge,exp (M8/) 25.619 47911 49.195 22.876
Pseudo-first-order

Ge ca (Mg/g) 2222 9.956 10.916 2.207
k1 ( min’l) 0.001 0.002 0.004 0.001

r2 0.858 0.895 0.931 0.792
Pseudo-second-order

Ge car (Mg/ Q) 25.63 47.94 4933 22.74
k2 (8/mg 0.04 0.002 0.002 0.002
min)

r2 0.999 0.999 0.999 0.996
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The pseudo-second-order model fitted the sorption data on AB, 1-5-AB, and 1-3-AB satisfactorily
with high correlation coefficients (r? > 0.996). The calculated data are in good agreement with the
experimental data, as shown in Table 4. The pseudo-second-order model posits that the mechanism
of the adsorption of adsorbates on an adsorbent is the rate-limiting step [53]. The rate-limiting step
may be a chemical reaction or chemisorption process, which involves valence forces by sharing or
exchanging electrons between biochar and RBR [54]. Therefore, RBR could have been adsorbed onto
the surfaces of AB, 1-5-AB, and 1-3-AB by chemical interaction, and this process required a relatively
long period to reach equilibrium.

3.4. Regeneration of Adsorbents

The consecutive adsorption processes were performed five times to evaluate the reuse value of
the samples. A methanol solution was used as the washing agent. RBR adsorbed onto the adsorbent
was extracted by a three-stage washing procedure in which 10 mL of methanol was used [45]. Figure 8
shows the relationship between the number of treatment repetitions and the RBR adsorption capacity
of AB, 1-5-AB, and 1-3-AB. The adsorption capacity of AB decreased along with the increase in the
correct term. However, the adsorption capacities of 1-5-AB and 1-3-AB were stable. In addition,
the RBR removal percentages of 1-5-AB were 83.6%, 86.5%, 84.7%, 85.2%, and 83.7% for the first to fifth
regeneration. The RBR removal percentages of 1-3-AB were 86.7%, 85.3%, 87.4%, 85.2%, and 86.1%
for the first to fifth regeneration. These results show that 1-5-AB and 1-3-AB could be successfully
regenerated and reused.

801
0] =158
60
50
40
30
20

Q(mg/g)

Time

Figure 8. Regeneration cycle performance of AB, 1-5-AB, and 1-3-AB.

3.5. Adsorption Mechanisms

The difference between the FTIR spectra before and after the adsorption of RBR was obtained
to monitor the variations in the vibrations of the surface functional groups. Figure 9 shows that
the stretching vibration of C-O (1099, 1039, and 1039 cm 1) in the three biochar samples, the C=0O
asymmetric vibration in carboxylate ions (<COO™) in the spectra of 1-5-AB and 1-3-AB (1560 and
1572 cm™1), the aliphatic C-H stretching (2919, 2897, and 2939 cm ™) in the spectra of the three biochar
samples, and the O-H stretching (3434, 3442, and 3437 cm ™~ !) in the spectra of the three biochar samples
all changed, with the absorption peak positions of O-H in 1-5-AB and 1-3-AB demonstrating the most
remarkable change. The changes in these peak positions corresponded to the bond energy change,
revealing the important role of m—m interactions and hydrogen bonding formation between RBR and
biochar in the adsorption process.
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Figure 9. FTIR spectra of the biochar samples before and after the adsorption of RBR: (a) AB before and
after the adsorption of RBR, (b) 1-5-AB before and after the adsorption of RBR, and (c) 1-3-AB before
and after the adsorption of RBR.

Because the adsorption mechanism of the three biochar samples were nearly the same according
to the infrared analysis, the XPS spectra of 1-5-AB before and after adsorption of RBR were detected
as a typical sample. The spectra present two distinct peaks, due to carbon (C 1s) and oxygen (O 1s).
As shown in Figure 10a, the peak around 284.6 eV is attributed to C 1s, and the spectra have been
resolved into three individual component peaks, namely, the following: (1) graphitic, aromatic (C-C);
(2) C in hydroxyl, ethers (C-OH, C-O-C); (3) C in carbonyl (C=0). On the other hand, the peak around
531.8 eV is attributed to O 1s, as illustrated in Figure 10b; the high-resolution O 1s spectra showed the
presence of 2 peaks: (1) oxygen atoms in hydroxyl or ethers (C-OH, C-O-C); (2) oxygen in anhydride,
lactone, or carboxylic acids (COO™) [55]. The content of C and O in every chemical valence state
changed after adsorption of RBR by calculating the peak areas. Additionally, the peak positions shifted
after adsorption, illustrating C-C, C-OH,C-O-C, C=0, and COO~ interacted with functional group in
the RBR by hydrogen bonding or 7—m interactions, which confirms the results of the infrared analysis
once again.

The effect of pH (Figure 5a) indicated that electrostatic attraction also played an important role
in the adsorption of RBR on biochar in a highly acidic environment, whereas electrostatic repulsion,
which promoted the hydrogen bond between dye and biochar, was dominant in a low acidic and
alkaline environment. As shown in Table 1, the three biochar samples were porous materials with
large surface areas. Thus, the molecules of the dye could have participated in the physical adsorption
on the biochar samples.

As a result, the mechanisms of adsorption for RBR on the adsorbents may be attributed
to the electrostatic attraction/repulsion between RBR and biochar, hydrogen bonding formation,
hydrophobic interaction, 77 electron—donor—acceptor, and surface participation [38]. Previous studies
revealed that the enhancement of organic pollutant adsorption by biochar is mainly attributed to the
oxygen-containing functional groups that interact with organic pollutants via hydrogen binding and
complexation [42,56]. After a series of characterization analyses, namely, SEM, FTIR, zeta potential,
and XRD, the results showed that the ATP-modified clay-biochar composites contained more Al,O3
and SiO, particles, as well as oxygen-containing functional groups on the surface, compared with pure
bagasse biochar. Furthermore, RBR molecules may form a hydrogen bond with the functional groups
as acceptors or donors. The Al,O3 and SiO; particles could serve as the adsorption sites for RBR in
aqueous solutions. As a result, the ATP modification greatly enhanced the sorption capacity of bagasse
biochar for RBR.
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Figure 10. XPS spectra of C 1s (a) and O 1s (b) of 1-5-AB before and after adsorption of RBR.

4. Conclusions

The adsorption of RBR on ATP-modified biochar was investigated. The modified bagasse biochar
exhibited better hydrophobicity and affinity for RBR than the pure bagasse biochar. When the content of
ATP was within the range of 1/3-1, the modified biochar presented a relatively high adsorption capacity.
Moreover, a highly acidic environment was found to be beneficial to adsorption. The pretreatment with
ATP not only introduced Al,O3 and SiO; particles on the carbon surface within the bagasse biochar
matrix but also increased certain oxygen-containing functional groups on the surface. These functional
groups served as adsorption sites for RBR in aqueous solutions and greatly improved the RBR removal
capability of bagasse biochar. The maximum adsorption capacity of RBR on ATP-modified biochar
was not very competitive compared with previously reported adsorbents. Nevertheless, it is low-cost
and has high availability and high regeneration ability. Thus, ATP-modified is an efficient adsorbent
material for the removal of RBR from aqueous solutions.
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