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Abstract: Evaporation and precipitation are often considered the most important processes in the
water cycle. Recent studies have turned to chaotic analysis and short-term prediction for analyzing
and forecasting the time series of such phenomena. However, even with chaos theory, the accurate
forecasting of pan evaporation is not a straightforward business, as it involves a number of variables
whose changes directly and/or indirectly affect the scale and amount of pan evaporation. In this
study, the use of the false nearest neighbour method for the chaotic analysis of pan evaporation and
related metrological parameters is discussed. A literature review is presented on chaos theory and its
applications in modelling physical systems. Also, a review of the literature on multivariate analysis
and the presence of chaos in meteorology are presented. A detailed procedure for finding the presence
of chaos in a time series using false nearest neighbour (FNN) is discussed. The possible lag time to be
considered in the FNN analysis is estimated using the autocorrelation function (ACF) and average
mutual information (AMI) apart from the time-step of the measurement. Thus, FNN is studied with
three different lag times of the time series. Six meteorological parameters: average temperature,
relative humidity, wind speed, sunshine hours, dew point temperature, and pan evaporation are
measured at the observation station Kosice in Slovakia for a period of 20 years. Thus, the available
time series are analysed using ACF, AMI, and FNN methods, and the results obtained are analysed
in the study. Nonlinear behaviour is seen in all of the observed parameters. Pan evaporation, average
temperature, and dew point temperature are found to exhibit clear chaotic behaviour, while relative
humidity, sunshine hours, and wind speed show stochastic behaviour.

Keywords: meteorological parameters; false nearest neighbour; autocorrelation function; average
mutual information

1. Introduction

Common meteorological parameters measured at most weather stations include maximum,
minimum, and average temperature, maximum relative humidity, wind speed, total sunshine hours,
dew point temperature, and pan evaporation. Each of the parameters depends upon the remaining
parameters, and the underlying relationships are highly complex, nonlinear, and have spatial and
temporal variations, even though each parameter follows a cyclic pattern, often with a trend. Most of
these parameters are often influencing variables in most of the models that are used for the prediction
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of evaporation at any given location. Hence, a complete understanding of the dynamics of evaporation
can be achieved only with a complete understanding of these sensitive parameters.

Time series are a set of observations that are arranged chronologically at equally spaced time
intervals [1]. A time-series analysis is carried out to understand the underlying structure of the
observed data. The process of predicting the future values based on the previous observations using a
specially developed model is called time series forecasting.

Time series analysis is being widely applied to various fields of research such as climatology,
hydrology, surface water studies, oceanography, etc. The method of forecasting to be employed
for all of the fields will not be the same due to the high variability in the nature of the time series
encountered. Analysis methods are based primarily on the kind of behavioural pattern exhibited
by the time series under consideration. One of the most challenging problems is the availability of
verifiable data. In order to predict the nature of a system, sometimes data spanning for decades may
be necessary. In climate models such as the general circulation model (GCM), the run is done by taking
data spanning centuries. Such types of data are not available in all kinds of situations, and we may
have to make do with whatever we could get our hands on. Time series behaviour is conventionally
classified into two types: deterministic and stochastic. Hence, the developed models could track only
these two, and for the same reason were too limited in their applicability. The nonlinear behaviour
that could be inherent in many of the time series is not considered here. A new behaviour that bridges
the two was proposed, called chaotic behaviour, which states that random input is not the only source
of irregularity, but a nonlinear chaotic system can also produce very irregular data [2]. Such a process,
which is a realization of a stochastic phenomenon in nature, is called a stochastic (or probabilistic)
process, and the corresponding time series is called a stochastic time series. The process with a given
initial condition can proceed in more than one way. The analysis of a stationary random process is
done using autoregressive or differencing models such as autoregressive moving average models
(ARIMA). Many nonlinear methods are also available for prediction.

Nonlinear analysis methods have started to be explored, which lead the way to the introduction
and development of the concept called deterministic dynamics and chaos. Nonlinear dynamic systems
associated with strange attractors for the description of deterministic ‘chaos’ has been a growing
branch over the past few decades [3]. Presently, the chaos theory is the most complexly studied
in Sivakumar [4]. A time series of hazard-looking data that follows some special mathematical
rule, and leads to the occurrence of a deterministic nonlinear system, is called a chaotic time series.
The system may look unpredictable at first glance, but some kind of definite pattern will evolve as
the series progresses that makes prediction possible. Chaos theory can offer a coupled deterministic
stochastic approach, since its underlying concepts of nonlinear interdependence, hidden determinism
and order, sensitivity to initial conditions are highly relevant [5,6].

Chaos has been considered an inherent behaviour in climatic parameters, with weather
being defined as a set of atmospheric states for a dynamic, chaotic system showing deterministic
variability [7]. The study of chaos can yield information regarding the number of necessary variables
for the modelling of system dynamics, and the possibility of future prediction at a certain level of
reliability. Many methods are available for identifying the presence of chaos in a time series. Some of
these are the correlation dimension method (CDM), Lyapunov’s integral method, Kolmogorov entropy
method, the false nearest number (FNN) method, etc. For the systems that have deterministic chaos,
short-term predictions are possible.

Buizza [8] treated weather as a chaotic system and demonstrated that the application of linear
algebra to meteorology can help design new ways of numerical weather prediction, and observed
that the same technique is applicable to any dynamical system, however complex, with a large
dimension. The basic idea proposed was that there are only a few important directions in the phase
space for any system, along which the most important processes occur. If a successful prediction of the
system time evolution is obtained, it should sample these directions, describing the system evolution
along them. Das [9] analyzed average daily air temperature records for 12 years for some cities by
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removing seasonality. Nonlinear analysis was carried out to find the chaotic nature of the daily average
temperature of original data, as well as the data after removal of seasonality through calculation of
Lyapunov exponent. He concluded that temperature was chaotic and deeply influenced by seasonality.
Millan et al. [10] performed a nonlinear time series analyses on a time series of mean daily temperature
and dew point temperature at Babolsar, Iran. They observed positive Lyapunov exponents for both
series, thereby providing evidence of the chaotic nature of both series. Farzin et al. [11] studied the
monthly evaporation from Urmia Lake for 40 years from 1967 to 2007 to investigate the presence of
chaos. Embedding dimension was calculated using the false nearest neighbour algorithm (FNN) and
delay time using the average mutual information method (AMI). The evaporation for a further 10 years
from 2007 to 2017 was made. Guo et al. [12] used a chaotic forecasting model for four meteorological
stations located around the Hexi Corridor area, China and found that the chaotic forecasting model
(using a weighted local region method) efficiently improves the accuracy of the wind speed forecasting.

Univariate analysis often fails to completely capture the behaviour and dynamics of the system,
particularly when the process involved is of a complex nature. Synder [13] gave the advantages of
using multivariate analysis in certain hydrological systems. He observed that some of the statistical
techniques of multivariate analysis will prove useful in fitting prediction equations for the observational
data. Schiff et al. [14] and Quyen et al. [15] had independently tried to establish relations between
two chaotic time series based on state spaces by utilising the method of cross-prediction, where the
prediction of one variable depended on the dynamics of the other variable in the embedded state space.
Cao et al. [16] had shown that predictions using multivariate time series can be significantly better than
those using a univariate time series. They gave a simple but effective method that can determine the
embedding dimensions from a multivariate time series. They also proved that synchronization can be
brought about between the reconstructed systems and original systems. Further studies by Sfetsos and
Coonick [17] on multivariate prediction also showed multivariate prediction to have more accuracy
than univariate prediction. However, the time series that are used in the multivariate prediction must
have some relations. Porporato and Ridolfi [18] extended the nonlinear prediction of a river flow time
series to a multivariate form so as to include information from multiple time series, rather than that
of discharge alone. They explained both the conceptual basis of the multivariate approach and its
application to the forecasting of river flow. Jin et al. [19] used ideas from dynamical systems theory to
investigate the joint phase space characteristics of several climatic variables. Han and Wang [20]
proposed a method to detect the direct and/or indirect relations existing among different state
spaces before prediction. They implemented a method of expanding multivariate prediction with the
combination of neural network theory and the principle component analysis (PCA) method to model
and predict the multivariate time series. Dhanya and Kumar [21] assumed that the predictability in the
chaotic system is limited mainly due to its sensitivity to initial conditions, and that the ineffectiveness
of the proposed model revealed the system’s underlying dynamics. They made an attempt to improve
the predictability by quantifying the uncertainties involved by adopting a multivariate nonlinear
ensemble prediction method.

Most of the hydrological and meteorological time series such as rainfall, evaporation, temperature,
sunshine hours, wind speed, etc. don’t follow a smooth curve and have an erratic appearance [22].
Evaporation, as a naturally occurring phenomenon, has a high probability of having a chaotic nature.
Also, the parameters on which evaporation depends are also probable candidates to exhibit chaotic
patters. A chaotic analysis of evaporation, along with the related meteorological parameters, is a
so-far unexplored field that can possibly lead to new understanding and better forecasting of the
evaporation process. Although these patterns look complex, according to chaos theory they could have
a deterministic nature and a simple cause for their erratic appearance. The chaotic analysis of these
time series can help in understanding these processes and can ultimately provide better information
that can be useful in arriving at improved short-term predictions for each parameter. The influence of
various parameters on evaporation may be of varying degrees. The dominant number of variables that
governs the meteorological process satisfactorily may be arrived at by checking the chaotic nature of
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each of the individual processes and comparing them for similarities and apparent influences in the
variations of the output process. Such an analysis has not been done for Slovakia yet.

2. Materials and Methods

2.1. Study Area and Data

In terms of global climate classification, the territory of Slovakia lies in the northern temperate
climatic zone with the regular alternation of four seasons and variable weather, with a relatively
even distribution of rainfall throughout the year [23]. According to the Slovak Hydrometeorological
Institute (SHMI), average annual rainfalls of less than 600 mm may occur in Slovakia. In general,
the rainfall increases with altitude. The rainiest month is usually June or July, and the least rainfall
occurs from January to March [24,25]. The highest daily rainfall was 231.9 mm, which was measured
in 1957. In summer, very rainy storms occur relatively frequently over the whole country: almost every
year, somewhere in Slovakia, the daily rainfall exceeds 100 mm. In winter, much of the rain falls in the
form of snow, particularly in the middle and the high mountain ranges. The average duration of snow
cover is less than 40 days in southern Slovakia, and in the mountains, the average duration of snow
cover is 80 to 120 days.

The Slovak Hydrometeorological Institute provided 64-year data of daily meteorological readings
from 1 January 1951 to 31 October 2014 from an observation station at Kosice, Slovakia. Global
coordinates at the collection area are of longitude 48◦40′20′′ N and latitude 21◦13′21′′ E. The location of
the station on the map of Slovakia is shown in Figure 1. The area has a mild climate, with temperature
going under 0 ◦C in winter, above 30 ◦C in summer, and relative humidity coming to 100%. This sample
can provide a more extensive understanding of the evaporation process under extreme conditions.
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Even though the length of data is said to be 64 years, evaporation measurement commenced only
in May 1994. Even then, there are long gap periods in the time series. An acceptably long interval,
wherein all of the parameters are continuously measured, was not available due to these gaps in data.
However, from temperature distribution, it could be seen that almost all of the cases of missing data in
evaporation and sunshine hours were on days where the temperature was very low. The daily data of
selected parameters (including the filled-up data) from the above-specified station was selected for a
period of over 20 years, from 1 May 1994 to 31 April 2014. The meteorological parameters measured at
the station include the following: average temperature, relative humidity, wind speed, sunshine hours,
dew point temperature, and pan evaporation. The FNN method is applied to these meteorological
parameters to study their behaviour.
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2.2. Decriptive and Chaotic Analysis

In normal cases, the term chaos refers to disorder or confusion. However, in a scientific sense,
the term chaos in the chaotic systems is used to denote the irregular behaviour of dynamical systems
arising from a strictly deterministic time evolution without any source of noise or external stochasticity,
but with sensitivity to initial conditions [26]. It basically talks about how things change over time.
The theory of nonlinear dynamic systems associated with the concept of strange attractors for the
determination of deterministic chaos has drawn the attention of a number of researchers over the
recent decades. This concept also provides a new technique for time series analysis, because in many
instances, the time series can be viewed as a dynamic system with a low-dimensional attractor, which
can be reconstructed using the time delay embedding method [27].

The time series of the selected data are analysed in detail to get their basic governing dynamics.
The false nearest neighbours (FNN) algorithm is used as a method to determine the optimal embedding
dimension required for recreating or unfolding nonlinear system dynamics. The algorithm is
considering the geometry of the reconstructed phase space. If the embedding dimension chosen
is not high enough, then some points that appear to have their trajectories close to each other in
phase space may end up having vastly different outputs; such neighbours are termed false neighbors.
They appear to be close only because they are represented in a dimension that is less than sufficient
to completely capture their behaviour. Furthermore, to consider the linear and nonlinear behaviours
while doing chaotic analysis, the lag of the lagged series is varied accordingly. The methods of analysis
that are employed to use the delay time in FNN analysis are the autocorrelation function (ACF) and
the average mutual information (AMI) method.

The neighbours are classified as true or false based on a ratio test conducted that determines the
magnitude of distance to the points in the higher dimension with respect to the distance in the current
dimension. Let each point in the considered phase space be Yi. The m dimensional phase space is
searched for its nearest neighbours (Yj). The Euclidean distance is calculated between each Ym(i) and
Ym(j). Then, the same is calculated in the (m + 1)th dimension. The ratio of both distances is taken
as Ri, which is given in Equation (1). The value will be more than one as the distance in the higher
dimension cannot be less than that in the lower dimension. Therefore, in order to distinguish between
true and false neighbours, a threshold value is fixed for the ratio (Rt) in a way that the Euclidean
distance measured between the neighbours in the (m + 1)th dimension should be comparable to that in
mth dimension. From the literature, it is found that the threshold can be fixed around 10 [28].

Rmi =
||Ym(i + 1)−Ym(j + 1)||
||Ym(i)−Ym(j)|| (1)

If the ratio between these two distances is greater than a threshold value (Rt), then the neighbours
are considered to be false, or vice versa [29].

The value of the ACF ranges from +1 to −1, with +1 indicating complete correlation, and −1
indicating a completely inversed or negative correlation. The function can be used as a means to
compare the linear nature of the different time series. ACF curves are plots of autocorrelation versus
lag. The point where the curve first crosses zero can be taken as a standard upon which different time
series can be compared. The autocorrelation value is found by the expression (1):

autocorrelation =
∑N−m

t=1 (xt − x)(xt+m − x)

∑N
t=1(xt − x)2 (2)

where N is the number of points; m is the number of Lags; xt is the value of variable x at any time t;
and x is the mean of all of the values of x.

The two series may be an independent series or an original series along with its lagged series.
The output is the number of bits of information that is mutually available. AMI curves are plots of
average mutual information versus lag. The point where the first minima appears indicates the least
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interrelated series in nonlinear considerations. The subsequent minima are discarded. The higher the
value of the AMI, the more complex the nonlinear relation to model the time series. Similarly high
AMI values between two physical processes may mean that there is some nonlinear similarity between
the systems in question.

3. Results

3.1. Statistical Analysis

A univariate analysis of each parameter needs to be carried out in order to ascertain the variation
over time. Daily data provided by SHMI during the 64 years were analysed. The average annual
temperatures that were measured ranged between 29.75 to −14.5 degrees at Kosice. The value of
relative humidity shows a high variation, with the maximum and minimum RHmax values at the
station at 100% and 27.3%, respectively. The value of wind speed shows high variation, with the
maximum and minimum values at Kosice being 54 and 0 kmph, respectively. The value of sunshine
hours shows high variation, with the maximum and minimum values at Kosice being 15.2 h and 0.1 h,
respectively. The maximum value for the dew point temperature at Kosice is 29.1 degrees. Evaporation
values show high variation due to climatic conditions. The maximum value of evaporation measured
at Kosice is 12.1 mm/day.

To further study the data, various statistical indices of individual parameters were calculated.
The results of the statistical analysis are shown in Table 1.

Table 1. Statistical analysis of meteorological parameters at Kosice.

Statistics
Average

Temperature
(◦C)

Relative
Humidity

(%)

Wind Speed
(kmph)

Sunshine
Hours

(h/Day)

Dew Point
Temperature

(◦C)

Pan
Evaporation
(mm/Day)

Mean 9.92 73.47 3.00 6.12 14.60 2.31
Stand

Deviation 8.93 13.95 1.94 4.09 5.61 1.44

Skewness −0.19 −0.19 1.55 0.276 0.30 0.93
Kurtosis −0.96 −0.64 3.24 −1.037 −0.96 1.08

Maximum 29.75 100 15.66 15.20 29.10 12.10
Minimum −14.50 27.33 0 0.10 2.50 0

Temperature and average wind velocity are on the lower side. This could indicate that evaporation
may not be a prominent process at this location. It is backed by a low rate of average evaporation.
The deviation from the mean also suggests that evaporation may be more correlated to temperature
and wind speed than any other factor. It may be advisable not to derive any particular relations
between evaporation and other parameters from this skewness and kurtosis value, as the particular
values for evaporation could be influenced by the interpolated data points. Skewness and kurtosis
values do not show any apparent pattern or suggest that the distribution pattern of evaporation is
more similar to average temperature and dew point temperature. The unique positive values obtained
in wind speed for the two indices indicate that that particular parameter may have different inherent
dynamics than the rest of the parameters. High value of kurtosis for evaporation may be explained by
long periods of low temperature, followed by short periods of comparatively high temperature. This
variation could produce peaks in the distribution.

3.2. Trend Analysis

The different trends exhibited by each data set are explored to find possible common trends and
anomalies for the selected meteorological parameters at Kosice station. The results of the trend analysis
test conducted for Kosice are given in Table 2.
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Table 2. Results of trend analysis for Kosice station.

Statistics
Average

Temperature
(◦C)

Relative
Humidity

(%)

Wind Speed
(kmph)

Sunshine
Hours

(h/Day)

Dew Point
Temperature

(◦C)

Pan
Evaporation
(mm/Day)

tau 0.034 −0.017 −0.024 0.006 0.033 0.024
P <0.0001 0.032 0.002 0.474 <0.0001 0.004
Z 4.369 −2.153 −3.166 0.729 4.267 3.074

Trend P N N No trend P P

P in the trend row indicates a positive trend, and N indicates a negative trend. Where there is
no trend at all, it has been so noted. The trend analysis shows that there is no fixed trend among the
meteorological parameters measured at Kosice. Average temperature shows that the temperature of
the area is on the rise. Negative trends in relative humidity with a positive trend for temperature can
result in a hot humid climate in the distant future. The positive trend in evaporation is the result of an
increasing trend in temperature and a falling trend in relative humidity.

3.3. Nonlinear Dynamic Analysis of Meteorological Parameters

A more detailed analysis of the parameters is done one at a time by carrying out some descriptive
analysis methods. The false nearest neighbour method used the delay time values picked up from
autocorrelation analysis and the average mutual information test. The tests are so selected that each
analyses various behaviours of the individual time series. The univariate analysis thus conducted can
give the nature of the time series of various parameters. The main aim in this study is to find the chaotic
nature of the parameters. This along with the descriptive analysis can give a comparative evaluation of
advantage of using chaotic analysis over the traditional methods for modelling meteorological systems.

All of the results from the ACF and AMI analyses of the parameters considered at Kosice station
are given in Table 3. The lag at which the ACF value crosses zero is taken as a lag of ACF. The lag
at which the AMI is minimum is taken as the lag of the AMI. These lag values are used as the
delay time in the FNN analysis. There are some salient points and values obtained from the two
aforementioned analyses. Most of the features to be noted were described along with the analysis
results of individual parameters. Given here are the trends and patterns seen in the results, which
were not outlined previously.

Table 3. Autocorrelation function (ACF) and average mutual information (AMI) values for all of the
parameters at Kosice station.

Parameters ACF AMI

Average temperature 91 16
Relative humidity 80 10

Wind speed 72 3
Sunshine hours 92 12

Dew point temperature 88 12
Pan evaporation 126 12

Linear modelling will be difficult to carry out for all of the parameters, as the ACF values are
invariably high. Nonlinear behaviour is exhibited by all of the time series, and needs to be considered
during further analyses.

The chaotic nature of the parameters is checked taking one-time series at a time, and finding the
false nearest neighbour value. The plot is between the number of embedding dimensions on the x axis
and the percentage of false neighbours on the Y axis. The shape of the plot and the FNN number are
both equally important. The study is done in three parts: the FNN method with (delay time as) lag
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= 1; the FNN method with (delay time) lag = ACF value; the FNN method with (delay time) lag =
AMI value.

The optimum embedding dimension selected from FNN analysis with these delay times is shown
in Table 4.

Table 4. Results from the false nearest neighbour analyses.

False Nearest
Neighbour
Analyses

Average
Temperature

Relative
Humidity Wind Speed Sunshine

Hours
Dew Point

Temperature
Pan

Evaporation

FNN 6 5 6 6 5 5
FNN (ACF) 6 6 5 6 13 10
FNN (AMI) 6 5 7 6 6 4

The optimal embedding dimension can be selected based on a delay time lag = 1 or using AMI
rather than the ACF, since the ACF can represent a linear nature well. Thus, the study shows that the
dominant dimension of meteorological variables at Kosice varies between four and seven. It can be an
average of six dimensions. From the analysis conducted, it is found that pan evaporation is indeed a
chaotic process. Out of the six other meteorological parameters considered, maximum temperature,
minimum temperature, average temperature, and dew point temperature show a chaotic nature.
The other parameters considered, i.e., relative humidity, wind speed, and sunshine hours all show a
stochastic nature.

Evaporation, when considered as a function of the six variables, should thus be exhibiting a
chaotic nature with some stochastic component. Hence, a stochastic model, however sophisticated,
cannot model the process by itself. The chaotic nature needs to be considered for proper modelling of
the same. Each meteorological process, when considered individually, can be better analysed using
chaos theory.

4. Conclusions

Meteorological parameters are important part of hydrological and climatological studies. A clear
understanding of the same is necessary for analyzing their underlying relationship. This in turn is
crucial for estimating water requirements in water resources. Researchers so far have limited their
analysis of these parameters to univariate analysis, mostly. In the rare cases where multivariate analysis
is employed, the presence of chaotic dynamics has not been checked.

In the current study, some important meteorological parameters that are most commonly
measured and often used in water resources such as average temperature, relative humidity, wind
speed, dew point temperature, sunshine hours, and pan evaporation are analysed to find the linear,
nonlinear, and nonlinear dynamic behaviour. The analysis is done for 20 years daily data collected
from a weather station at Kosice, Slovakia.

Statistical analysis of the data was first done to find the behaviour of the time series over the
long-term. The statistical analysis of the data shows that there are no strict rules to be obtained from the
regular statistical parameters such as mean, standard deviation, skewness, kurtosis, etc. It helps to give
some insights, but these are inconclusive, and need rigorous studies that take numerous stations at a
time for verification and authentication. Trend analyses show that usually, rising trends in temperature,
sunshine hours, and wind speed result in an increasing trend in the evaporation time series, but this
also needs to be further verified. Some insights into the future climatic and meteorological trends in
the area may be arrived at from the trend analysis. A trend analysis of the data was carried out to find
the general trend and behaviour of the series. Further, each parameter is analysed, considering each
time series individually. The statistical analysis of the data shows that there are no strict rules to be
obtained from the regular statistical parameters such as mean, standard deviation, skewness, kurtosis,
etc. A trend analysis shows that usually, rising trends in temperature, sunshine hours, and wind speed
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result in increasing trends in the evaporation time series, but this also need to be further verified.
Some insights into the future climatic and meteorological trends in the area may be arrived at from the
trend analysis for individual stations. Also, the analysis turned up with some unique values for trends
in evaporation and dew point temperature. This once again proves the inconclusive nature of the
results and highlights the necessity of further studies. The analysis provided also gives an overview of
the effects of various parameters on evaporation.

The autocorrelation function (ACF), average mutual information (AMI), and false nearest
neighbour (FNN) methods were used for the analysis. FNN analysis was done with three different lags.
The first of these was the standard FNN method, which took the lag as 1. A further two analyses were
done, taking the result of the ACF and AMI analyses as the lag. The results of FNN analysis showed
the nonlinear behaviour of the meteorological parameters. It also resulted that the predominant
dimension of each meteorological process varied between five and six, i.e., each meteorological process
is governed by various independent processes.
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