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Abstract: Hydrological models play an important role in water resource management, but they always
suffer from various sources of uncertainties. Therefore, it is necessary to implement uncertainty
analysis to gain more confidence in numerical modeling. The study employed three methods (i.e.,
Parameter Solution (ParaSol), Sequential Uncertainty Fitting (SUFI2), and Generalized Likelihood
Uncertainty Estimation (GLUE)) to quantify the parameter sensitivity and uncertainty of the SWAT
(Soil and Water Assessment Tool) model in a mountain-loess transitional watershed—Jingchuan River
Basin (JCRB) on the Loess Plateau, China. The model was calibrated and validated using monthly
observed streamflow at the Jingchuan gaging station and the modeling results showed that SWAT
performed well in the study period in the JCRB. The parameter sensitivity results demonstrated that
any of the three methods were capable for the parameter sensitivity analysis in this area. Among
the parameters, CN2, SOL_K, and ALPHA_BF were more sensitive to the simulation of peak flow,
average flow, and low flow, respectively, compared to others (e.g., ESCO, CH_K2, and SOL_AWC) in
this basin. Although the ParaSol method was more efficient in capturing the most optimal parameter
set, it showed limited ability in uncertainty analysis due to the narrower 95CI and poor P-factor and
R-factor in this area. In contrast, the 95CIs in SUFI2 and GLUE were wider than ParaSol, indicating
that these two methods can be promising in analyzing the model parameter uncertainty. However,
for the model prediction uncertainty within the same parameter range, SUFI2 was proven to be
slightly more superior to GLUE. Overall, through the comparisons of the proposed evaluation criteria
for uncertainty analysis (e.g., P-factor, R-factor, NSE, and R2) and the computational efficiencies,
SUFI2 can be a potentially efficient tool for the parameter optimization and uncertainty analysis. This
study provides an insight into selecting uncertainty analysis method in the modeling field, especially
for the hydrological modeling community.
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1. Introduction

Watershed systems are complex due to multiple influencing factors (e.g., climate, land use,
and other anthropogenic disturbances), and an accurate prediction of the hydrological processes
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is indispensable to watershed management [1,2]. Hydrological models have been developed and
applied to mathematical representation of hydrological processes, because they can improve the
understanding of the impact of natural and anthropogenic disturbances on hydrological features
and forecast water resource changes, thus supporting decisions in water resource management [3–5].
However, the model simulation can be highly uncertain due to the defects of the model itself and
the complexities of the watershed system, which is now a big concern in the hydrological modeling
community [6–9]. Without a realistic assessment of model uncertainty, it is hard to gain confidence in
modeling tasks, such as evaluating the responses of the water cycle to future shifts of climate and land
use [10]. Therefore, the uncertainty analysis is quite necessary to improve the accuracy and credibility
of hydrological simulation.

Uncertainties in hydrological modeling are associated with three possible sources: input data,
such as the precipitation data, who can alter the hydrological modeling procedure and simulation
results directly (e.g., surface runoff); model structure, which is mainly caused by the assumptions and
simplification of the model; and model parameters [6,11–13]. Among these three sources, parameter
uncertainty is the most common but relatively easy to control through appropriate calibrations [14].
In general, there exist numerous key parameters in a certain watershed, depicting watershed properties
and hydrological processes. These parameters are usually difficult to measure directly, and they
are generally derived from the empirical estimation and literature reference, which may introduce
uncertainties into the modeling system [12,15,16]. In addition, parameters obtained from calibration
are also affected by several factors such as correlations among parameters, sensitive or insensitive in
parameters, spatial and temporal scales and statistical features of model residuals, and these may lead
to so-called equifinality [17,18].

Numerous studies have focused on parameter uncertainty issues in the hydrological
modeling [1,10,19–23]. Several techniques for addressing model uncertainty have been proposed
over recent decades. Among those, Parameter Solution (ParaSol) [24], sequential uncertainty fitting
(SUFI2) [25], and generalized likelihood uncertainty estimation (GLUE) [26] are three robust ones
in the parameter sensitivity and uncertainty analysis in the hydrological simulation [12,14,27,28].
In recent years, there have been a number of studies involving uncertainty analysis using these three
methods as well as comparisons of the capabilities for the methods in hydrological simulation and
uncertainty analysis [12,14,27,29]. However, the key parameters’ identification and the magnitude
of their uncertainties vary with the study area/location; it is, therefore, necessary to implement the
parameter sensitivity and uncertainty analysis before further hydrological analyses, especially in
some distinctive watersheds. The present study aimed to apply these three methods to a distributed
hydrological model—SWAT (Soil and Water Assessment Tool) [30]—a physically based distributed
hydrological model, which has been increasingly applied to simulate most of the key hydrological
processes and assess the water resource management at the watershed scale. We took a typical
mountain-loess transitional watershed (Jingchuan River Basin, JCRB) on the Loess Plateau as a case
study to: (1) examine the performance and feasibility of SWAT in simulating the streamflow in the
JCRB; (2) implement the sensitivity and uncertainty of the parameters using ParaSol, SUFI2, and GLUE;
(3) compare the capabilities of these three methods in the parameter uncertainty analysis.

2. Materials and Methods

2.1. Study Area

The JCRB (Figure 1), controlled by the Jingchuan gaging station, lies in the western part of the
Jinghe River Basin (106◦11′~107◦21′ E, 35◦15′~35◦45′ N). The JCRB is a mountain-loess transitional
zone (Figure 1) with a total area of 3164 km2. In this basin, 39% is mountainous/rocky terrain, which
is mainly located in the high-elevation (>2000 m) area, while 61% is loess area [31]. The region is
controlled by the continental climate, which is hot and humid in summer and cold and dry in winter.
The mean annual temperature and precipitation is 8.8 ◦C and 475 mm in the loess area, and 6.5 ◦C
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and 614 mm in the mountainous area, respectively [31]. Topographically, the elevation drops from the
mountainous area to the loess area with a range of 2898 to 1022 m. The major land use and land cover
(LULC) types of this region are forest, cropland, and grassland. The forests are mainly distributed
in the mountainous area, whereas the grasslands and croplands are mainly in the loess area. The
dominant soil type of the JCRB is Cambisols (Figure 1), which is mainly distributed in the loess area.

Water 2018, 10, x FOR PEER REVIEW  3 of 16 

 

The mean annual temperature and precipitation is 8.8 °C and 475 mm in the loess area, and 6.5 °C 
and 614 mm in the mountainous area, respectively [31]. Topographically, the elevation drops from 
the mountainous area to the loess area with a range of 2898 to 1022 m. The major land use and land 
cover (LULC) types of this region are forest, cropland, and grassland. The forests are mainly 
distributed in the mountainous area, whereas the grasslands and croplands are mainly in the loess 
area. The dominant soil type of the JCRB is Cambisols (Figure 1), which is mainly distributed in the 
loess area. 

 
Figure 1. DEM, soil types, and land use types of the Jingchuan River Basin (JCRB). 

2.2. Model Description 

The SWAT model is a continuous, spatially distributed simulator developed to assist water 
resource managers in predicting impacts of land management practices on water, sediment, and 
agricultural chemical yields [30,32]. Fundamentally, the water cycle simulated by SWAT is based on 
the water balance, whose mathematically equation was reported by Neitsch [32]. The SWAT model 
is operated at the hydrologic response unit (HRU), which consists of same land use, management, 
and soil characteristics. The model has been successfully applied around the world for addressing 
numerous watershed issues under climate shifts and human activities [32,33]. Major outputs of 
SWAT include surface runoff, baseflow, lateral flow, evapotranspiration (ET), soil water, and water 
yield. 

2.3. Model Input and Setup 

The SWAT model requires several specific information such as Digital Elevation Map (DEM), 
weather, soil properties, and land use and cover types [34]. The DEM with a 90-m resolution was 
from Shuttle Radar Topography Mission (SRTM). The soil and LULC maps (1 km × 1 km) were from 
the Ecological and Environmental Science Data Center for West China (http://westdc.westgis.ac.cn). 
The daily meteorological data from 2008 to 2014 were from the China Meteorological Assimilation 
Driving Datasets for the SWAT model Version 1.1 (CMADS V1.1, http://www.cmads.org), which was 
developed by Dr. Xianyong Meng from the China Institute of Water Resources and Hydropower 
Research (IWHR) and has received worldwide attention [35]. The CMADS V1.1 provides daily 
precipitation, maximum/minimum temperature, relative humidity, wind speed, and solar radiation. 

Figure 1. DEM, soil types, and land use types of the Jingchuan River Basin (JCRB).

2.2. Model Description

The SWAT model is a continuous, spatially distributed simulator developed to assist water
resource managers in predicting impacts of land management practices on water, sediment, and
agricultural chemical yields [30,32]. Fundamentally, the water cycle simulated by SWAT is based on
the water balance, whose mathematically equation was reported by Neitsch [32]. The SWAT model
is operated at the hydrologic response unit (HRU), which consists of same land use, management,
and soil characteristics. The model has been successfully applied around the world for addressing
numerous watershed issues under climate shifts and human activities [32,33]. Major outputs of SWAT
include surface runoff, baseflow, lateral flow, evapotranspiration (ET), soil water, and water yield.

2.3. Model Input and Setup

The SWAT model requires several specific information such as Digital Elevation Map (DEM),
weather, soil properties, and land use and cover types [34]. The DEM with a 90-m resolution was
from Shuttle Radar Topography Mission (SRTM). The soil and LULC maps (1 km × 1 km) were from
the Ecological and Environmental Science Data Center for West China (http://westdc.westgis.ac.cn).
The daily meteorological data from 2008 to 2014 were from the China Meteorological Assimilation
Driving Datasets for the SWAT model Version 1.1 (CMADS V1.1, http://www.cmads.org), which
was developed by Dr. Xianyong Meng from the China Institute of Water Resources and Hydropower
Research (IWHR) and has received worldwide attention [35]. The CMADS V1.1 provides daily
precipitation, maximum/minimum temperature, relative humidity, wind speed, and solar radiation.
In this study, to ensure that an equilibrium state is attained before the actual simulation (that is,
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the year of 2008), we took both the year 2006 and 2007 as the warm-up period using the actual weather
information in this area. The Geographic Information System (GIS) interface was used to delineate the
watershed, resulting in 30 sub-basins and 813 HRUs. The average monthly runoff data from 2008 to
2012 were obtained from the Yellow River Hydrology Year Book.

2.4. Methodology

All of the uncertainty analysis techniques (i.e., ParaSol, SUFI2, and GLUE) used in this study
are embedded into a platform—SWAT-CUP [25]—an interface that allows the users to implement the
uncertainty analysis for SWAT with multiple-methodological choices. A brief introduction of the three
methods is provided in the following sections.

2.4.1. ParaSol

The ParaSol method combines the objective functions (OFs) with a global optimization criterion
and implements the simulation and uncertainty analysis using the Shuffle Complex (SCE-UA)
algorithm [36]. The SCE-UA is a global search algorithm for the minimization of a specific function [36].
It combines the direct search method of the simplex procedure with the concept of a controlled random
search, a systematic evolution of points in the direction of global improvement, competitive evolution,
and the concept of complex shuffling [25]. In the operation of SCE-UA, it firstly selects the initial
‘population’ by random sampling to optimize a certain parameter in feasible parameter space. After the
optimization, the simulations are divided into behavioral and non-behavioral simulations according to
the criterion value. The ParaSol is efficient in seeking the optimal parameters, because the algorithm
samples over the entire parameter space with a focus on solutions near the optimum/optima [24].
The method has been widely applied in the uncertainty analysis in the hydrological simulation,
especially for the SWAT model.

2.4.2. SUFI2

Based on a Bayesian framework, SUFI2 quantifies the uncertainties through the sequential and
fitting processes. In SUFI2, the parameter uncertainty is calculated from all sources such as the
indeterminacy of input variables (e.g., rainfall data, temperature and land use), model structure, and
measured data (e.g., surface runoff) [12]. The P-factor, the percentage of observed data bracketed by
95% prediction uncertainty (95PPU), is used to quantify the degree of all uncertainties. The 95PPU
is calculated at the 2.5% and 97.5% levels of the cumulative distribution of output variables through
Latin hypercube sampling method [18]. For streamflow, a value of P-factor > 0.7 or 0.75 has been
reported to be adequate, which illustrates most of the observed data within 95PPU band and the
model have been well calibrated [18,23,37]. The R-factor is another index to quantify the strength of a
calibration and uncertainty analysis and it reflects the average thickness of the 95PPU band divided by
the standard deviation of the measured data. Theoretically, a P-factor of 1 and R-factor of 0 indicate
that the simulation exactly corresponds to the measured data [18,25]. Further goodness of fit can be
quantified by the R2 and/or Nash-Sutcliffe model efficiency (NSE) between the observations and the
best simulation. SUFI2 can currently handle six different objective functions (e.g., two types of root
mean square error, Chi square, NSE, R2, and bR2) and the step-by-step operation of SUFI2 can be found
in Abbaspour [25].

2.4.3. GLUE

The Generalized Likelihood Uncertainty Estimation (GLUE) method is an uncertainty analysis
technique which was introduced by Beven and Binley [26] to allow for the possible non-uniqueness of
parameter sets during the estimation in over-parameterized models. The method is used to derive
the predictive probability of output variables based on the estimation of the weights or probabilities
associated with different parameter sets [26]. In the GLUE operation, it assumes that in the case of the
large over-parameterized models, there is no unique set of parameters. In addition, GLUE determines
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‘good’ or ‘not good’ simulations by a combination of parameters, and the capability of the GLUE
method in uncertainty analysis can also be evaluated by the P-factor and R-factor. GLUE can currently
support a likelihood measure expressed as the NSE, and the method has also been increasingly applied
in the parameter uncertainty analysis and hydrological simulation.

3. Results

3.1. Global Sensitivity

Based on the previous publications related to hydrological simulation using SWAT [38–40] as well
as our own experience [41], we selected six key parameters (see Table 1) to implement sensitivity and
uncertainty analysis by using the three methods, and the sensitivity ranks were shown in Figure 2. It is
important to point out that we performed 1800 model runs in ParaSol and 2000 model runs in SUFI2 or
GLUE. Obviously, the ranks of the six parameters yielded by the three methods showed that CN2 was
the most sensitive parameter, followed by SOL_K, and the other four parameters showed relatively
less sensitivity for streamflow. To accurately identify the parameter sensitivity towards the streamflow,
we also tested the individual effect of the six parameters at three levels—the 25th (1st Quantile),
the 50th (medium), and the 75th (3rd Quantile) percentiles of the parameter distributions, and their
relationships were shown in Figure 3. For the peak flow, the parameter CN2 showed obviously positive
relationship, especially in SUFI2, suggesting that CN2 played a key role in simulating the peak flow in
this basin. For the average flow, SOL_K exhibited slightly positive relationship, while others showed
no obvious relationships with the average flow. Significantly, the parameter ALPHA_BF negatively
correlated with the low flow using the three methods. However, the obvious relationships were not
found for other parameters. Additionally, the ranks of the sensitivity and relationships between the
streamflow and each parameter yielded by ParaSol, SUFI2, and GLUE demonstrated that all the three
methods can be used for parameter sensitivity analysis.

Table 1. Calibrated parameter values for monthly streamflow in the Jingchuan River Basin using
Parasol, SUFI2, and GLUE.

Parameter Description Range Calibrated Value

ParaSol SUFI2 GLUE

r_CN2 SCS curve number for soil condition II −50% to +10% −46% −38% −29%

v_ALPHA_BF Baseflow alpha factor (day) 0.01–0.1 0.04 0.05 0.04

v_ESCO Soil evaporation percolation fraction 0.1–1.0 0.93 0.5 0.16

v_CH_K2 Effective hydraulic conductivity in main
channel alluvium 8.0–18.0 8.0 8.4 8.06

r_SOL_AWC Available water capacity of soil layer −20% to +10% −17% 9% 6%

r_SOL_K Saturated hydraulic conductivity (mm/h) −10% to +40% −10% −4% −4%

Note: r means the relative change (%); v means replacing the existing parameter value with the given value.
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3.2. Model Calibration and Validation Results

We compared the capabilities of ParaSol, SUFI2, and GLUE in capturing the optimal parameter
sets (in terms of the evaluation criteria) during both the calibration and validation periods in the JCRB.
A three-year (2008–2010) record of monthly streamflow at the basin outlet was used for calibration
and another two-year (2011–2012) dataset was used for validation. The three sets of the calibrated
parameter values derived from the methods were listed in Table 1 and the graphical comparisons
(scatterplots) between the observed streamflow and the best simulation were shown in Figure 4. It can
be seen from Table 1 and Figure 4 that the calibrated parameter sets of the three methods were not
completely in accordance with each other, implying that the three algorithms could recognize the
different parameter sets that were able to produce similarly good performance. As can be seen from
Table 2, in calibration, the RMSE and RSR yielded by ParaSol (1.24 m3/s and 0.31) were less than
those generated by SUFI2 and GLUE (1.3 m3/s and 0.33 for SUFI2 and GLUE, respectively). Also,
the NSE and R2 in ParaSol (0.90 and 0.91) were higher than those yielded by SUFI2 (0.89 and 0.89) and
GLUE (0.89 and 0.89), suggesting that ParaSol had its advantage on accurately seeking the optimized
parameter set compared to SUFI2 and GLUE. In addition, based on the evaluation criteria (see Table 2)
and according to Moriasi et al. (2007) [42], the overall model performance can be rated as ”good” in
both the calibration and validation periods.
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Table 2. Evaluation of model performance in streamflow simulation during the 3-year (2008–2010)
calibration and 2-year (2011–2012) validation periods.

Method Period RMSE (m3/s) NSE R2 RSR PB (%)

ParaSol
Calibration 1.2 0.90 0.91 0.31 6.6
Validation 2.6 0.74 0.75 0.50 −6.8

SUFI2
Calibration 1.3 0.89 0.89 0.33 2.3
Validation 2.9 0.69 0.75 0.54 −18.2

GLUE
Calibration 1.3 0.89 0.89 0.33 0.9
Validation 2.9 0.68 0.76 0.55 −18.8
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3.3. Uncertainty Analysis

It is important to point out that the uncertainty analysis was firstly implemented in the
calibration period (2008–2010) and then enlarged to validation (2011–2012) due to the short time
of the observed data.

3.3.1. Parasol

Implementation of ParaSol is relatively easy and the computation depends only on the
convergence of the optimization process. The upper (97.5%) and lower (2.5%) bounds of the
posterior parameter values, expressed as the 95% confidence interval (95CI), and the model prediction
uncertainty were shown in Table 3 and Figure 5 (top panel), respectively. The 95CI widths for most
parameters were narrower than the initial ranges, except for ESCO and SOL_AWC. Since the optimal
values of the latter parameters remained either at the lower or at the upper bounds (see Table 3),
indicating that ESCO and SOL_AWC were more uncertain. In general, a higher P-factor means
more observations fall inside 95PPU. As can be seen from Figure 5, the uncertainty band was very
narrow and the P-factor was only 0.39 and 0.46 in the calibration and validation periods, respectively.
This demonstrated that ParaSol had the limited ability for conducting uncertainty analysis though the
best simulation matched the observation very well with good NSE and R2. Figure 6a, b showed the
distribution of the model response as a function of the parameter values and the change of standard
residuals following the simulated streamflow. It was significant that there existed an overestimation
of prediction uncertainty in the wet month (high streamflow), suggesting that more attention should
be paid to the wet season in the hydrological simulation. This phenomenon can also be seen from
Figure 5 (top panel), where the width of 95PPU band was relatively larger in the high-rainfall seasons.
Also, the variance of the residuals was not constant and changed with the streamflow, and this may
illustrate that there existed heteroscedasticity in ParaSol. In addition, the correlation matrix showed
relatively strong correlations (r ranging from −0.40 to 0.57) among the model parameters, especially
the r_SOL_K and v_CH_K2 (r = 0.57), the v_CH_K2 and r_CN2 (r = 0.48).

3.3.2. SUFI2

The SUFI2 method is also convenient to use, though it is semi-distributed and needed for some
knowledge of parameters’ effects on model output. For the SUFI2 approach, we did one iteration with
2000 model runs using the same parameter ranges for the sake of comparison of the three methods.
The 95CI of most parameters yielded by SUFI2 showed a narrower range, though the parameter
ALPHA_BF was the same as the initial setting (Table 3), suggesting ALPHA_BF was more uncertain in
SUFI2. For the model prediction, it can be seen from Figure 5 (medium panel) that the 95PPU bracketed
83% and 71% of the observations in the calibration and validation periods, respectively, illustrating
that SUFI2 was more capable of capturing the observations in spite of a large R-factor. Further, the
95PPU was more suitable to bracket the observations of year 2010, while it slightly overestimated
the runoff in winter seasons of year 2008 and 2009. For validation, it underestimated the streamflow
from the autumn in 2011 to the summer in 2012, resulting in a relatively poor performance. Similarly,
the sensitivity range (Figure 6c) also indicated that the effect of parameter on model outcome was
relatively higher in wet seasons (i.e., months with high precipitation). This may be attributed to the
uncertainty involved in computing baseflow recession in SWAT and the coarse observations [27].
The residuals were also not normally distributed with constant variance (Figure 6d), which may lead
to biased parameter estimation due to the systematic error [43,44]. In addition, the correlation matrix
(Table 4) showed very weak correlations among the parameters, and thus, the parameter correlations
can be neglected in SUFI2.



Water 2018, 10, 690 10 of 16

Table 3. Uncertainty ranges of aggregate parameters from the three methods.

Parameter Initial Range 95CI (Confidence Interval)

ParaSol SUFI2 GLUE

r_CN2 −50% to +10% (−48.0, 0.2) (−48.5, 8.5) (−48.5, 8.5)
v_ALPHA_BF 0.01–0.1 (0.01, 0.09) (0.01, 0.1) (0.01, 0.1)

v_ESCO 0.1–1.0 (0.14, 0.98) (0.13, 0.98) (0.12, 0.98)
v_CH_K2 8.0–18.0 (8.5, 16.7) (8.3, 17.7) (8.3, 17.7)

r_SOL_AWC −20% to +10% (−18.2, 8.5) (−19.2, 9.2) (−19.2, 9.2)
r_SOL_K −10% to +40% (−8.9, 29.5) (−8.7, 38.7) (−8.7, 38.7)
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Figure 5. Comparison of best-simulated monthly streamflow with 95PPU against observed streamflow
by ParaSol (top), SUFI2 (medium), and GLUE (bottom). P-factor indicates the percentage of observed
data bracketed by 95% prediction uncertainty; R-factor reflects the average thickness of 95PPU band
divided by the standard deviation of the measured data.
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Figure 6. Sensitivity range of monthly streamflow (left column) based on the parameter distribution as
generated by ParaSol (a), SUFI2 (c) and GLUE (e) during the 3-year calibration (2008–2010), sd refers
to the standard deviation of the model response. The light grey shade by Mine-Max represents the
minimum and maximum model response at each time step, whereas the dark grey shade by Mean ±
sd refers to the mean model response plus/minus one standard deviation. The right column indicates
the standard residuals versus simulated streamflow obtained from ParaSol (b), SUFI2 (d) and GLUE (f)
during the calibration period.

3.3.3. GLUE

GLUE is convenient and easy to use and has been widely applied in hydrological field. We also did
2000 runs in GLUE implementation within the same parameter ranges to compare the capabilities of
the three methods in parameter uncertainty analysis. The 95CI showed that the parameter uncertainty
ranges generated by GLUE were similar with those yielded by SUFI2 but obviously larger than ParaSol,
especially for CN2 and SOL_K (Table 3). It can be seen from Figure 5 (bottom panel) that 81% of
the observations were bracketed by the 95PPU and the R-factor equaled 1.21 in calibration, which
was similar to SUFI2, suggesting that GLUE was also able to capture the observations in calibration.
In validation, 63% of the observations were bracketed by the 95PPU, which was slightly less than
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SUFI2. Also, GLUE overestimated the streamflow in the winter seasons of year 2008 and 2009, while it
somewhat underestimated the streamflow of year 2012. The parameter uncertainty was also found to
be higher in the wet seasons during the calibration period (see Figure 6e). The change of residuals
demonstrated that the parameter uncertainty estimation may be somewhat biased (Figure 6f). Similar
to SUFI2, there was almost no correlations among the parameters yielded by GLUE, and thus the
parameter correlations could also be neglected in GLUE.

Table 4. Correlation matrix of the streamflow parameters yielded by ParaSol, SUFI2, and GLUE.

Method Parameter r_CN2 v_ALPHA_BF v_ESCO v_CH_K2 r_SOL_AWC r_SOL_K

ParaSol

r_CN2 1 0.11 −0.24 0.48 0.11 0.37
v_ALPHA_BF 1 −0.27 0.27 0.25 0.21

v_ESCO 1 −0.24 −0.40 −0.25
v_CH_K2 1 0.20 0.57

r_SOL_AWC 1 0.15
r_SOL_K 1

SUFI2

r_CN2 1 −0.01 0.02 −0.02 −0.02 −0.02
v_ALPHA_BF 1 0.01 0.02 −0.03 −0.02

v_ESCO 1 0.03 −0.00 −0.00
v_CH_K2 1 −0.02 −0.02

r_SOL_AWC 1 0.03
r_SOL_K 1

GLUE

r_CN2 1 −0.02 −0.03 −0.02 0.01 −0.02
v_ALPHA_BF 1 0.01 0.02 −0.02 −0.01

v_ESCO 1 0.01 −0.01 −0.00
v_CH_K2 1 0.03 0.01

r_SOL_AWC 1 −0.00
r_SOL_K 1

4. Discussion

4.1. Model Parameterization and Performance

For a better streamflow simulation, the accurate identification of key parameters is important.
In this study, we identified six key parameters related to streamflow simulation by using the three
popular methods in the JCRB. As can be seen from Table 1, ParaSol provided the least CN2, SOL_AWC,
and SOL_K values compared to those yielded by SUFI2 and GLUE. Most of the parameter values
generated by SUFI2 were similar with those yielded by GLUE. The phenomenon may be attributed to
the objective functions of the methods and the initial parameters’ ranges. In our study, the objective
function in ParaSol was limited to the sum of the squares of the residuals [25], indicating that ParaSol
aimed to find the least bias when seeking the best parameter set. However, the NSE was the objective
function in both SUFI2 and GLUE, which may handle a different pathway in finding the best fitting
parameter set. In addition, the initial parameter ranges may also play an important role in seeking
appropriate parameter sets because the initial ranges can decide both the parameters’ combination
and applicability. Therefore, the above conditions may result in different calibrated parameter values
using the three methods.

The comparisons of the SWAT model performance generated by the three methods were listed in
Table 2. In terms of the evaluation criteria, ParaSol provided slightly higher NSE and R2 and achieved
less predicting errors (see Table 2) in both the calibration and validation periods, showing its advantage
in accurately capturing the optimal parameter set, which was also confirmed by others [1,14,27]. This is
because ParaSol is based on the global optimization algorithms and thus samples over the entire
parameter space with a focus on solutions near the optimum [45]. This algorithm is much more
efficient in finding the maximum or minimum of the objective function than random or Latin hypercube
sampling [27,46]. Therefore, ParaSol can be a reasonable choice in seeking the best parameter set in
hydrological modeling.
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4.2. Parameter Sensitivity and Uncertainty

For parameter sensitivity, the results showed that the parameter CN2 was the most sensitive
(Figure 2) using any of the three methods and CN2 played a key role in peak flow simulation (Figure 3).
CN2 is a function of soil’s permeability, land use, and initial soil water condition, which suggests the
potential of surface runoff from rainfall in a watershed [47]. CN2 had positive effects on the peak flow
(Figure 3), and this may be because of concentrated distribution of rainfall in the wet season, causing
infiltration excessed surface flow and a significant increase in peak flow. The parameter SOL_K, which
represents soil hydraulic conductivity and closely relates to the movement of water in soil profiles, had
a positive effect on average streamflow. In the study area, Cambisols is widely distributed (see Figure 1)
and is mainly made up of sandy loam that is characterized with medium percolation capacity. Water
in this soil can be easier to percolate to the shallow aquifer and further contributed to the baseflow
and then the streamflow. ALPHA_BF is the baseflow recession factor, a high value of ALPHA_BF
means quick recession of baseflow (i.e., the less water retention in the aquifer), and this was why this
parameter played a key role in the relationship between the low flow and ALPHA_BF.

For parameter uncertainty, our study showed that GLUE and SUFI2 provided the wider 95CIs
than ParaSol (see Table 3). Most of the uncertainty intervals derived by GLUE and SUFI2 contained the
corresponding intervals from ParaSol. Based on SCE-UA, ParaSol was very efficient in seeking the most
suitable parameter set near the maximum or minimum objective function value [27], which suggested
that the parameter can be narrowed to a relatively small extent. The wider parameter ranges in SUFI2
and GLUE may be because they considered all sources of uncertainty and thus may lead to relatively
larger ranges of parameter uncertainty [46]. As we know, the GLUE method considers the parameter
correlation in uncertainty analysis, but Table 4 showed that there were almost no correlations among
the parameters, which was the same as SUFI2. Therefore, through the comparisons of the parameter
uncertainty ranges as well as the parameter correlations, both SUFI2 and GLUE showed advantages in
providing similarly good parameter uncertainty ranges [1,12,14,27].

4.3. Model Prediction Uncertainty

For model prediction uncertainty analysis, we found that SUFI2 was a superior tool because
of its relatively larger P-factor and reasonable R-factor. As seen from Figure 5, ParaSol did not
derive reasonable prediction uncertainty and only 39% and 46% measurements were bracketed by
the 95PPU in calibration and validation, respectively, in spite of the good R2 and NSE. This was
because ParaSol does not consider the error in the measured data, model structure, and measured
response, leading to an underestimation of the prediction uncertainty [17,27]. As stated previously,
the parameter uncertainty yielded by Parasol only accounted for a small part of the whole uncertainty;
whereas, SUFI2 and GLUE took into account all sources of uncertainties, and the corresponding
parameter ranges (95CI) were also larger than ParaSol, leading to the wider 95PPU bands. In addition,
according to Abbaspour et al. [18], the 95PPU should bracket at least 80% of the observed data if the
measurements are of high quality. In terms of our results, SUFI2 and GLUE bracketed above 80%
of the observed streamflow in the calibration period, although we recognized that there still existed
a certain uncertainty in SWAT (1.36 and 1.21 of R-factor in SUFI2 and GLUE, respectively), which
may be because of the overestimation of the errors in the input, output, and model structure. It was
also worth noting that the coverage (P-factor) of GLUE can be increased at the expense of increasing
R-factor, and in SUFI2 this can be done by performing one more iteration. Compared to GLUE,
the 95PPU in SUFI2 bracketed 83% and 71% measurements in calibration and validation, respectively,
suggesting that SUFI2 was more capable of capturing the observations. The main reason could be all
these sampled parameter sets were taken as behavioral samples and contributed to the 95PPU [12].
Additionally, based on the previous studies and our own experience [1,14,16,27], the SUFI2 method
has a high efficiency in computation because of the advantages in taking into account the discrete
parameter space of the Latin hypercube sampling [27]. In contrast, GLUE makes use of the Monte
Carlo simulation for random sampling and needs a certain number of sampling runs to derive the most
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reasonable outputs, especially for the complex models [6,12,14]. Therefore, SUFI2 is more efficient
for uncertainty analysis in the hydrological simulation when handling some high dimensional and
complex hydrological models.

5. Conclusions

This study examined the capabilities of three uncertainty analysis methods through a distributed
hydrological model—SWAT with a case study in the JCRB on the Chinese Loss Plateau. The modeling
results showed that the SWAT model was acceptable in the streamflow simulation in the JCRB with NSE
and R2 being 0.90 and 0.91 for calibration, and 0.74 and 0.75 for validation, respectively. The sensitivity
analysis of the selected six key parameters indicated that ParaSol, SUFI2, and GLUE could be used for
parameter sensitivity analysis in the study area. The sensitivity results showed that CN2, SOL_K, and
ALPHA_BF were more sensitive to the simulation of peak flow, average flow, and low flow, respectively,
compared to others (e.g., ESCO, CH_K2, and SOL_AWC) in this area. Although ParaSol was more
efficient in capturing the optimal parameter set, it did not derive the suitable parameter and prediction
uncertainty ranges due to its relatively narrower 95CI and poor P-factor and R-factor. Compared to
ParaSol, SUFI2 and GLUE were proven to be more capable in predicting the parameter uncertainty,
and SUFI2 was superior to GLUE in terms of the P-factor and R-factor. In summary, through the
comparisons of the evaluation criteria for uncertainty analysis (e.g., P-factor, R-factor, NSE, and R2)
and the computational efficiencies, the SUFI2 method performed better than the other two methods
for the parameter uncertainty analysis of the SWAT model in the JCRB. The study provides an insight
into the identifiability of more reliable methods for uncertainty analysis, especially in the hydrological
modeling community.

Finally, although this study was informative by implementing the three popular parameter
uncertainty analysis methods, the generality of such findings is to be evaluated with more applications
in other areas. Moreover, in addition to the parameters’ uncertainty, the uncertainty in model structure
and input data should be examined for the complete and deep understanding of the modeling behavior.
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