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Abstract: Characterization of droughts using satellite-based data and indices in a steep, highly dynamic 

tropical catchment, like Vu Gia Thu Bon, which is the most important basin in central Vietnam, has 

remained a challenge for many years. This study examined the six widely used vegetation indices (VIs) 

to effectively monitor droughts that are based on their sensitivity with precipitation, soil moisture, and 

their linkage with the impacts on agricultural crop production and forest fires. Six VIs representing the 

four main groups, including greenness-based VIs (Vegetation Condition Index), water-based VIs 

(Normalized Difference Water Index, Land Surface Water Index), temperature-based VIs (Temperature 

Condition Index), and combined VIs (Vegetation Health Index, Normalized Difference Drought Index) 

were tested using MODIS data from January 2001 to December 2016 with the support of cloud-based 

Google Earth Engine computational platform. Results showed that droughts happened almost every 

year, but with different intensity. Vegetation stress was found to be mainly attributed to precipitation 

in the rice paddy fields and to temperature in the forest areas. Findings revealed that combined 

vegetation indices were more sensitive drought indicators in the basin, whereas their performance was 

different by vegetation type. In the rice paddy fields, NDDI was more sensitive to precipitation than 

other indices; it better captured droughts and their impacts on crop yield. In the forest areas, VHI was 

more sensitive to temperature, and thus had better performance than other VIs. Accordingly, NDDI 

and VHI were recommended for monitoring droughts in the agricultural and forest lands, respectively. 

The findings from this study are crucial to map drought risks and prepare an effective mitigation plan 

for the basin. 

Keywords: drought; satellite-derived data; MODIS; vegetation index; google earth engine; vu gia thu 

bon; Vietnam 

 

1. Introduction 

Drought is a recurring and inevitable phenomenon that affects more than half of terrestrial earth 

each year [1,2]. Different from other natural disasters, their onset and progresses are unnoticeable and 

slow, yet their impacts are cumulative and devastating. They range from water shortage, ecological 

degradation, losses of agricultural production, to human health impacts, famine, and food crisis. Early 

detection and monitoring of drought is thus important to minimize the damages to the economy, 

environment, and human life. 
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Depending on the reference variables, drought is subdivided into different types, including 

meteorological drought (precipitation deficit), agricultural/soil moisture drought (moisture deficit), and 

hydrological drought (low stream flow and groundwater level) [3]. Various indices have been developed 

to assess and quantify drought severity. Meteorological drought indices (such as Palmer Drought 

Severity Index (PDSI) [4] and Standardized Precipitation Index (SPI) [5] solely use precipitation and/or 

temperature to estimate precipitation deficiencies for different timescales. Agricultural drought indices 

(Soil Moisture Deficit Index (SMDI), Evapotranspiration Deficit Index (ETDI) [6]) calculate soil water 

deficit and identify water stress for crops. Hydrological drought indices (Palmer Hydrological Drought 

Index (PHDI) [4], Standardized Streamflow Index (SSI) [7], Standardized Water-level Index (SWI) [8]) 

monitor hydrological conditions (streamflow, groundwater, etc.) at various timescales. 

Agriculture is among the most vulnerable of all sectors to drought. In a drought prone region, poor 

farmers are the most vulnerable when extreme climate conditions could threaten the productivity of 

agricultural crops and increase economic losses. Not only are poor people among the most vulnerable, 

extreme climates could also increase the risk of making households become poor [9]. While agricultural 

drought causes the plant canopy lose vegetation water content and pigments, most of the agricultural 

drought indices use soil moisture to monitor drought and lack information about vegetation properties 

[6]. 

Ground weather stations provide a fairly good source of information for drought monitoring. 

However, they are often scattered and insufficient due to limited distribution and coverage of the 

gauging stations. Particularly in developing countries, where the stations are scarcely available, drought 

monitoring is a further arduous task. A growing number of Earth observation satellites provide useful 

data sources to monitor the changing dynamics of soil, water, and vegetation in terrestrial surface [10]. 

The satellite-based information is particularly helpful to monitor drought over areas with limited 

measuring gauges and improve the assessment of drought severity with higher spatial and temporal 

resolution [11]. Furthermore, remote sensing based vegetation indices (VIs), which combine different 

spectral bands, have been widely used to monitor vegetation responses to weather conditions, and thus 

assess drought conditions [11]. 

Several VIs that were developed since the 1980s could be categorized into four main groups (Table 

1). Firstly, vegetation greenness indices (such as Normalized Difference Vegetation Index (NDVI) [12] 

and Enhanced Vegetation Index (EVI) [13]) are the most widely applied for monitoring vegetation health 

and drought conditions through measuring photosynthetic activity and canopy structural variations 

[11]. Given that variations in NDVI values are due to both weather and ecology components, Kogan [14] 

developed Vegetation Condition Index (VCI) in order to quantify the weather impacts on vegetation. 

Secondly, water-related VIs such as the Normalized Different Water Index (NDWI) [15] and Land 

Surface Water Index (LSWI) [16,17] have been identified as direct indicators of leaf water content; they 

are thus more sensitive to drought conditions than greenness related VIs [18,19]. Another approach to 

monitor drought and moisture availability is to use VIs derived from thermal infrared (TIR) satellite 

observations. Land Surface Temperature (LST), as computed from TIR bands, provides a direct measure 

of surface temperature and an indirect estimate of moisture availability [20]. As LST provides useful 

information about vegetation conditions, other temperature-related VIs, such as Temperature Condition 

Index (TCI) [14], and Normalized Difference Temperature Index (NDTI) [21] were developed to estimate 

soil moisture content, evapotranspiration and quantify drought stress. To further improve the drought 

monitoring ability, the combination of aforementioned groups has been used, such as Vegetation Health 

Index (VHI) [14], Temperature Vegetation Dryness Index (TVDI) [22], Vegetation Temperature 

Condition Index (VTCI) [23,24], and Normalized Different Drought Index (NDDI) [25]. 

Over the past three decades, Vietnam has experienced rapid economic growth and has become a 

major exporter of agricultural and industrial products [26]. Among all of the agricultural crops, rice is by 

far the most important crop, taking up 75 percent of all crops in Vietnam [27]. Vietnam, which was a net 

importer of rice in 1980s, has become the world’s second largest rice exporter in 2011 [28]. Although 

agriculture, forestry and fisheries accounts for 16 percent of gross domestic products in 2016, nearly 70 

percent of the population still live in rural areas and 42 percent depend on agriculture for their 

livelihoods [29]. Farmers, who depend on direct utilization of natural resources, are thus at higher risks 
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than any other social groups at losing their livelihoods during drought events. A typical example of such 

a paradox between economic growth and socio-economic differentiation in Vietnam is the Vu Gia Thu 

Bon (VGTB) river basin [26], which is the most important and major river basin in central Vietnam. 

Located in a tropical, humid, yet significantly uneven rainfall distributed region, VGTB is among the 

most vulnerable basins in Vietnam to drought, significantly affecting the sustainable development of 

region, whereas the basin-specific drought monitoring system is still absent [30,31]. With the limited 

ground observation data, which is a remote sensing based drought assessment, would be invaluable to 

decision-makers and farmers in the region to cope with droughts. 

The Vu Gia Thu Bon is a highly ecologically and socio-economically dynamic, tropical, poorly 

gauging, recurrently, complicatedly and scatteredly drought impacted catchment, whereas its total area 

(10,000 km2) is quite small when compared to the scale of remote sensing images. Therefore, satellite 

based drought monitoring is substantially challenging and thus its application in this important basin is 

still limited. In Vietnam, satellite based vegetation indices have just been applied in a large-scale Lower 

Mekong basin [32] and in an arid and semi-arid rural district of Binh Thuan province [33], while using 

combined VIs based on both NDVI and LST data. 

Since drought is inherently a complex phenomenon and its monitoring relies on the availability of 

good quality data, performance of drought indices could be different from place to place [34,35]. 

Choosing an appropriate index in such a challenging basin is important to detect the drought onset at an 

early stage. Accordingly, this study examines the performance of multiple satellite based vegetation 

indices for monitoring droughts in the VGTB from January 2001 to December 2016 using cloud-based 

Google Earth Engine (GEE) computational platform. Also, the study would investigate whether 

identified droughts by these indices are correlated with the negative impacts on agricultural crops and 

forest fires in the region. Six main indices, which were widely used for monitoring agricultural droughts, 

representative of each VI group were selected for the study, including NDWI, LSWI, VCI, TCI, VHI, and 

NDDI [11]. In Vietnam, the performance of VCI, TCI, VHI, and TDVI have been just explored in Binh 

Thuan province [33] and Lower Mekong basin [32], while water based VIs (NDWI, LSWI) and combined 

VIs (NDDI) have even not been examined yet. The other combined VI (VTCI) is also based on the use of 

NDVI and LST, thus it would not be much different from VHI. Accordingly, by comparing the 

performance of VIs with ground weather data and socio-economic data (drought impacts), the study 

would not only provide an effective basin-specific drought monitoring tool, but would also better help to 

understand the performance of VIs in different climatic regions of Vietnam. 

Table 1. Summary of vegetation indices by groups. 

Name of 

Vegetation 

Indices 

Full Name Formula References 

1. Vegetation greenness indices 

NDVI 
Normalized Difference 

Vegetation Index 
(ρ858 − ρ650)/(ρ858+ ρ650) [12] 

EVI Enhanced Vegetation Index 2.5 × (ρ858 – ρ650)/(ρ858 + 6 × ρ650 − 7 × ρ469 + 1) [13] 

VCI Vegetation Condition Index (NDVI − NDVImin)/(NDVImax − NDVImin) [14] 

2. Vegetation water indices 

NDWI 
Normalized Difference Water 

Index 

(ρ858 − ρ1240)/(ρ858 + ρ1240) 

or 

(ρ858 − ρ2130)/(ρ858 + ρ2130) 

[15] 

 

[25] 

LSWI Land Surface Water Index (ρ858 − ρ1640)/(ρ858 + ρ1640) [16,17] 

NMDI 
Normalized Multiband 

Drought Index 
(ρ860 − (ρ1640 – ρ2130))/(ρ860 + (ρ1640 − ρ2130)) [36] 

3. Vegetation temperature indices 

LST Land Surface Temperature  [20] 

TCI 
Temperature Condition 

Index 
100 × (LSTmax − LST)/(LSTmax − LSTmin) [14] 

NDTI 
Normalized Difference 

Temperature Index 
(T∞ − Ts)/(T∞ − T0) [21] 

ESI 

 

Evapotranspiration Stress 

Index 
ƒPET = ET/PET [37] 
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4. Combined indices 

VTCI 
Vegetation Temperature 

Condition Index VTCI = (LSTNDVIi max − LSTNDVIi)/(LSTNDVIimax − LSTNDVIi min) [23,24] 

VHI Vegetation Health Index α × VCI + (1 − α) × TCI [14] 

TVDI 
Temperature Vegetation 

Dryness Index 
(LST − LSTmin)/(a + b × NDVI − LSTmin) [22] 

NDDI 
Normalized Difference 

Drought Index 
(NDVI − NDWI)/(NDVI + NDWI) [25] 

2. Study Area and Data Used 

2.1. Study Area 

The trans-boundary VGTB river basin is located in central Vietnam (Figure 1). The western part of 

the VGTB basin is mountainous and sparsely populated, while the flat delta area in the east, covering 

about one-fifth of the basin area, is dominated by agriculture and urban development. Da Nang (about 

one million inhabitants), Hoi An, and Tam Ky (both about 100,000 inhabitants each) are the main cities, 

while the entire basin houses about 2.5 million people [38,39]. The river basin covers most of Quangnam 

and Da Nang provinces and is about 10,350 square kilometers in size, among which Quang Nam makes 

up 95 percent of the entire VGTB river basin [30]. 

The topographic conditions are favorable for water resource development supporting agriculture 

and hydropower. Numerous reservoirs and weirs are located in the basin irrigating over 30,000 ha of rice 

and 10,000 ha of subsidiary crops and cash-crop trees. Until now a total of seven hydropower projects are 

in operation, while another 42 are under construction or in the planning phase [40]. 

The total annual rainfall in the area varies between 2100 mm in the coastal area to about 4100 mm in 

the southern mountains (based on rainfall data of eleven ground weather stations from 1982 to 2015). 

There is a pronounced seasonality, with on average 70 percent of rain falling in the monsoon season from 

September to December (see Figure 2). October and November have the heaviest rainfall, with on 

average 47 percent of the annual rainfall. February and March are the driest months with on average 

three percent of the annual rainfall. In May and June, there is a small rainfall peak, with an average of 10 

percent of the annual rainfall. 

 

Figure 1. Overview of the Vu Gia—Thu Bon basin. 
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Figure 2. Monthly precipitation for the period 1982 to 2015 from five ground stations. (Average in-situ 

precipitation is taken from eleven ground rainfall stations; Multiyear monthly precipitation in Ai Nghia, 

Hoi An and Kham Duc is from 1982 to 2013, the rest is from 1982 to 2015). Da Nang, Ai Nghia, Hoi An 

stations are in downstream area, whereas Tra My and Kham Duc stations are in upstream area. Source: 

Hydro-meteorological station for central Vietnam (http://kttvttb.vn/). 

The basin has a diversified economy of agriculture, forestry, and fishery (9%), manufacturing (24%), 

construction (9%), and a broad range of private and public services (56%) [38,39] (Figure 3). Industry and 

services are for a large part located in Da Nang, Hoi An, and Tam Ky, while in the rest of the basin there 

is a heavy dependence on agriculture. Although contribution of agriculture, forestry, and fisheries to the 

economy in Quang Nam dropped from 51% in 1996 to only 10% in 2016, more than 50 percent of the 

households are still dependent on agriculture for income and food supply [39]. In Quang Nam, in 2016, 

the area of agricultural production land was about 220,000 ha (20 percent of the total land), consisting of 

61,000 ha for paddy rice, 43,000 ha for miscellaneous gardens, and 116,000 ha for perennial crops; 

whereas the area of forestry land was 667,000 ha (63 percent of the total land) and 92,000 ha was urban 

land (nine percent of total land) [39]. The calendar for the main crop production, flood season, and dry 

periods is presented in Table 2 [30,41]. There are two main crops of paddy rice production: 

Winter-Spring crop from the end of December to the end of April and Summer–Autumn crop from early 

May to end of September. In years of normal weather conditions, dry period begins in February and 

ends with Xiaoman (small but sufficient) rain, which comes in May and June. Meanwhile, this period of 

years with dry spells lasts longer from January to July or even August. 

Table 2. Calendar of the main crops and climatic conditions in the Vu Gia Thu Bon (VGTB) river basin. 

Content Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Crop calendar 

Winter-Spring Rice  
            

Summer-Autumn Rice 
            

Corn 
            

Beans 
            

Other vegetables 
            

Climatic conditions 

Flood season 
            

Main flood period 
            

Normal dry period 
            

Dry period during dry spells 
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Figure 3. Land cover map of the region. Source: ESA 2010 and UCLouvain 

(http://due.esrin.esa.int/page_globcover.php). 

2.2. Data Used 

2.2.1. Moderate Resolution Imaging Spectroradiometer (MODIS) Data 

Moderate Resolution Imaging Spectroradiometer (MODIS) provides a new generation of land data 

products to support global change research and natural resource management. The products are being 

applied in a wide range of water issues, such as wetland flooding characterization [42] and drought 

monitoring [18,19,25]. In this study, the MODIS data were obtained from the cloud-based Google Earth 

Engine (GEE) platform. GEE, with the use of millions of servers around the world and cloud-computing 

technology and storage capability, provides online access to worldwide coverage of many 

Earth-observing remote sensing imagery and allows for the scientific community to work on millions of 

images and trillions of pixels in a parallel computing environment, including Landsat, MODIS, among 

others, dating back from 2000 in the case of MODIS data [43] (https://earthengine.google.com). 

The 16-Day composite MODIS Vegetation Indices product at a 250-m spatial resolution 

(MOD13Q1) [44] was used to calculate NDVI and NDWI at 250 m. MOD13Q1 V6 product from GEE 

includes six bands: NDVI, EVI, blue (469 nm), red (645 nm), near infrared (858 nm), and shortwave 

infrared (2105/2130–2155 nm). Since there is no 1600-nm-wavelength, which was reported to be the most 

sensitive to plant water content [45], the eight-day composite MODIS Surface Reflectance product at 500 

m spatial resolution (MOD09A1) [46] was used to calculate LSWI [16,17]. MOD91A1 V6 production from 

GEE includes seven bands: blue (459–479 nm), green (545–565 nm), red (620–670 nm), two near infrared 

(NIR1: 841–876 nm; NIR2: 1230–1250 nm), and two shortwave infrared (SWIR1: 1628–1652 nm, SWIR2: 

2105–2155 nm). MOD13Q1 includes vegetation indices quality control for both VIs indicators and surface 

reflectance bands, whereas MOD09A1 includes quality control flags for surface reflectance bands. 

The eight-day composite MODIS Land Surface Temperature (LST) product at 1-km spatial 

resolution (MOD11A2) [47] was used to obtain day land surface temperature. MOD11A2 includes 

quality control for daytime LST and emissivity. 

Because of differences in spatial resolution between NDVI, NDWI, LSWI and LST, reprojection 

function with the nearest neighbor resampling by default in GEE was used to resample NDVI, NDWI 

and LSWI to the same 1-km spatial resolution with LST. 

Since MODIS data providers actively encourage using quality band to screen out poor quality data 

[44,46,47], the quality reliability of MOD13Q1, MOD09A1, and MOD11A2 products was evaluated. For 

MOD13Q1, a pixel was considered reliable if VI quality flag (bit 0–1) was “Good data, use with 

confidence” (value 0). For MOD09A1, a pixel passed quality screening if Cloud State (bits 0–1) was 

“Clear” (value 0) and Cloud Shadow (bit 2) was “No” (value 0). For MOD11A2, if a pixel with 

“Mandatory QA (quality assurance) flags” (bit 0–1) band was “Pixel produced, good quality, not 

necessary to examine more detailed QA” (value 0), that pixel was good to be included in the study. One 
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of the limitations of MODIS data was cloud contamination. Cloud-screening and quality control flag 

process of MODIS data eliminates many pixels of 16-day and eight-day MODIS products. Therefore, the 

monthly NDVI, NDWI, LSWI, and LST derived from those products seem to be suitable to be used in 

this study. 

2.2.2. Precipitation & Soil Moisture Data 

In-situ precipitation is collected from the Hydro-meteorological station for central Vietnam 

(http://kttvttb.vn/). The data is available from January 1982 until December 2013 for eight stations (Ai 

Nghia, Hoi An, Cau Lau, Nong Son, Que Son, Cam Le, Tien Phuoc, and Kham Duc) and from January 

1982 until October 2015 for the remaining three Stations (Da Nang, Tam Ky, and Tra My). In addition, 

National Aeronautics and Space Administration (NASA)–U.S. Department of Agriculture (USDA) 

Global soil moisture, which is collected through GEE computing platform, is used. NASA-USDA 

derived soil moisture integrates satellite-derived Soil Moisture Ocean Salinity (SMOS) Level 2 soil 

moisture observations into a two-layer modified Palmer soil moisture model using a one-dimensional 

(1-D) Ensemble Kalman Filter (EnKF) data assimilation approach [48]. This dataset provides soil 

moisture information globally at 0.25° × 0.25° spatial resolution, and is available from January 2010 until 

now. 

2.2.3. Crop Yield and Forest Fires 

Drought is a recurrent phenomenon in VGTB. From 2001 until 2015, Buurman et al. [30] identified 

2002 until 2007, 2010, 2012, 2013, 2014, and 2015 as meteorological drought in the basin based on SPI-12 

of rainfall data from 1970 until 2015. Most of interviewed farmers in Quang Nam identified that drought 

seriously influenced their agricultural production, especially rice production [30,49]. 70 percent of 

interviewed farmers identified that the impacts of droughts and water shortage on rice cultivation 

became serious every year [49]. Rice plants are the most sensitive at the flowering and ripening stages 

and negatively affected by high temperatures. Rising temperatures, together with longer periods of low 

rainfall level, are identified as the reason for decreasing production yield of paddy rice [49,50]. 

Additionally, the growing land use change from natural forest to monoculture is also identified to cause 

faster runoff and to exacerbate seasonal water shortage [50]. 

Forests play an important role in regulating streamflow. Deforestation can reduce surface water 

quality, increase flow rate and flood frequency, and also reduce groundwater recharge, which is the 

essential source of river baseflow during drought season [51,52]. During the Vietnam War (1940–1970s), 

forest areas decreased rapidly because of chemical defoliants and napalm bombing [53]. After the war 

(1976–1990), forest cover continued to diminish because of logging, overharvesting of forest products, 

and the conversion of forests into agriculture by slash and burn method [54]. As a result, many of 

primary forests in central Vietnam were converted to fire-prone grassland, and are thus more susceptible 

to forest fires [55]. Frequent forest fires would lead to soil degradation and reduce the amount and 

quality of surface water, further exacerbating drought in the basin. 

Major historical drought events during the period 2001–2016 were identified from previous studies 

[30,49,56], in comparison with Statistical books of Quang Nam and Da Nang from 2001 until 2016 

[38,39,57–60]. From this comparison, the production yield of paddy rice in Winter-Spring crop seemed to 

be negatively affected by drought in 2010 and 2016. The yield in Summer-Autumn decreased in 2002, 

2005, and 2012. Also, drought was one of the factors facilitating the likelihood and spread of forest fires, 

which happened almost every year from 2001 to 2016. In 2008, there were no forest fires whereas 2002, 

2005, 2010, and 2012 saw the largest area of forest that was destroyed by fires (157 ha in 2002, 143 ha in 

2005, 119.5 ha in 2010, and 156.7 ha in 2012) [61]. Although drought was not the reason, illegal logging 

and forest destruction also happened in Quang Nam almost every year, with more areas being destroyed 

from 2011 until 2015 (Table 3 and Figure 4). 
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Table 3. Summary of paddy yield reduction by drought compared to the previous year. 

Year 
Winter Spring Rice Crop Summer Autumn Rice Crop 

Quintal/ha Quintal/ha 

2002 
 

−2.23 

2005 −1 −1.41 

2010 −1.24 
 

2012 
 

−1.15 

2016 −3.81 
 

Note: Source: [38,39,57–60]. 

 

Figure 4. The time series plot of forest area destroyed by fires and other reasons in the basin. Source: 

General Statistics Office of Vietnam (https://www.gso.gov.vn/). 

3. Vegetation Indices for Drought Monitoring 

3.1. Greenness Related Vegetation Indices 

3.1.1. Normalized Difference Vegetation Index (NDVI) 

From 16-day MOD13Q1 V6 images, monthly NDVI [12] were calculated using surface reflectance 

(ρ) from MODIS red and near infrared by dividing the difference between them and their sum. 

𝑁𝐷𝑉𝐼 =  


858
− 

645


858

 + 
645

 (1) 

where ρ645 and ρ858 are spectral reflectance measurements that were acquired in the red and 

near-infrared regions, respectively. 

NDVI ranges from −1 to +1, with +1 indicating healthy vegetation cover, lower values representing 

stressed vegetation, negative values representing open water or high moisture content, and 0.1 value, 

indicating bare soil. The valid data was used in the analysis is thus from 0.1 to 1.0 [62]. 

3.1.2. Vegetation Condition Index (VCI) 

Kogan [14] developed VCI to separate the weather component from the ecosystem component in 

NDVI values. By linearly scaling NDVI from zero, minimum NDVI, to 100, maximum NDVI for each 

grid cell and each month, the resulting VCI is defined as: 

𝑉𝐶𝐼 = 100  
𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥  + 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

 (2) 
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where NDVImax and NDVImin are the multiyear absolute maximum and minimum NDVI, respectively, of 

the studied period (January 2001 until December 2016); while NDVIi is monthly NDVI value at time of 

observation. The range of VCI is from 0 to 100, corresponding to changes from extremely unfavorable to 

optimal vegetation condition. VCI has been applied for monitoring drought and vegetation phenology 

changes in several studies [1,33,63]. 

3.2. Water Related Vegetation Indices 

3.2.1. Normalized Difference Water Index (NDWI) 

Gao [15] developed NDWI to estimate moisture condition of vegetation. Using the surface 

reflectance (ρ) from near infrared and shortwave infrared bands, which represents the changes of water 

content and mesophyll in vegetation canopies, Gao [15] quantified NDWI by normalizing the difference 

between the near infrared (858 mm) and shortwave infrared (1230 mm) bands. Meanwhile, Gu et al. [25] 

used the near infrared (858 mm) and shortwave infrared (2130 mm) bands to calculate NDWI. Since the 

study used the drought categories identified by Gu et al. [25], the calculation of NDWI was consistent 

with their study, as follows. 

𝑁𝐷𝑊𝐼 =  


858
− 

2130


858

+ 
2130

 (3) 

where ρ858 nm and ρ2130 nm are the spectral reflectance measurements that were acquired in the 

near-infrared and shortwave infrared regions, respectively, in previous studies. These bands are taken 

from MOD13Q1 V6 product. To be consistent with other indices, monthly NDWI was derived from 

16-day MOD13Q1 products. Gu et al. [25] found that NDWI had a quicker response to drought 

conditions than NDVI. The average NDWI was consistently lower than 0.3 under drought conditions 

and higher than 0.4 under non-drought conditions. Although it has been used for many regions, its use 

in Vietnam has not been explored. 

3.2.2. Land Surface Water Index (LSWI) 

Using eight-day MOD09A1 V6 product, monthly land surface reflectance (ρ) from the near infrared 

(NIR1: 841–876 nm) and the shortwave infrared (SWIR1: 1628–1652 nm) bands were used to calculate 

LSWI [16,17]. 

𝐿𝑆𝑊𝐼 =  


858
− 

1640


858

 + 
1640

 (4) 

LSWI was found to correspond well with the drought severities that were defined by the United 

States Drought Monitor in previous studies (18). An LSWI-based drought severity scheme is divided into 

four groups as extreme and exceptional drought (LSWI ≤ −0.1), severe and moderate drought (−0.1 < 

LSWI ≤ 0), abnormally dry (0 < LSWI ≤ 0.1), and no drought (LSWI > 0.1) [18]. Its application in Vietnam 

has not also been investigated. 

3.3. Temperature Related Vegetation Indices 

3.3.1. Land Surface Temperature (LST) 

The Land Surface Temperature (LST) that was computed from thermal infrared (TIR) bands 

provides valuable information on surface moisture conditions [20]. Many studies have found that LST 

indirectly provides information to assess evapotranspiration, vegetation water content, and soil moisture 

[23,64,65]. MOD11A2 provides day land surface temperature in 16-bit unsigned integer. Therefore, the 

digital number (DN) of LST is converted to Kelvin temperature and then Celsius degree by applying the 

following formula 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = (𝐷𝑁  0.02) − .02 . [47]. Monthly LST was derived from eight-day 

MOD11A2 products to be consistent with other indices.  
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3.3.2. Temperature Condition Index (TCI) 

NDVI values during the rainy season may be depressed. The interpretation of VCI should be 

cautious because vegetation stress in this season is attributed to excessive wetness, rather than 

insufficient moisture [14]. Therefore, Kogan [14] developed TCI to provide additional information about 

vegetation stress if it is due to dryness or excessive wetness. Similar to VCI, TCI is quantified, as follows. 

𝑇𝐶𝐼 = 100  
𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑖

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛

 (5) 

where LSTmax and LSTmin are the multiyear absolute maximum and minimum LST, respectively, of the 

studied period (January 2001 until December 2016); while LSTi is the monthly LST value at time of 

observation. The range of TCI is from 0 to 100, corresponding to changes from extremely unfavorable 

(high temperature) to optimal (low temperature) vegetation condition. 

3.4. Combined Vegetation Indices 

3.4.1. Vegetation Health Index (VHI) 

Combining the information about vegetation condition from VCI and TCI, Kogan [14] developed 

the Vegetation Health Index (VHI) for better drought detection, which was also used in many studies to 

monitor and detect drought in different regions [33,63,66]. The validity of VHI is based on the 

assumption that NDVI and LST at a given pixel will vary inversely over time, with variation in VCI and 

TCI driven by local moisture condition [67]. However, Karnieli et al. [67] found that NDVI and LST are 

not always and were everywhere negatively correlated. It is actually dependent on the season of year, 

time of day, vegetation type, and climatic characteristics [67,68]; thus, it is recommended to examine this 

relationship before interpreting the VHI results [68]. Accordingly, the relationship between NDVI and 

LST were investigated before calculating VHI. VHI is computed by: 

𝑉𝐻𝐼 = 𝛼 ×  𝑉𝐶𝐼 + (1 −  𝛼) × 𝑇𝐶𝐼  (6) 

The weight of “α” depends on different conditions between temperature and precipitation. In case 

of unknown moisture conditions, “α” can be set to 0.5 so VCI and TCI are equally weighted to calculate 

VHI. The classification scheme for drought monitoring based on VHI is divided into five groups as 

extreme drought (VHI < 10), severe drought (10 < VHI < 20), moderate drought (20 < VHI < 30), mild 

drought (30 < VHI < 40), and no drought (VHI > 40) [69]. 

3.4.2. Normalized Difference Drought Index (NDDI) 

Combining NDVI and NDWI, Gu et al. [25] developed the Normalized Difference Drought Index 

(NDDI), which has been used for drought monitoring in many areas [25,70,71]. 

𝑁𝐷𝐷𝐼 =  
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑊𝐼

𝑁𝐷𝑉𝐼 + 𝑁𝐷𝑊𝐼
 (7) 

NDDI ranges from −1 to 1. High NDDI values represent drought conditions, in which both NDVI 

and NDWI have low values (NDVI < 0.5 and NDWI < 0.3), while low NDDI values represent 

non-drought conditions, in which both NDVI and NDWI have higher values (NDVI > 0.6 and NDWI > 

0.4). Since NDDI incorporates information from both vegetation vitality and water content, NDDI is a 

more sensitive indicator of drought than NDVI and NDWI alone, for drought monitoring in grassland in 

United States [25] and crop conditions in China [70]. There are no universal drought categories that are 

designed by NDDI, some studies have selected 0.5—third quartile of NDDI range—as drought threshold 

[72]. Therefore, in this study, drought threshold is based on anomaly from the range of NDDI values in 

each location. 
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4. Methodology 

4.1. Calculation of VIs 

Monthly drought intensity from January 2001 until December 2016 in VGTB river basin was 

calculated using six VIs, including NDWI, LSWI, VCI, TCI, VHI, and NDDI, with the support of 

cloud-based GEE computing platform. In addition, drought assessment for areas with different 

vegetation types was also undertaken, including rice paddy fields (grey shaded area in Figure 3) and 

forest areas (in Tra My—located in Thu Bon subbasin and in Kham Duc—located in Vu Gia subbasin), 

which are also representatives of downstream and upstream parts, respectively, of the VGTB river basin. 

The relationship between LST and NDVI was examined before computing VHI to ensure that VHI could 

be used in this area [67]. Therefore, the linear regression of pixel-based NDVI and LST that were derived 

from two pairs of MODIS products (First pair: MOD13Q1 and MOD11A2, Second pair: MOD09A1 and 

MOD11A2) for monthly averages during the study period was investigated. 

4.2. Verifying VI Results with Precipitation and Soil Moisture 

To compare the results of six VIs, first, the Pearson’s correlation coefficient, which is the most 

widely used test statistics, was used to examine the linear relationship between VIs. In addition to the six 

main VIs, NDVI, LST, in-situ precipitation, and NASA-USDA—derived soil moisture (assimilated 

remote sensing with ground weather data) were also included to further see the collinearity between 

them. The monthly time series of those variables from January 2001 until December 2016 were derived at 

the corresponding locations of rice paddy fields and forest areas. Each index is paired with all other 

indices, resulting in a 10 by 10 matrix of correlation coefficient and p-value of their statistical significance 

for each location. Monthly in-situ precipitation was available from January 2001 until October 2015, 

whereas NASA USDA—derived soil moisture was from January 2010 until December 2016. Therefore, 

the correlation test between precipitation and other variables, as well as between soil moisture and other 

variables had fewer observations than other pairs. 

Since VIs are indirect estimates of moisture availability, each targeted VI was compared with 

precipitation and soil moisture data to verify the result of each VI. Given the coarse spatial resolution of 

NASA-USDA soil moisture data (0.25° × 0.25°) and the small entire area of VGTB basin, pixel-based 

multiple linear regression between the three datasets would have fewer sample observations. The 

average monthly time series of each index was thus used, including the monthly time series of six VIs, 

in-situ precipitation, and NASA-USDA soil moisture in the rice paddy fields and forest areas. Since 

NASA-USDA soil moisture was only available from January 2010 until now and in-situ precipitation 

was available until October 2015, the study period for this test was from January 2010 until October 2015. 

4.3. Verifying VI Results with Crop Yield and Forest Fires 

Examining whether droughts that were identified by VIs caused negative impacts on agriculture 

and forest fires in the region, the drought intensity values that were computed by six VIs were used to 

compare with the historical drought events and impacts on paddy crop production and forest fires. The 

years with the highest negative impacts on crop and forest fires in the past were used to compare with 

drought years identified by six VIs. They included 2002, 2005, 2010, 2012, and 2016 for the rice paddy 

fields and 2002, 2003, 2005, 2010, and 2012 for the forest areas. For each event, drought characteristics 

were evaluated by identifying drought onset, duration, and intensity. To identify drought onset and 

duration, start month, and end month (occurrence) of each drought event (moderate, severe, and 

extreme drought) was identified for each VI. No mild drought was considered because only droughts 

resulted in the negative impact on crop yield and the high amount of forest areas affected by fires were 

taken in account. Drought duration represents the maximum number of consecutive months of index 

values showing moderate, severe, and extreme drought events between start and end month. Intensity is 

the index value of each VI. Mean intensity and maximum intensity of drought are the average and 

maximum index values within the maximum duration of examined drought events. In addition, the 

number of drought months is the number of months that VIs identify them as drought (mild, moderate, 
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severe, and extreme drought). Maximum duration is the maximum number of consecutive months 

showing all kinds of droughts. Based on these attributes, each VI is compared and verified as to whether 

they reflected the impacts of drought years in the basin. 

5. Results and Discussion 

5.1. VIs Based Drought Identification 

The time series (January 2001 until December 2016) of each VI were produced for two areas with 

different vegetation types: rice paddy fields and forest areas (in Tra My and Kham Duc). Given similar 

results of forest areas in Tra My and Kham Duc, only results that were obtained at the rice paddy fields 

and forest areas in Tra My were presented. To validate the result of VHI, which is based on assumption 

of negative correlation between NDVI and LST, the linear relationship of their monthly averages was 

examined. In this study, NDVI can be derived from both MOD13Q1 and MOD09A1, whereas LST can be 

obtained from MOD11A2. Therefore, simple regression tests were undertaken for two pairs of NDVI and 

LST at the pixel level during the study period (First pair: MOD13Q1 and MOD11A2, Second pair: 

MOD09A1 and MOD11A2) (Figure 5). From the Figures 5 and 6, for both pairs, NDVI and LST varied 

inversely over most of the months during a year, except July, which saw a positive relationship between 

them. For MOD13Q1 and MOD11A2, NDVI and LST had a statistically significant relationship with at 

least 95 percent confidence level, even for its positive relationship in July. LST accounted from 30 to 50 

percent of variability in NDVI in dry months (December until May) and less than 20 percent of variance 

in NDVI when the rainy months come (July to November). For MOD09A1 and MOD11A2, although 

NDVI and LST had a statistically significant relationship for eleven months (except September), LST 

explained little of the variability in NDVI in most of the months. Accordingly, VHI product derived from 

MOD09A1 and MOD11A2 was not recommended to be used, whereas the interpretation of VHI derived 

from MOD13Q1 and MOD11A2 from July to November should be used with caution [68]. All the VHI 

from this paper was thus calculated by using MOD13Q1 and MOD11A2 products. 

 

Figure 5. Correlation Coefficient and Regression R Square between Normalized Difference 

Vegetation Index (NDVI) and Land Surface Temperature (LST) derived from (1) MOD13Q1 and 

MOD11A2 and (2) MOD09A1 and MOD11A2. 
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Figure 6. The time series plot of NDVI and LST for rice paddy fields and forest areas in Tra My. 

Figure 7 presents the performance of VIs on identifying drought events happening from 2001 until 

2016 in the VGTB basin. In the rice paddy field areas, most of the VIs showed that drought was a 

recurring phenomenon and happened within a short period of time, particularly in April and May, 

almost every year with different intensity. April and May were also the months having less rainfall and 

higher temperature in the region, causing the area to be more vulnerable to droughts during these 

months (Figures 2 and 6). NDWI showed more severe drought intensity in April and May in 2002, 2005, 

and 2016, whereas LSWI depicted these severe droughts in the same months in 2001, 2002, 2003, 2006, 

2010, 2011, and 2016. VCI showed vegetation stress in April, May, and sometimes in October and 

November every year. The latter two months (October and November), which were during the flood 

season, were more related to excessive wetness rather than drought. Kogan [14] also found that VCI 

relied on NDVI, which is normally depressed due to excessive wetness and long cloudiness, and thus it 

should be interpreted with caution. TCI indicated that droughts happened in April and May every year. 

Particularly from 2011 until 2016, more drought months were found during dry season (from April until 

August) because months with higher temperature (LST) lasted longer since 2011 (Figure 6). VHI also 

found droughts that were happening in April and May every year with different intensity. In addition to 

April and May, droughts were also found in September in 2006, 2014, and 2015, with lesser intensity. 

Higher intensity was found in 2002, 2003, 2005, 2010, and 2014. Since NDDI values range from −1 to 1, the 

time series average value of NDDI is significantly lower than the actual value. Given a big range between 

the lowest and highest NDDI value (0.55), whereas there were no common NDDI drought categories, 

any NDDI value above its third quartile of NDDI range (0.26) in the rice paddy fields is considered as 

water stress for vegetation. With this threshold, NDDI identified water stress for vegetation in April 

2002, April 2003, April 2005, April and May 2010, and May 2016. 

In the forest areas, VCI, TCI, and VHI found vegetation stress, whereas NDWI, LSWI, and NDDI 

did not recognize any stress in these areas. NDWI, LSWI, and NDDI had very small range of intensity 

values, thus there was no abnormal condition found by these indices. In contrast, VCI found forest stress 

in April 2002, February 2006, January 2009, and April 2016. TCI was more sensitive to temperature and 

found vegetation stress in longer periods (April–June) almost each year. Particularly, dry seasons in 2001, 

2002, 2005, 2012, 2014, and 2016 saw higher vegetation stress. Similarly, VHI found higher stress in May 

of 2001, 2002, 2010, 2011, 2012 and 2016. From Figures 2 and 6, temperature was mostly higher in May 

each year when rainfall was also much lower. NDWI and LSWI, which are more sensitive to vegetation 

water content, however, did not detect vegetation stress in the forest areas. Ogashawara and Bastos [73] 

found that NDWI was less correlated with temperature. As LSWI is also a water based VI, similar 

explanations can be assumed. Although NDDI incorporates both information of vegetation vitality and 

water content, it was not able to detect vegetation stress in this study. As VCI attempts to directly 

measure vegetation health, which could be affected by many factors (water, insects, disease, nutrients, 



Water 2018, 10, 659 14 of 24 

 

etc.), vegetation stress that was found by VCI could be caused by other reasons than lack of water. TCI 

and VHI had good agreement in detecting vegetation stress. Forests in central Vietnam are mostly 

fire-prone tropical grasslands, which are sensitive to temperature and have deeper root systems than 

croplands [74]. They are thus less sensitive to rainfall because they have higher available water holding 

capacities, yet they are more sensitive to temperature. Since both TCI and VHI were calculated using 

temperature data, they could capture vegetation stress affected by higher temperature. This means that 

VIs that are sensitive to temperature can better detect droughts in the forest areas in the VGTB basin. 

 

 
(a) 
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(b) 

Figure 7. The time series plot of VIs for (a) rice paddy fields; and (b) forest areas. Vegetation indices (VIs) 

include Normalized Different Water Index (NDWI), Land Surface Water Index (LSWI), Vegetation 

Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), and 

Normalized Different Drought Index (NDDI). 

5.2. Correlation between VIs and Other Data 

Paired time series of intensity values provided by six VIs (NDWI, LSWI, VCI, TCI, VHI, NDDI) and 

other four variables (NDVI, LST, in-situ precipitation, and NASA-USDA derived soil moisture) were 

compared to examine the similarity and the difference between them. In addition, each of six VIs were 

compared with monthly in-situ precipitation and assimilated soil moisture to investigate whether the 

variability of drought intensity could be explained by the changes in precipitation and soil moisture. To 

do this, first, the Pearson’s correlation coefficients and their statistical significance between each pair of 10 

variables were computed. Secondly, multiple linear regressions between each VI and independent 

variables (monthly in-situ precipitation and NASA-USDA soil moisture) were calculated. These 

comparisons were undertaken for two vegetation types: rice paddy fields and forests areas (in Tra My 

and Kham Duc). Given the similar results of forest areas in both forest locations, the results at the rice 

paddy fields and forest areas in Tra My are shown in Tables 4 and 5. 
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Table 4. The Pearson’s Correlation coefficient and p-values of statistical test matrix computed between the 

paired values of VIs and other data (NDVI, LST, in-situ precipitation, and soil moisture) for (a) rice paddy 

fields and (b) forest areas. 

(a) Rice paddy fields 

Categories Variables 

Examined VIs Other Information 

NDWI LSWI VCI TCI VHI NDDI NDVI LST 
In-Situ  

Precipitation 

Examined  

VIs 

LSWI 0.82                 

VCI 0.81 0.79               

TCI 0.30 0.32 0.14             

VHI 0.78 0.77 0.78 0.71           

NDDI −0.57 −0.31 −0.01 −0.43 −0.31         

Other  

information 

NDVI 0.80 0.78 0.99 0.11 0.76 0.02       

LST −0.31 −0.32 −0.13 −1.00 −0.71 0.45 −0.10     

In-situ  

Precipitation 
0.14 0.05 −0.18 0.11 −0.04 −0.48 −0.23 −0.15 

  

SM 0.33 0.17 −0.06 0.52 0.32 −0.65 −0.10 −0.56 0.66 

(b) Forest areas 

Categories Variables 

Examined VIs Other Information 

NDWI LSWI VCI TCI VHI NDDI NDVI LST 
In-Situ  

Precipitation 

Examined  

VIs 

LSWI 0.84               

 VCI 0.74 0.68             

 TCI −0.21 −0.23 −0.27           

 VHI 0.54 0.41 0.74 0.44         

 NDDI −0.79 −0.61 −0.18 0.04 −0.14         

Other  

information 

NDVI 0.74 0.68 1.00 −0.27 0.74 −0.18     

 LST 0.21 0.23 0.27 −1.00 −0.44 −0.04 0.27   

 
In-situ  

Precipitation 0.24 0.24 0.23 0.25 0.35 −0.14 0.23 −0.25 

 
SM 0.39 0.37 0.39 0.37 0.59 −0.29 0.39 −0.37 0.57 

 

 

 

p > 0.05 

 

p < 0.05 

 

p < 0.01 

 

p < 0.001 
 

Table 4 presents correlation matrix of both correlation coefficients and p-value of their statistical test 

obtained at the rice paddy fields (Table 4a) and forest areas (Table 4b). Values of NDWI, LSWI, VCI, TCI, 

VHI, NDVI, precipitation, and soil moisture range from small to large corresponding to high water stress 

to normal condition whereas NDDI and LST show the reverse order. Correlations between NDDI or LST 

and other variables were thus expected to have negative coefficients. At the rice paddy fields, higher and 

statistically significant (p < 0.001) pairwise correlations were found between the following pairs: water 

related VIs (NDWI and LSWI) (r = 0.82); water related VIs (NDWI, LSWI) with greenness related VIs 

(VCI, NDVI) (r = 0.78~0.81); and, VHI with other VIs (NDWI, LSWI, VCI, TCI, LST) (r = 0.71~0.78) (Table 

4a). Medium and statistically significant (p < 0.001) pairwise correlations were observed between NDDI 

and other VIs (NDWI, LSWI, TCI, VHI, and LST) (r = 0.31~0.57). However, NDDI did not have any 

statistically significant relationship with greenness related VIs (VCI, NDVI). For TCI, except VHI, it had 

smaller correlations with other VIs (NDWI, LSWI, NDDI) (r = 0.30~0.43, p < 0.001) and no relation with 

VCI and NDVI. Most VIs (except TCI and NDDI) were sensitive to NDVI (r = 0.76~0.99). Both VHI and 

NDDI were more sensitive to LST (r = 0.45~0.71) than water VIs (r = 0.31 = 0.32). In correlation with 
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precipitation, only NDDI had a statistically significant relationship (p < 0.001) (r = −0.48). Correlations 

between soil moisture and other VIs ranked the highest with NDDI (r = −0.65, p < 0.001), then LST (r = 

−0.56, p < 0.001), TCI (r = 0.52, p < 0.001), and VHI (r = 0.32, p < 0.001). At the forest areas, pairs had high 

and statistically significant (p < 0.001) pairwise correlations included: water related VIs (NDWI, LSWI) (r 

= 0.84); water related VIs (NDWI, LSWI) with greenness related VIs (VCI, NDVI) (r = 0.68~0.74); and, 

NDDI with water related VIs (NDWI, LSWI) (r = −0.61~−0.79). VHI had statistically significant 

correlations (p < 0.001) with other VIs, except for NDDI (r = 0.44~0.74). Greenness VIs (NDVI, VCI) were 

more sensitive to water related VIs and VHI (r = 0.68~0.74) than other VIs. The sensitivity between 

temperature based VIs (TCI, LST) and VHI (r = 0.44) were the highest among other pairs. There were 

statistically significant relationships between most VIs (except NDDI) and precipitation, and between all 

VIs and soil moisture. Among them, VHI had the highest correlations with both precipitation (r = 0.35) 

and soil moisture (r = 0.59). 

Table 5 provides the summary of multiple linear regression results between each VI and 

hydro-meteorological data (soil moisture and precipitation) at two areas, rice paddy fields and forest 

areas. At the rice paddy fields, NDWI, VHI, TCI, and NDDI had statistically significant models with 

precipitation and soil moisture. Among them, NDDI had the highest significant R2 value. 49 percent of 

variability in NDDI could be explained by changes in both precipitation and soil moisture, whereas this 

number for TCI is 32 percent and 12 percent for VHI (Table 5). At the forest areas, NDWI, LSWI, VCI, 

and VHI had statistically significant relationships with both precipitation and soil moisture. VHI had the 

highest correlations with precipitation and soil moisture (r = 0.35~0.59) than other VIs (Table 4b), 

resulting in the highest variability of VHI (29 percent) could be explained by the changes in precipitation 

and soil moisture (Table 5). 

Apparently, most VIs in the same VIs groups had similar performance in both paddy fields and 

forest areas in VGTB, except for the combined VIs group (VHI and NDDI). Since VIs directly measure 

vegetation health, which is derived from NDVI, most of them had high correlations with 

greenness-based VIs (except temperature-based VIs and NDDI). The correlations between each VI and 

temperature-based VIs varied significantly between each pair. Similarly, there were also significant 

differences in the sensitivities of each VI to either precipitation or soil moisture. In the rice paddy fields, 

the more sensitive VIs were to precipitation, the better their variability could be explained by both 

precipitation and soil moisture. Shallow rooted paddy rice with low available water holding capacities 

responds quickly to water availability. Precipitation is thus the key factor contributing to vegetation 

stress in these areas. In this case, NDDI had the highest correlation with precipitation and the highest R2 

value in the linear regression model with precipitation and soil moisture. NDDI seems to better respond 

to drought conditions than other VIs in the rice paddy fields. NDDI was also found to have a stronger 

response to summer drought conditions than NDVI and NDWI in previous studies [25,70]. 

In the forest areas, the more sensitive VIs were to both LST and precipitation, the higher their 

variabilities could be explained by both precipitation and soil moisture. Forests in these areas are prone 

to high temperatures; therefore, temperature is the key factor contributing to vegetation stress. VHI had 

the highest correlation with LST and the highest R2 value in the linear regression model with 

precipitation and soil moisture. VHI seems to better monitor drought conditions that are more attributed 

to temperature stress in these forest areas than other VIs. This finding agrees with previous studies, 

which found that VHI could detect vegetation stress due to temperature [1] and estimate fire risks in 

forest areas [69]. 
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Table 5. Summary of multiple linear regression test between six VIs and other related data (in-situ 

precipitation and NASA-USDA assimilated soil moisture). 

Model Observation Multiple R 
R 

Square 

Adjusted  

R Square 
Intercept 

Soil Moisture- 

Slope 

Precipitation 

-Slope 

Rice paddy fields 

NDWI, P, SM 

model 
76.00 0.35 0.12 0.10 0.30 0.01 0.00 

LSWI, P, SM model 84.00 0.17 0.03 0.01 0.11 0.00 0.00 

VCI, P, SM model 77.00 0.10 0.01 −0.02 55.47 0.11 −0.29 

TCI, P, SM model 82.00 0.56 0.32 0.30 −25.75 4.62 −0.67 

VHI, P, SM model 77.00 0.34 0.12 0.09 15.46 2.27 −0.28 

NDDI, P, SM model 76.00 0.70 0.49 0.47 0.38 −0.01 0.00 

Forest areas 

NDWI, P, SM 

model 
49.00 0.36 0.13 0.09 0.42 0.00 0.00 

LSWI, P, SM model 65.00 0.40 0.16 0.13 0.15 0.00 0.00 

VCI, P, SM model 49.00 0.35 0.12 0.09 20.79 2.03 0.01 

TCI, P, SM model 61.00 0.29 0.09 0.05 28.64 1.10 0.01 

VHI, P, SM model 49.00 0.56 0.32 0.29 21.13 1.73 0.00 

NDDI, P, SM model 49.00 0.25 0.06 0.02 0.13 0.00 0.00 
 

 

  p > 0.05   p < 0.05   p < 0.01   p < 0.001 
 

5.3. Comparison of VIs Result with Crop Yield and Forest Fires 

To examine whether droughts that were identified by VIs are linked to historical drought impacts 

on paddy rice production and forest fires, the drought intensity values that were computed by six VIs 

were used to identify start and end date, maximum consecutive duration, mean intensity, and maximum 

intensity for two areas: rice paddy fields and forest areas in Tra My. In the rice paddy fields, all of the VIs 

found moderate, severe, and extreme agricultural droughts in 2002, 2003, and 2005 (Table 6a). 

Meanwhile, NDWI, VHI, and NDDI had the same results in identifying severe and extreme droughts in 

April 2002, April 2003, May 2005, and April 2016. From Table 3, production yield of paddy rice in the 

basin showed yield reduction compared to the previous year in 2002, 2005, 2010, 2012, and 2016. 2003 

was a historical drought year in the entire central Vietnam that most of the key mainstream media 

reported its progresses and impacts [75]. Fortunately, although its intensity was similar to the historical 

1998 drought in the region, no significant drought impacts on crop production were reported due to 

immediate interventions by mass organizations and government that helped to prevent substantial 

drought impacts [76]. 2010 and 2012 was also found as drought year by NDWI, LSWI, VHI, and NDDI 

with lesser intensity. Among all the VIs, NDDI found the least drought months and the least maximum 

consecutive drought duration, whereas TCI and VHI found the most number of drought months and 

longer maximum duration (Figures 8 and 9). Higher sensitivity to temperature (r = −0.71~−1) and less 

sensitivity to precipitation (r = −0.04~0.11) of TCI and VHI (Table 4a) could be the reason why TCI and 

VHI found more drought months than other indices. Meanwhile, rice paddy is more sensitive to water 

availability than temperature (indirect estimate of soil moisture). NDDI, which has higher correlation to 

precipitation (r = −0.48) than other VIs, and thus it better captured droughts and their impacts on crop 

yield of paddy rice. Combining this result with previous results in Section 5.2, the results of NDDI were 

well explained by both hydro-meteorological data and impact data on crop yield. Therefore, NDDI could 

be a more suitable index in identifying droughts in the rice paddy fields. 

In the forest areas, as Figure 7b pointed out that NDWI, LSWI, and NDDI did not find any 

vegetation stress, Table 6b only summarizes the drought years that were identified by VCI, TCI, and 

VHI. In spite of being located in the Anamite Range Moist Forest that was featured by Tropical and 

Subtropical Moist Broadleaf Forests, the forest area here has experienced frequent forest fires (Figure 4). 

Forest destruction, which happened in the past due to the war, has further increased recently since 2011. 

Therefore, forest areas in the basin are more vulnerable to forest fires. The highest drought intensity 

(severe drought) was in 2002 (VCI = 14.43; TCI = 10.44; VHI = 25.24), which corresponded to the highest 
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forest areas that were destroyed by fires (157 ha). High drought intensity was also found in 2003, 2005, 

2010, and 2012 (VCI = 28.97~39.09; TCI = 14.03~34.26, VHI = 32.4~36.57) that matched well with the high 

amount of forest areas destroyed by fires in the region (Figure 4). Since fire-prone grasslands in the area 

are more prone to temperature anomalies, any VI more sensitive to temperature would better explain the 

drought impacts. In this case, VHI and TCI were more sensitive to temperature (r = −0.44~−1), and thus 

they better identified drought years and their impacts in the forest (Table 4). Accordingly, TCI found the 

most number of drought months and maximum duration, which was followed by VHI (Figures 8 and 9). 

However, since there was no available information on locations and dates of fires except the yearly forest 

areas that were destroyed by fires, it is unknown if drought intensity values correspond to a period 

preceding fires or the presence of burned vegetation. Further studies are needed to examine the 

development of forest fires in these areas. From the previous section results, VHI was found to be better 

explained by changes in precipitation and soil moisture. One of the unique VHI by-products compared 

to other VIs was its capabilities to estimate fire risks, which could be the reason of VHI intensity values 

that are reflected in the basin [69]. Therefore, VHI could be a better index in identifying droughts in the 

forest areas in the basin. 

 

Figure 8. Number of drought months identified by six VIs at different locations. 

 

Figure 9. Maximum duration of droughts identified by six VIs at different locations. 
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Table 6. Summary of historical droughts identified by six VIs for (a) rice paddy fields and (b) forest areas. 

(a) Rice paddy fields 

Drought Index NDWI LSWI VCI TCI VHI NDDI 

Dry season 2002 (January 2001–September 2002) 

Occurrence (Duration) Apr–May (2) Apr–May (2) Apr–May (2) May–Aug (4) Apr–May (2) Apr–Apr (1) 

Max Intensity (Mean intensity) 0.2 (0.24) 0 (0.05) 10.67 (16.09) 17.98 (32.52) 15.8 (22.41) 0.39 (0.39) 

Dry season 2005 (December 2004–September 2005) 

Occurrence (Duration) 
 

May–May (1) 
 

May–Sept (2) May–May (1) Sept–Sept (1) 

Max Intensity (Mean intensity) 0.09 (0.09) 
 

19.52 (28.18) 31.14 (31.14) 0.2 (0.2) 

Dry season 2010 (December 2009–September 2010) 

Occurrence (Duration) Apr–May (2) Apr–May (2) Dec–May (2) Apr–Sept (4) Apr–May (2) Apr–Apr (1) 

Max Intensity (Mean intensity) 0.24 (0.26) −0.01 (0.04) 18.88 (23.62) 15.09 (28.8) 19.14 (23.69) 0.55 (0.55) 

Dry season 2012 (December 2011–September 2012) 

Occurrence (Duration) May–May (1) May–May (1) May–May (1) May–Sept (5) May–May (1) May–May (1) 

Max Intensity (Mean intensity) 0.27 (0.27) 0.01 (0.01) 18.88 (23.61) 21.52 (31.9) 24 (24) 0.27 (0.27) 

Dry season 2016 (December 2015–September 2016) 

Occurrence (Duration) Apr–Apr (1) Apr–May (2) Dec–May (2) Apr–Aug (5) Apr–May (2) Apr–Apr (1) 

Max Intensity (Mean intensity) 0.2 (0.20 0 (0.03) 26.52 (28.05) 24.77 (31.72) 24.73 (27.53) 0.4 (0.4) 
 

(b) Forest areas 

Drought Index VCI TCI VHI 

Forest Fire in 2002 

Occurrence (Duration) Jan–Jan (1) Mar–Aug (6) Apr–May (2) 

Max Intensity (Mean intensity) 14.43 (14.43) 10.44 (26.01) 25.24 (25.76) 

Forest Fire in 2003 

Occurrence (Duration) Apr–Apr (1) Apr–Sept (3) Apr–Apr (1) 

Max Intensity (Mean intensity) 39.09 (39.09) 20.94 (27.86) 35.94 (35.94) 

Forest Fire in 2005 

Occurrence (Duration) Jan–Jan (1) Apr–Sept (5) Apr–Apr (1) 

Max Intensity (Mean intensity) 24.82 (24.82) 14.03 (14.03) 36.67 (36.67) 

Forest Fire in 2010 

Occurrence (Duration) May–May (1) May–Jun (2) May–May (1) 

Max Intensity (Mean intensity) 30.54 (30.54) 34.26 (35.28) 32.4 (32.4) 

Forest Fire in 2012 

Occurrence (Duration) Jan–Feb (2) Apr–Aug (5) Jun–Jun (1) 

Max Intensity (Mean intensity) 28.97 (33.85) 17.29 (26.76) 32.51 (32.51) 
 

6. Conclusions 

In a highly dynamic, tropical catchment, like Vu Gia Thu Bon, where drought is a recurring 

phenomenon with persistent negative impacts, while agriculture and forestry (plantation) are still the 

main livelihoods for the majority of the population, effective drought monitoring and early detection is 

imperative. The study examined multiple satellite based indices to effectively monitor agricultural 

droughts from January 2001 until December 2016 for the two main areas with different vegetation types: 

rice paddy fields and forest areas in the basin. Six vegetation indices (VIs) representing the four main 

groups: greenness-based VIs (VCI), water-based VIs (NDWI, LSWI), temperature-based VIs (TCI), and 

combined VIs (VHI, NDDI), were tested based on their sensitivities with precipitation, soil moisture, and 

their linkage with the negative impacts on agriculture and forest fires. 

In each location, there were significant differences in correlations of each VI to temperature, 

precipitation, or soil moisture. Shallow rooted paddy rice with low available water content is more 

sensitive to the water availability. Precipitation is thus the key factor contributing to vegetation stress in 

the rice paddy fields. NDDI was found to have the highest correlation with precipitation, and captured 

the historical drought impacts on crop yield well. Meanwhile, deeper rooted fire-prone grasslands are 

more sensitive to temperature, thus temperature is the main factor that is contributing to vegetation 

stress in the forest areas in the basin. VHI was found to have a high correlation with temperature and its 

variability was statistically explained by changes in both precipitation and soil moisture. It also well 

captured the historical drought impacts on forest fires, although whether it is related to risks preceding 

fires or presence of burned vegetation is unidentified. Future studies are required to examine the 

development of forest fires in the basin. 
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Accordingly, satellite-based vegetation indices would be an effective tool for monitoring 

agricultural droughts in the challenging Vu Gia Thu Bon catchment, which is ecologically dynamic, 

poorly gauging, recurrently, and scatteredly drought impacted. It was found that combined vegetation 

indices were more sensitive drought indicators in the basin. However, depending on the vegetation type, 

specific indices would be more applicable. Particularly, in the agricultural land, NDDI was 

recommended to be used, whereas for forest land, VHI should be applied. 
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