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Abstract: Typhoons are the main type of natural disaster in Korea, and accurately predicting 

typhoon-induced flood flows at gauged and ungauged locations remains an important challenge. 

Flood flows caused by six typhoons since 2002 (typhoons Rusa, Maemi, Nari, Dienmu, Kompasu 

and Bolaven) are modeled at the outlets of 24 Geum River catchments using the Probability 

Distributed Moisture model. The Monte Carlo Analysis Toolbox is applied with the Nash Sutcliffe 

Efficiency as the criterion for model parameter estimation. Linear regression relationships between 

the parameters of the Probability Distributed Moisture model and catchment characteristics are 

developed for the purpose of generalizing the parameter estimates to ungauged locations. These 

generalized parameter estimates are tested in terms of ability to predict the flood hydrographs over 

the 24 catchments using a leave-one-out validation approach. We then test the hypothesis that a 

more complex generalization approach, the Generalized Estimating Equation, which includes 

properties of the typhoons as well as catchment characteristics as predictors of PDM model 

parameters, will provide more accurate predictions. The results show that the predictions of 

Generalized Estimating Equation are comparable to those of the simpler, conventional regression. 

The simpler approach is therefore recommended for practical applications; however, further 

refinements of the Generalized Estimating Equation approach may be explored. 
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1. Introduction 

Typhoons are the main natural disaster in Korea. In recent years, Korea has experienced an 

increased frequency and strength of typhoons and an increase in the resulting damage [1,2]. The 

maximum annual flood peak historically is often caused by heavy rainfall in the wet season 

(“Changma”) as well as typhoons; however, since 2002, typhoons are perceived to have become the 

main source of flood risk, while the Changma has become less influential in Korea. Estimation of 

typhoon-induced flood hydrographs and associated flood peaks is therefore considered to be 

increasingly important for engineering applications, such as design of civil engineering structures, 

stabilization of river banks and flood warning and management. 

Gauged flood hydrographs are not available for most of the medium to small-sized catchments 

in Korea. The need to predict flows at locations where observed flows do not exist for model 

calibration and validation, i.e., the ungauged catchment problem, is common [3]. The common 
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approach to this problem is selection of a preferred rainfall-runoff model followed by spatial 

generalization (regionalization) of its parameters. The regionalization methods depend on nature of 

the selected rainfall-runoff model and the catchments. Blöschl et al. [3] grouped the methods into 

three main categories: (a) a-priori estimation of model parameters from catchment characteristics (e.g., 

[4]); (b) transfer of calibrated model parameters from gauged catchments (e.g., [5]); (c) constraining 

model parameters by regionalized runoff characteristics and proxy data (e.g., [6]). 

The literature on the topic of flood hydrograph regionalization is very well developed. Salinas 

et al. [7] summarize a comparative assessment of 20 flood prediction studies involving 3023 

catchments, concluding that flood flow predictions in ungauged catchments are more accurate in 

humid than in arid catchments. However, in this and the broader literature, flood studies in Asian 

monsoon areas are not well represented compared to other humid areas. Although a number of 

studies have analyzed typhoon rainfall [8–11], there are particularly few studies focusing specifically 

on flood hydrology associated with East Asian typhoons combined with mountainous environments. 

One significant study was by [12], who analyzed how flood events in Korea are controlled by the 

mean, standard deviation, maximum rainfall intensity of the hourly rainfall time series. The 

typhoons’ maximum rainfall intensity was found to be an important factor affecting the flood 

responses. 

Classic statistical regionalization studies are based on the premise that there are predictable 

differences in rainfall-runoff model parameters between catchments, and that there are no changes 

in parameters between flood events. This means that the estimated model parameters are averaged 

over flood events to one representative parameter set per catchment [13,14]. This may underestimate 

uncertainty especially when large differences in rainfall properties between events, such as in 

typhoons, create response differences that cannot be captured by a simple rainfall-runoff model. This 

problem can be addressed empirically, by extending the classical regionalization to include inter-

event variations in model parameters. One formal approach to do this is the Generalized Estimating 

Equation (GEE) method. GEE was proposed by [15] as an extension of the Generalized Linear Model 

(GLM) to longitudinal data analysis using quasi-likelihood estimation. GEE is widely used in 

biomedical studies to analyze the repeated measurements from a subject or correlated observation 

from a cluster [16,17]; however, the GEE method has not previously been applied in the rainfall-

runoff regionalization context. 

The aim of this study is to develop a method for prediction of typhoon-induced flood 

hydrographs for ungauged catchments, using a case study of six typhoon flood events in 24 Geum 

River catchments, Korea. The relationship between typhoon properties and flood hydrograph 

properties is explored empirically, as well as the ability to regionalize a simple rainfall runoff model 

across the catchments by using conventional regression and the GEE method. 

2. Case Study Data and Preliminary Data Analysis 

2.1. Geum River Region 

The Geum River is one of the major rivers in Korea, draining the mid-western region of the 

Korean peninsula (Figure 1). Korea has a temperate climate with four distinct seasons, and the 

average annual temperature and rainfall in this region are 11.5 °C and 1285 mm, respectively [18]. 

The Geum River region experiences heavy rainfall in the summer from June through September 

including typhoons and tends to be cold and drier in the winter, although heavy snowfalls are 

common [19]. The region has a complex climate, influenced by both oceanic and continental climates. 

The 24 gauged catchments used in the case study are shown in Figure 1. These catchments are 

relatively natural with the main land uses being agriculture and natural woodland. The catchments 

shown in white in Figure 1, although they include some water level stations, are not included in the 

analysis because their flood flows are heavily influenced by flood control effects of Daechung 

Multipurpose Dam and Geum River estuary barrier. 
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Figure 1. Study catchments; Geum River region, Korea. 

Catchment Characteristics (CCs) are the basic descriptors that support understanding of 

differences between catchments. In this study, eight CCs were selected from a previous study of 

hydrological similarity [14]. The values of the selected CCs are given in Table 1. 

- Area is size of the catchment, which affects flood volumes; 

- ALTBAR is the mean altitude of catchment above sea level; 

- DPS is the mean of the catchment slope, which affects surface runoff response times; 

- DD is the Drainage Density, a measure of the total length of all the rivers in a catchment area divided 

by the total area of the catchment, which affects how efficiently a catchment is drained; 

- FF is the Form Factor, the ratio of the catchment area to the squared value of the total catchment 

drainage length. It varies from zero (in a highly elongated area) to 1 (in a perfectly circular area), 

affecting runoff response times. DD and FF are calculated based on equations provided by National 

Water Resources Management Information System (WAMIS) in Korea; 

- Curve Number (CN) is an empirical parameter for predicting direct runoff, developed by the US Soil 

Conservation System, and affects the volume of runoff during a storm [20]; 

- FARL is Flood Attenuation Factor by Reservoir and Lakes, estimated based on the reservoir data and 

the catchment terrain database in WAMIS, affecting flood attenuation [21]; 

- SAAR is Standard Annual Average Rainfall in the period 1981 to 2010, which represents effects of 

long-term catchment wetness. 
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Table 1. Catchment characteristics of the 24 catchments. 

Catchments 
Area 

(km2) 

ALTBAR 

(m) 

FF  
() 

DD 

() 

SAAR 

(mm) 

FARL 

() 

CN 

() 

DPS 

(°) 

PG  
() 

Bukil C1 907.1 151 0.3 2.1 1222 0.92 67.4 9.7 4 

Boksu C2 162.5 229 0.1 4 1274 1 70.8 15.2 2 

Cheoncheon C3 291.2 555 0.3 3.3 1093 0.96 65.4 14.6 1 

Cheongju C4 166.3 159 0.2 2.4 1192 0.98 71.7 9.7 2 

Cheongseong C5 491 270 0.1 3.1 1198 0.95 65.6 12.9 2 

Donghyang C6 165.4 647 0.2 1.7 1231 0.96 60 16.2 3 

Gideagyo C7 353.1 284 0.3 3.1 1181 0.97 65.4 12.9 1 

Guryong C8 208.2 173 0.1 3 1258 0.99 72.3 12.3 2 

Gasangyo C9 183.9 141 0.3 1.7 1199 0.95 68.8 6.3 2 

Habgang C10 1853 136 0.2 2.4 1225 0.95 69.1 8.4 6 

Indong C11 58.7 217 0.1 3.4 1244 1 64.6 14.7 2 

Juengpyung C12 124.1 150 0.4 2.4 1206 0.96 69.3 8.6 2 

Mihogyo C13 1596 137 0.3 2.4 1192 0.98 63 9.7 2 

Muju C14 390.2 615 0.1 1.5 1154 0.99 59 18.9 4 

Nonsan C15 467.7 148 0.2 2.3 1318 0.91 62.5 11.4 4 

Ochang C16 564 154 0.2 1.9 1221 0.91 66 9.8 2 

Simcheon C17 664.3 372 0.2 2.2 968 0.98 61 14.7 2 

Seokdong C18 162.4 78 0.2 2.7 1271 0.96 66.2 8.1 3 

Sangyegyo C19 464.9 272 0.2 3.1 1195 0.96 65.6 12.9 2 

Songcheon C20 623.4 385 0.2 2.2 969 0.97 60.6 14.8 2 

Seokhwa C21 1594.1 143 0.3 2.3 1223 0.94 68.6 9.7 5 

Tanbugyo C22 81.7 363 0.2 2.5 1090 0.93 54.2 17 1 

Woogon C23 131.8 45 0.3 2.8 1235 0.98 68.9 5 1 

Yuseong C24 251.1 189 0.1 3.5 1315 0.99 62.8 12.1 2 

PG: Number of precipitation gauges used in the Thiessen polygon method for calculating catchment 

average rainfall. 

Hydrological data (rainfall, flow and climatic data) were obtained from the Water Resources 

Management Information System [22] and the Hydrological Investigation Report of Korea [19]. The 

rainfall data were provided by the Korea Meteorological Agency (KMA). As shown in Figure 1, 16 

rain gauges operated by the KMA are used to produce catchment average rainfall on an hourly time-

step with the Thiessen polygon method. The potential evapotranspiration data were estimated by 

using the metrological data of the nearest weather station to study catchment with the FAO Penman-

Monteith method, developed by the Food and Agriculture Organization of the United Nations [21,23]. 

2.2. Typhoons in the Geum River Region 

Typhoons in Korea have increased in strength after 2002 [24]. Table 2 lists the periods over which 

these six typhoons are analyzed in this paper. 

Table 2. Selected six typhoons. 

Typhoon Period 

Rusa 23 August 2002~6 September 2002 

Maemi 6 September 2003~19 September 2003 

Nari 13 September 2007~22 September 2007 

Dianmu 8 August 2010~17 August 2010 

Kompasu 29 August 2010~8 September 2010 

Bolaven 20 August 2012~3 September 2012 
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Observed data from the six typhoons were prepared for the 24 Geum River catchments. Only 

three catchments have sufficient data for every typhoon—C1 (Bukil), C4 (Cheongju) and C11 

(Indong)—however, all catchments have suitable data for two or more flood events, giving a total of 

113 observed flood events and at least 8 events for each typhoon. Most of the events are from June to 

September, and most have single-peak flood hydrographs. The data quality is examined by looking 

at the runoff ratio (the total runoff divided by the total rainfall during an event, it should be less than 

one), the timing of peak rainfall and peak runoff (they should not be counter-intuitive), missing data 

and outliers. 

The characteristics of each typhoon flood event are summarized as: total amounts of rainfall and 

runoff; maximum rainfall intensity; peak flow; lag time between rainfall and runoff peaks; rainfall 

duration; and antecedent rainfall over the 5 days preceding the event. Figure 2 shows box plots of the 

first 5 of these characteristics, showing the maxima and minima, and 25% and 75% quantiles. As 

shown in Figure 2, the flood characteristics vary widely within each typhoon (i.e., between 

catchments). 

     

Total Rainfall (mm) Total Runoff (mm) 
Maximum Rainfall 

Intensity (mm/h) 
Peak Flow (mm/h) Lag Time (h) 

Figure 2. Box plot of the flood characteristics of the 113 flood events (Boxes are 25% and 75% quantiles, 

R = Rusa, M = Maemi, N = Nari, D = Dianmu, K = Kompasu, B = Bolaven, T = Total). 

Table 3 shows selected data to further illustrate the nature of the hydrological responses. Table 

3 shows that the rainfall duration ranges from 2 to 17 h, and total amount of rainfall ranges from 41 

mm to 129 mm. Most of the events have maximum rainfall intensity greater than 10 mm/h. The flood 

events of Rusa, Mamie and Nari have runoff ratios (total flow/total rainfall) greater than 0.85. 

However, the runoff ratio for Kompasu is only 0.38, presumably related to the lower total rainfall of 

40 mm in that typhoon. The wind rather than rainfall was the dominant source of damage in that 

typhoon event. 

Table 3. Characteristics of the events at C4 (Cheongju). 

Typhoon Rusa Maemi Nari Dianmu Kompasu Bolaven 

TR (Total Rainfall, (mm)) 129 72 92 90 41 107 

TD (Total Discharge, (mm)) 114 70 79 46 16 66 

MRI (Maximum Rainfall Intensity, (mm/h)) 14 10 10 42 28 21 

PF (Peak Flood, (mm/h)) 6 3 5 4 3 5 

RD (Rainfall Duration, (h)) 17 9 11 7 2 15 

LT (Lag Time, (h)) 4 3 6 4 1 3 

PE (Potential Evapotranspiration, (mm)) 21 12 5 3 3 15 

RR (Runoff Ratio to rainfall, ()) 0.88 0.98 0.85 0.52 0.38 0.62 

P5 (mm/5 days) 31 43 91 153 44 10 

Figure 3 gives some further insight into the variations between flood events and to what degree 

these are explained by the total rainfall, maximum intensity and P5 (the total amount of rainfall in 

previous 5 days). This exhibits the expected trends that peak flow and total flow tend to increase with 

increased rainfall and peak intensity. However, runoff ratio and lag time have no significant linear 

relationship with the rainfall properties; and none of the flow indices are related to P5. The high 

runoff ratios and the apparent lack of sensitivity to P5 may be due to the generally wet antecedent 

conditions (e.g., average P5 for C4 = 62 mm). The wide variation of responses for any given set of 

rainfall and P5 values is likely to be associated with the variation in responses between catchments. 
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The runoff ratios greater than 1 in Figure 3 may be due to rainfall or flow estimation errors and/or 

due to presence of baseflow. Understanding and modeling the variations in responses is the focus of 

the rest of this paper. 

 Peak Flow (mm/h) Total Runoff (mm) Runoff Ratio () Lag Time (h) 

Total 

Rainfall 

(mm) 

    

Maximum 

Intensity 

(mm/h) 

 

 

  

P5 

(mm) 

    

Figure 3. Scatterplots of the flood characteristics of the 113 events. 

3. Method 

The rainfall and flow data (both hourly) from six typhoon periods are prepared and model 

parameters (MPs) are calibrated for each. The MPs are regionalized by regressing the calibrated 

values against CCs. The conventional regression equations are developed using MP values that are 

averaged across the events, aiming solely to model the differences in response between catchments. 

The GEE regression model is developed using the MPs for each typhoon event, aiming to include the 

differences in responses between typhoons as well as between catchments. Descriptions of the PDM 

rainfall runoff model, the calibration and validation methods, and the regression and GEE methods 

are given below. 

3.1. PDM Rainfall Runoff Model 

The PDM (Probability Distributed Moisture) model is a lumped conceptual rainfall runoff 

model, which has been used as the main rainfall-runoff model in UK flood estimation procedures [25] 

and has been proposed as suitable for Korean flood estimation [26,27]. The version of the PDM 

developed by [25], illustrate schematically in Figure 4, is used here. The details of the PDM model 

structure are described in [28] and only a summary is provided here. 

The PDM is composed of a soil moisture accounting model for estimating the effective rainfall 

and a routing model for converting effective rainfall into runoff at a define point in the river system. 

The soil moisture accounting model represents the spatial distribution of soil moisture storage as a 

Pareto distribution function as specified in Equation (1). 
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Figure 4. Schematic description of the PDM model [28]. 

F(c) = 1 − �1 −
�

����
�
�

, 0 ≤ � ≤ ���� (1) 

rk is the rainfall, aek is the actual evapotranspiration, Sk is the soil moisture storage, Q is the runoff, ck 

is the soil moisture storage capacity, Cmax is the maximum soil moisture storage capacity of the 

catchment, and b is a parameter that defines the strength of spatial variation of c. c is distributed 

uniformly between values of 0 and Cmax if b is equal to 1; and tends towards a single value, Cmax, as b 

tends towards 0. 

The routing model consists of two parallel reservoirs that represent quick and slow responses of 

catchment runoff. The parameters of the PDM model are summarized in Table 4, along with the 

ranges of values assumed feasible prior to model calibration [29]. 

Table 4. Parameters of the PDM model. 

MPs Description Range (Units) 

Cmax Maximum storage capacity of the catchment 1~500 (mm) 

b Degree of spatial variability of storage capacity in the catchment 0~2 () 

rtq Residence time of the quick flow reservoir 0~15 (h) 

rts Residence time of the slow flow reservoir 50~500 (h) 

f 
Fraction of effective rainfall that enters the quick flow reservoir and 1-f of effective 

rainfall that enters the slow flow reservoir 
0~1 () 

3.2. Calibration 

For calibration of the MPs in Table 4, a Uniform Random Search was implemented using the 

Monte-Carlo Analysis Toolbox (MCAT) [28]. 10,000 MP sets were randomly sampled from the prior 

ranges in Table 4, and objective functions were calculated for each sample. This approach to 

calibration achieves calibration performances that are sufficient approximations to the optimal 

performances. The initial soil moisture condition of each case is adopted from the results of 

preliminary, daily continuous-time modelling [26]. The first 10% of the calibration period was used 

as a warm-up period during which the errors were neglected in calculation of the objective function 

in order to reduce sensitivity to initial conditions. 

The calibration objective function is the Nash Sutcliffe Efficiency (NSE), which measures all-

round model fit, although, is often observed to have a bias towards fitting high flows [25,30]. 

��� = 1.0 −
∑ ��� − ��(�)�

��
���

∑ (�� − ��)
��

���

 (2) 

where, �� is observed flow at time i,	��  is the mean of observed flows, ��(�) is simulated flow at 

time time i with parameter set θ, 1 of NSE indicates a perfect match of the simulated and observed 

flow. 
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3.3. Statistical Regression 

In this study, we use the following notations. ��� is defined as a calibrated MP value of the j-th 

flood event from the i-th catchment. �� =(���,⋯ , ���) is the set of CCs for the i-th catchment and ��� =

(����,⋯ , ����) is the set of rainfall characteristics for the j-th flood event at the i-th catchment. For each 

i-th catchment, let ��∙ = ∑ ���
��
��� /��  and ��∙ = (��∙�, ⋯ , ��∙�) = �∑

����

��
,

��
��� 	⋯ , ∑

����

��

��
��� �  where �� 

denotes the number of flood events in the catchment. 

3.3.1. Conventional Regression 

In the conventional regression analysis, for each catchment, the PDM MPs are calibrated for each 

event and the values averaged over all events [9]. A linear least-squares regression equation is 

developed for each of the five averaged model MPs as follows: 

�(��∙) = �� + ����� + ⋯+ ����� + �� (3) 

�(∙)  is an expectation and ��  represents all random errors in the estimation approach, including 

randomness between catchments and non-convergence of the optimization of the MPs during calibration. 

The significant CCs are identified using forward selection with a significance level (p value) of 0.05. That 

is, we added the CC with the smallest p-value from a wald test and stop adding CCs when no variable 

has a p-value less than 0.05. 

3.3.2. Generalized Estimating Equations (GEEs) 

Multiple flood events in a catchment can be considered as repeated measurements from a subject, 

which corresponds to a catchment in this study [20,31,32]. Therefore, using event-aggregated MPs in 

(3) leads to loss of information about variability of MPs between events and is likely to underestimate 

the standard error of the MP estimate for any event. One possible solution to this is to consider a 

subject-specific random effect in the model fitting using a generalized linear mixed model; however, 

this would involve specifying the error distribution of ���. Instead, a GEE approach is adopted that 

avoids the need to fully account for the error distributions while still potentially achieving robust 

results [16]. For our flood event data, the following GEE model can be considered: 

�(���) = �� + ����� + ⋯+ ����� + �������� + ⋯+ ��������  (4) 

Note that, while a non-linear transformation of y is generally present in a GEE, here the identity 

link function is used. Equation (4) is separately estimated for each MP. Then, �(���)	 corresponds to 

the mean value of an MP for the j-th flood event from the i-th catchment. 

The estimation of the parameters �  requires the within–subject covariance, that is 

“Exchangeable” structure assuming that flood events over time have the same correlation, to be 

specified [33] and See Appendix A. The estimation is based on iteratively reweighted least squares 

with quasi-likelihood, incorporating the forward selection method and p < 0.05 as the significance 

criterion. All the statistical analysis was performed using Statistical Analysis Systems (SAS) version 

9.4. 

3.4. Validation 

Leave-one-out cross validation is applied. One catchment is kept as a target catchment for 

validation, and the regression models are developed with the remaining 23 catchments. The 

simulated hydrographs are visualized and the NSE is evaluated to represent the applicability of the 

approach for ungauged catchment prediction. 
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4. Results 

4.1. Calibration of the PDM Model 

A separate PDM MP set was calibrated for all 113 events with sufficient observed data, in order 

to examine differences between them. The results for the 6 flood events at the C4 (Cheongju) 

catchment are presented here as an example. Figure 5 shows the scatter plots of MP value versus NSE 

obtained from the Uniform Random Search. Optimal values of rtq and f are relatively identifiable, 

whereas optimal values for rts are relatively non-identifiable, with c and b having intermediate 

identifiability. Figure 5 shows that, even for the more identifiable MPs, the optimum values are 

different across typhoons. A similar result is observed for the other gauges. 

Typhoon Cmax b rtq rts f 

Rusa 

 

Maemi 

Nari 

Dianmu 

Kompasu 

Bolaven 

Figure 5. Scatter plots of calibration NSE against MP for each Typhoon flood events at C4. 

Table 5 shows the MP and NSE values for C4, and Figure 6 shows the corresponding modeled 

and observed hydrographs. Table 6 shows the NSE values representing calibration performance of 

the model applied to the 113 events. 

Table 5. Calibrated model parameters for the six typhoon floods at C4. 

Typhoon 
Cmax 

(mm) 

b 

() 

rtq 

(h) 

rts 

(h) 

f 

() 
NSE 

Rusa 367.6 0.25 9.9 51.0 0.77 0.96 

Maemi 211.4 0.47 14.2 69.9 0.96 0.86 

Nari 201.0 0.32 7.8 273.1 0.99 0.97 

Dianmu 497.8 0.10 8.2 427.3 0.84 0.90 

Kompasu 453.0 0.05 3.5 276.0 0.81 0.90 

Bolaven 206.5 0.22 7.2 59.3 0.87 0.95 

Averaged 322.9 0.23 8.5 192.8 0.87 0.80 
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In rainfall runoff modelling, the estimated MPs are generally assumed to be the same over all 

flood events; however, there are wide variations in optimum model parameters in Table 5 and Figure 

5. This could be due to a data quality problem, a limitation of model structures or different 

hydrological responses to flood events. We suppose that these variations in MP values may be partly 

due to the changes in hydrological response between events, i.e., the MP value must change to allow 

the PDM model to capture that changed response. Thus, the flood characteristics of each typhoon 

event are included in the GEE. 

  

(1) Rusa (NSE = 0.96) (2) Nari (NSE = 0.86) 

  

(3) Maemi (NSE = 0.97) (4) Dianmu (NSE = 0.90) 

  

(5) Bolaven (NSE = 0.90) (6) Kompasu (NSE = 0.95) 

 

Figure 6. Observed and calibrated hydrographs for the six events at C4. 
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Table 6. Calibration Results (NSE) for the six typhoon flood events for all 24 catchments 

Catchment Rusa Maemi Nari Dianmu Kompasu Bolaven No. > 0.5 NSE No. Events % 

C1 0.87 0.79 0.79 0.48 0.77 0.83 5 6 83 

C2 0.92 - - 0.53 0.76 0.72 3 4 75 

C3 - - 0.76 0.89 0.90 0.96 4 4 100 

C4 0.96 0.86 0.97 0.90 0.90 0.95 6 6 100 

C5 - 0.24 0.27 −0.43 −0.44 0.87 1 5 20 

C6 - - 0.75 0.69 0.8 0.89 4 4 100 

C7 - - 0.8 0.55 0.55 0.83 4 4 100 

C8 0.73 0.42 0.74 0.35 0.28 −0.02 2 6 33 

C9 - - - 0.73 0.74 0.86 3 3 100 

C10 - - 0.26 0.04 0.66 0.7 1 3 33 

C11 0.85 0.79 0.96 0.4 0.62 0.67 5 6 83 

C12 0.83 0.83 - 0.67 0.55 0.84 5 5 100 

C13 - - - 0.12 −13.5 0.5 1 3 33 

C14 - - 0.43 0.68 0.34 0.3 1 4 25 

C15 0.56 −0.64 0.28 −0.92 0.28 0.71 2 6 33 

C16 0.76 0.25 0.64 0.68 −0.32 - 3 5 60 

C17 - - 0.49 0.77 0.24 0.79 2 4 50 

C18 - - −1.5 −0.56 0.49 0.39 0 4 0 

C19 - - 0.57 −0.14 −0.60 0.71 2 4 50 

C20 - 0.82 0.73 0.83 0.47 0.47 3 4 75 

C21 0.79 0.72 0.43 0.67 −1.12 0.68 3 6 50 

C22 - - 0.9 −0.37 −0.14 0.03 1 4 25 

C23 0.12 −0.32 0.34 −0.23 0.44 0.47 0 6 0 

C24 0.72 - 0.82 0.52 0.73 0.87 5 5 100 

Max 0.92 0.86 0.97 0.89 0.9 0.96 

Missing values in observed data 

Min 0.12 −0.64 −1.5 −0.92 −13.5 −0.02 

No. > 0.5 NSE 10 6 12 13 12 17 

No. Cat. 11 11 20 24 24 23 

% 91 55 60 54 50 74 

There is a wide variation in results across flood events. For typhoon Kompasu period, the range 

of NSE values across 18 catchments is −13.5 to 0.9; and for typhoon Bolaven the range across 23 

catchments is −0.02 to 0.96. 68 of the 113 events have NSE values greater than 0.5. C18 and C23 have 

consistently low calibration performances with none of the modelled events having NSE > 0.5. This 

may be because these catchments have comparatively large data errors or have controls on flow, such 

as out-of-bank flood storage, which the simple PDM model cannot represent. The calibration results 

for typhoon Dianmu and Kompasu are poor in 12 and 13 of the catchments. This result is due to the 

inability of the model to simulate the low runoff ratios observed in many of the catchments (e.g., 

Table 3). It is likely that in these cases the observed rainfall was overestimated. Only the MP sets 

giving calibration NSE values greater than 0.5 are used for the statistical regression. 

4.2. Statistical Regression 

Table 7 shows conventional regression equations based on the set of calibrated, event-averaged MPs 

(excluding C4, which will be used for validation of these equations). The R2 of these equations varies 

between 0.1 (Cmax) to 0.79 (f). 

The regression equations in Table 7 are applied to catchment C4 as an example. The estimated 

MPs are shown in Table 8, and Figure 7 shows the predicted hydrographs. The hydrographs at 

Kompasu and Bolaven are not considered acceptable in terms of volumes and peaks, indicating that 

MP estimates are not applicable to all flood events. The result at Dianmu is better than the calibrated 

model in terms of peak flow, at the expense of volume performance. 
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Table 7. The conventional regression equations for PDM model parameters when using C4 as the 

validation catchment. 

Model Parameter Regression Equation R2 p-Value 

Cmax 248.3 − 0.04 Area 0.10 0.16 

b 2.35 − 0.0238 CN 0.10 0.17 

rtq 32.05 + 0.003 Area − 0.01 ALTBAR − 0.3 CN 0.52 0.00 

rts −728.56 − 0.06 Area − 77.16 DD + 1211.31 FARL 0.55 0.00 

f −0.6 − 0.0002 Area − 0.12 DD + 1.84 FARL 0.79 0.00 

Table 8. Estimated PDM model parameters for catchment C4 using conventional regression. 

Model Parameter Cmax b rtq rts f 

Value 242 0.64 9.86 264 0.88 

Table 9 shows the developed GEEs. In the GEE model of parameter b, the total amount of rainfall 

(TR) in a typhoon event was selected as an explanatory variable. The b parameter represents the 

degree of spatial variability of storage capacity in the catchment, therefore a possible explanation for 

the model of b is as follows: As total rainfall increases, the effect of variability of the soil moisture 

storage capacity is expected to reduce and hence the value of b is expected to reduce. However, this 

effect should be implicit in the PDM model, and so the reason b is related to TR is more complex. For 

the other MPs, only CCs are selected. The R2 values in Table 9 are low compared to those in Table 7. 

This is expected because of the much lower variance of the MPs when they are averaged over the 

typhoons so that only 23 data points are used, as was done to obtain the results in Table 7, compared 

to the 107 data points used to obtain the results in Table 9 (107 points rather than 113 because the 6 

points from C4 are kept back for model validation). In particular, the non-identifiable MPs would 

increase variance of the errors more if they are not averaged over events. The results in Table 9 may 

also be influenced by the covariance of the MP values between flood events in each catchment, 

whereby if the matrix R Equation (6) could be more accurately specified it may improve the GEE 

result. 

Table 9. The GEEs for PDM model parameters when using C4 as the validation catchment. 

Model Parameter GEE R2 

Cmax 232.33 − 0.03 Area 0.01 

b 1.29 − 0.004 TR 0.11 

rtq 22.75 + 0.003 Area − 0.007 ALTBAR − 0.15 CN 0.24 

rts 678.12 − 0.09 Area − 50.46DD − 0.26 SAAR 0.13 

f 1.70 − 0.0002 Area − 0.06 DD − 0.0006 SAAR 0.08 

In Figure 7, the GEE results (shown in solid lines) are generally better performance in the peak 

flow than the conventional linear regression results (shown in dotted lines) for typhoons Rusa, 

Maemi, Bolaven and Kompasu. For typhoon Kompasu, the GEE matches closely the peak of the 

hydrograph, although it has over-predicted the recession flows. For typhoon Nari, the hydrographs 

simulated using GEE are slightly worse than those simulated using the conventional regression 

model. However, overall, the GEE gave slightly better performances compared to the conventional 

regression model. 

The results of cross validation are shown in Figure 8. The selected CCs for each MP are the same 

CCs shown in Tables 7 and 9. The results for the conventional regression and GEEs are compared 

with the locally calibrated model results for each typhoon flood event. In Figure 8a,b, if the points are 

located on the 45-degree line, the performances using regionalization are the same as those of 

calibration; whereas if the points are located above the 45-degree line, the performances using 

regionalization are better than those using the calibrated model. The calibration results are better 

than both regionalization approaches. The results of the two regionalization methods are compared 
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in Figure 8c). The performances using the two methods are similar. This indicates that there is no 

practical benefit adopting the more complex GEE method, although there may be scope for refining 

its specification, in particular the link function and correlation structure. Furthermore, in this study 

we did not incorporate error models in order to estimate confidence intervals on predictions, and 

these may be more successful using the GEE approach. 

 
(1) Rusa (NSE: Cal = 0.96; C_Reg = 0.94; GEE = 0.89) 

 
(2) Maemi (NSE: Cal = 0.86; C_Reg = 0.79; GEE = 0.74) 

 
(3) Bolaven (NSE: Cal = 0.95; C_Reg = 0.20; GEE = 0.67) 

   

(4) Nari (NSE: Cal = 0.97; C_Reg = 0.89; GEE = 0.89) 
(5) Dianmu (NSE: Cal = 0.90;  

C_Reg = 0.64; GEE = 0.53) 

(6) Kompasu (NSE: Cal = 0.90; C_Reg 

= 0.41; GEE = −0.15) 

Figure 7. Modelled and observed hydrographs at catchment C4. 
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(a) Conventional regression vs. 

calibration 

(b) GEE equations vs. 

calibration 

(c) GEE equations vs. 

conventional regression 

Figure 8. Comparison between the NSE values obtained using calibration, conventional regression 

and GEEs. 

5. Conclusions 

This study analyses six typhoon flood events (Rusa, Maemi, Nari, Dienmu, Kompasu and 

Bolaven) at 24 Geum River catchments and applies the Probability Distributed Moisture (PDM) 

rainfall-runoff model to predict river flows. Two alternative statistical models, conventional 

regression and Generalized Estimating Equations (GEEs), are used to regionalize the PDM model 

parameters, so that typhoon-induced flows can be simulated at ungauged locations within the same 

region. The main outcomes are: 

- The application of a calibrated PDM model to modelling flood event flows in Geum River catchments 

shows, overall, an acceptable model performance. This supports the use of the PDM model or 

comparable rainfall-runoff models for simulating extreme flood events in Korea. 

- Using conventional regression equations to regionalize model parameters to ungauged catchments 

showed mixed success, for example when treating the C4 catchment as ungauged, there were good 

results for two flood events (typhoons Nari and Dianmu) and underestimated peaks for two events 

(typhoons Rusa and Kompasu). 

- The GEE model extends the conventional regression by including the inter-event variability in PDM 

model parameters as well as the inter-catchment variability. However only the model parameter b 

was found to be related to event properties; and validation results showed only slight improvement 

on the simpler regression approach. While for practical applications we would therefore recommend 

the simpler regression approach, refinements to the GEE approach may be explored, in particular its 

potential advantage for estimating an error model and confidence limits on predictions. 

Future research should also increase the number of extreme flood events and study catchments 

to increase the statistical significance of the analysis and increase confidence in the comparison 

between the two approaches. 
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Appendix A. GEE for Regionalization of Rainfall Runoff Model 

GEE is a semi-parametric method which uses moment assumptions, instead of assuming a 

certain distribution as in a Generalized Linear Mixed Model. Besides, GEE is instead of attempting to 

model the within-subject covariance structure, to treat it as a nuisance and simply model the mean 

response. Sandwich estimator [32,34,35] enables to be robust against to the mis-specified within-

subject covariance structure. The estimation is based on iteratively reweighted least squares (IRLS) 

with quasi-likelihood. For our flood event data, the following GEE model can be considered: 

�(�(���)) = �� + ����� + ⋯+ ����� + �������� + ⋯+ �������� (A1) 

Note that �(∙)  represents a link function, which can be identity, logit and log functions 

depending on if response ��� is normally distributed, binary or a Poisson process. In this paper, we 

assume our predicted variables of interest (i.e., PDM MPs) are continuous, hence, we consider the 

identity link function only and Equation (A1) can be rewritten as: 

�(���) = ��� = �� + ����� + ⋯+ ����� + �������� + ⋯+ ��������  (A2) 

Based on the CCs and flood characteristics, the GEE model is 

�(���) = ��� = �� + ������� + ��������� + ����� + ����� + ������� + �������
+ ����� + ������ + ������ + �������� + ����5�� 

(A3) 

Equation (A3) is separately estimated for each PDM MP. Then, ��� corresponds to the mean 

value of an MP for the j-th flood event from the i-th catchment. 

In GEE, within–subject covariance has some structure and this is called “working covariance”. 

For estimation, we need to specify the correlation structure (denoted as ��). For example, if there are 

three modeled flood events in the i-th catchment, we can consider �� as the following structure: 

�� = �

1 ��� ���
��� 1 ���
��� ��� 1

� (A4) 

The matrix in (A4) is the most general case and is called “unspecified” or “unstructured”. In 

addition, there exist other structures such as (i) independent (��� = 0 for all i and j); (ii) Exchangeable 

(��� = � for all i and j) and (iii) AR (1) (��� = �
|���|). In this paper, we use the “Exchangeable” structure 

assuming that flood events over time have the same correlation. 
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