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Abstract: The potential influence of natural variations in a climate system on global warming can 

change the hydrological cycle and threaten current strategies of water management. A simulation-

based linear fractional programming (SLFP) model, which integrates a runoff simulation model 

(RSM) into a linear fractional programming (LFP) framework, is developed for optimal water 

resource planning. The SLFP model has multiple objectives such as benefit maximization and water 

supply minimization, balancing water conflicts among various water demand sectors, and 

addressing complexities of water resource allocation system. Lingo and Excel programming 

solutions were used to solve the model. Water resources in the main stream basin of the Songhua 

River are allocated for 4 water demand sectors in 8 regions during two planning periods under 

different scenarios. Results show that the increase or decrease of water supply to the domestic sector 

is related to the change in population density at different regions in different target years. In 2030, 

the water allocation in the industrial sector decreased by 1.03–3.52% compared with that in 2020, 

while the water allocation in the environmental sector increased by 0.12–1.29%. Agricultural water 

supply accounts for 54.79–77.68% of total water supply in different regions. These changes in water 

resource allocation for various sectors were affected by different scenarios in 2020; however, water 

resource allocation for each sector was relatively stable under different scenarios in 2030. These 

results suggest that the developed SLFP model can help to improve the adjustment of water use 

structure and water utilization efficiency. 

Keywords: water resources optimal allocation; linear fractional simulation programming; scenario 

analysis; climate change 

 

1. Introduction 

Most surface water resources are stored in channels and basins, and these waters have long 

regeneration cycles and are heterogeneously distributed. The impact of global warming on future 

water resources cannot be neglected in the process of developing and utilizing these resources [1]. 

Specifically, researchers and managers have to determine how to allocate limited water resources to 

different areas or water departments to achieve the optimal balance between social, economic and 

ecological benefits. Thus, optimizing water resource allocation is an important task [2–4]. 

mailto:fuqiang0629@126.com
mailto:lilinqi0609@163.com
mailto:liu72dong@126.com
mailto:cuisong-bq@neau.edu.cn


Water 2018, 10, 627 2 of 19 

 

With the development of economy and society, the development and utilization of water 

resources has gradually shifted from a single goal to a comprehensive utilization. Under such 

circumstances, the single objective programming method that focuses on economic benefit only is no 

longer applicable. Optimal water resource allocation involves many aspects such as the social 

economy, ecological environment, etc. In order to improve the efficiency of water resource allocation 

and avoid the contradiction of water resource utilization between different water demand sectors, it 

is necessary to adopt multi-objective programming to planning water resources. Multi-objective 

programming considers two or more targets and makes alternatives for conflicting finite (infinite) 

schemes simultaneously. Many experts and scholars have adopted multi-objective programming 

methods to solve the problem of optimal water resource allocation [5–9]. As an effective method for 

handling multi-objective problems, linear fractional programming (LFP), which can also affect 

system efficiency quantificationally, has been used recently in water resource allocation. For example, 

Zhang et al. [10] developed a model that can be derived from integrating generalized fuzzy 

credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) 

optimization framework to optimize water resources. Mani et al. [11] formulated a conjunctive-use 

model for the management of groundwater and surface water via mixed integer linear fractional 

programming. Ren et al. [12] combined an LFP model and a chance constrained programming (CCP) 

model to determine whether the water resource carrying capacity of Jinchang City could meet the 

requirements of economic development. However, the LFP, which falls within the capability of linear 

fractional programming in a multi-objective framework, and the runoff simulation model (RSM) have 

been applied to optimal water allocation in limited cases. 

Water resource planning is important to provide a reference for water resource management in 

the future. Water resource planning is strongly affected by runoff. Therefore, runoff forecasting is 

necessary when planning water resources. Runoff forecasting is constrained by climate change. The 

Intergovernmental Panel on Climate Change (IPCC) is the international body for assessing the science 

related to climate change. Since its inception in 1988, the IPCC has completed five assessment reports 

[13–15]. These reports have provided the main scientific basis for the international community to 

understand and investigate climate change. Many global scholars have used different climate models 

in the Coupled Model Intercomparison Project Phase 5 (CMIP5) to simulate and evaluate the future 

climate in various regions of the world [16–19]. There is a strong consensus regarding the changes in 

climate caused by increased concentrations of anthropogenic greenhouse gas emissions, and the 

subsequent effects of climate change on runoff are inevitable [20]. Precipitation and temperature are 

the main elements that influence climate change and runoff variation. The vertical and lateral 

redistribution of water in the subsurface is influenced by annual and interannual variations in 

precipitation, and the calculation of potential evaporation (PET) directly reflects the effect of 

temperature on runoff [21]. Recently, numerous studies on runoff forecasting considering climate 

change have been conducted [22–25]. Unfortunately, information on how the changes in precipitation 

and temperature affect runoff forecasting and thus affect water allocation efficiency considering the 

economic benefit maximization and water supply minimization simultaneously is limited. 

Therefore, the aim of this study is the development of a simulation-based linear fractional 

programming model for adaptable water allocation planning. The SLFP model developed in this 

paper combines the runoff simulation model (RSM) and LFP model to provide a reasonable scheme 

for the optimal allocation of water resources in the future. The objective of the SLFP model is to 

allocate available water resources to different water sectors in various regions to improve the 

utilization efficiency of water resources and provide evidence for water resource planning under 

climate change. The developed model is then applied in a real-world case study in the main stream 

basin of the Songhua River, Northeast China. The optimal allocation of water resources is estimated 

in different periods based on various temperature and precipitation scenarios, which can be used for 

providing information on the balance among different departments, allocation strategies, and 

agriculture sustainability. 
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2. Data and Methodology 

2.1. Study Area and Data 

The Songhua River basin is located in Northeast China. The Songhua River is one of the seven 

major rivers in China and the largest tributary of the Heilongjiang River. The river spans Inner 

Mongolia, Jilin and Heilongjiang Provinces. The study area includes the main stream of the Songhua 

River basin, which begins in Zhaoyuan County. Zhaoyuan County is the intersection of the Nenjiang 

River, Songhua River and second Songhua River. The main channel ends in Tongjiang City at the 

intersection of the Songhua River and Heilongjiang River (Figure 1). The Songhua River basin has a 

temperate monsoon climate and four distinct seasons. In the flood season (June-September), the 

precipitation is 397.5 mm, which is 60–80% of the annual precipitation, the mean air temperature is 

19.4 °C, and the mean runoff is 29.19 billion m3 in the study area. Average daily precipitation, air 

temperature and flow data during the flood season from 1961 to 2010 are available for the study area: 

average daily precipitation and air temperature data were collected from 5 meteorological stations 

from 1961–2015 from the China Meteorological Data Service Center (http://data.cma.cn/). 

Additionally, average daily solar radiation data were derived from the National Earth System Science 

Data Sharing Infrastructure, National Science & Technology Infrastructure of China 

(http://www.geodata.cn). The corresponding data are shown in Table 1. 

 

Figure 1. Geographical location of the study area and the locations of hydrological stations. 

  

http://data.cma.cn/
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Table 1. The average air temperature, precipitation and solar radiation during the flood season at five 

meteorological stations in the study area from 1961–2015. 

Station Code Latitude Longitude 
Temperature 

(°C) 

Precipitation 

(mm) 

Solar Radiation 

(MJ m−2 day−1) 

Xiadaiji 54063 44°58′ 126°00′ 20.40 387.24 217.27 

Harbin 50953 45°45′ 126°26′ 19.94 419.84 205.37 

Tonghe 50963 45°58′ 128°44′ 18.80 397.52 207.92 

Yilan 50877 46°18′ 129°35′ 18.97 401.37 197.22 

Jaimusi 50873 46°49′ 130°17′ 19.18 381.59 197.16 

2.2. Methodology 

2.2.1. Runoff Simulation Model 

In order to better plan the water resources of the basin, runoff simulation is critical. In terms of 

this study, runoff has a direct relationship with precipitation and PET. This paper uses the 

relationship between runoff, precipitation and PET proposed by Liu [26], and it can be expressed as 

follows [27]: 

0R kP PET =  (1) 

where R0 is the simulated runoff, 108 m3; P is the precipitation, mm; PET is the potential 

evapotranspiration, mm. 

Precipitation 

The average daily precipitation data in the flood season were collected from 5 meteorological 

stations from 1961–2015 from the National Meteorological Science Data Sharing Infrastructure 

(http://data.cma.cn/). By adding daily precipitation in the flood season, the precipitation in flood 

season for the 5 meteorological stations is obtained. 

Potential Evaporation (PET) 

Many computational methods of calculating PET are applicable, corresponding to different 

conditions [28–32]. According to the geographical characteristics of the study area and the selection 

of model parameters, the Makkink method is used to calculate the PET in this paper because it can 

estimate evapotranspiration in humid grassland areas. Makkink [28] proposed the Makkink formula 

in Holland, and it is a revised version of the [33] formula. The Makkink formula can be expressed as 

follows: 

0.61 0.12SR
PET

 


= −

 +
 (2) 

where PET is the potential evapotranspiration, mm day−1; RS is the solar radiation, MJ m−2 day−1;  is 

the slope of the saturation vapour pressure curve, kPa °C−1;  is the psychrometric constant; and   

is the latent heat of vaporization. 

The slope of the saturation vapour pressure curve can be calculated using the following equation 

[34]: 

( )
2

4098

237.3

oe

T


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+
 (3) 
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e

T

 − 
=  + 
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where oe  is the saturation vapour pressure on a given day, kPa, and T is the mean daily air 

temperature, °C. 

The psychrometric constant can be determined as follows: 

0.622

p sc P





=


 (5) 

where pc is the specific heat of moist air at a constant pressure, 1.013 × 10−3 MJ kg−1 °C−1, and Ps is the 

atmospheric pressure, kPa. 

The latent heat of vaporization can be determined from the following expression. 

32.501 2.361 10 T −= −    (6) 

Finally, atmospheric pressure can be expressed as follows: 

6101.3 0.01152 0.544 10sP EL EL−= −  +    (7) 

where EL is the elevation, m. 

This paper employs empirical relationships taken from Neitsch [34], applicable in the region 

under study. The calculated slope of the saturation vapour pressure curve and other parameters are 

consistent with the results of such studies in the same area [35,36] and show that Equations (3)–(7) 

are reasonable. 

Model Evaluation 

The reliability of the model is evaluated based on the relative error (RE) and the correlation 

coefficient (CC). The RE reflects the credibility of the RSM, and the CC reflects the overall efficiency 

of the RSM: 

100%
i i

i
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−
=   (8) 
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(9) 

where Gi is the measured value of the flood season runoff, G  is the mean measured value of the 

flood season runoff; Ri is the simulated value of the flood season runoff, and R  is the mean simulated 

value of the flood season runoff. The range of CC is 0–1, and the larger the CC, the better the model 

simulation capability and higher the efficiency, n is the total years, i represents the year. 

2.2.2. Linear Fractional Programming 

Linear-fractional programming (LFP) is a generalization of linear programming (LP). LFP 

represents optimization problems using linear equations and linear inequalities and has a richer set 

of objective functions. LFP can effectively reflect the efficiency of a system. Therefore, this method 

has certain advantages in optimizing water resources [37]. The common LFP model (denoted as 

primal programming, or PP) [38] can be expressed as follows: 

max ( )

0

cx
f x

dx

Ax b

x





+
= +




 

  

(10) 
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where A is an m by n matrix; x and b are column vectors with n and m components, respectively; c 

and d are row vectors with n components; α and β are constants; and 0dx +  . 

A PP can be solved using dual theory, and the dual model is expressed as follows (denoted as 

dual programming, or DP). 

min ( , )

0

T T T

T

g y z z

A y d z c

b y z

y

 

=


+ 

− + =
   

(11) 

Equation (10) is a linear model, and its optimal solution is ( , )y z
 

, which can be easily obtained 

by introducing the relaxation column vector, v


. In this case, = + -T T Tv a y d z c
  

, and 0v


 . If x


 is 

the optimal solution of Equation (10) and u


 is a relaxation column vector, then + =a x u b
 

 and 0u


 . 

According to the relaxation theorem, if 0j jx v
 

=  and 0jj
y u
 

= , Equations (10) and (11) have the 

same optimal solution. Therefore, the LFP model can be solved with the above transformation. 

2.2.3. Simulation-Based Linear Fractional Programming for Adaptable Water Allocation Planning 

According to the conditions in the study area, The RSM is incorporated into the LFP model to 

form an optimal allocation model of water resources considering runoff variations, in which the 

runoff that is simulated by the RSM can be used as a constraint in the LFP model. The SLFP model 

considers changes in temperature and precipitation to effectively simulate real-world scenarios. The 

framework of the developed SLFP model is depicted in Figure 2. 

Water resources planning

Objective function Constraints

Happiness index constraints

Chemical Oxygen Demand 

(COD) constraints

Water resources constraints

Simulation-Based Linear Fractional 

Programming Model (SLFP)

Solution method 

Results generation

Analysis and suggestions

Statistical yearbook (2010-2016)

The standard of water quantity for city s residential use

Water quota of Heilongjiang Province

Model parameter calibration

IPCC assessment reports 

Temperature and precipitation variation analysis in the main 

stream of  the Songhua River basin (1961-2015)

Scenario analysis

The main stream of the Songhua 

River basin

Precipitation Temperature Runoff

Pretreatment of temperature and 

precipitation data

Mann-Kendall trend test
Moving average curve of 

five years

Runoff simulation model : R=kPαETβ 

Benefit 

maximization

 Water supply 

minimization

Water resources 

utilization 

efficiency

Optimal water resources planning considering climate change and 

scenario analysis

Runoff simulation

Water 

availability

Scenarios

 

Figure 2. Decision procedure of the developed framework for water resource planning. 
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The SLFP model aims to allocate limited water resources to different water demand sectors 

including the agricultural water sector, industrial water sector, domestic water sector and 

environmental water sector, which are denoted as AgWSit, InWSit, DoWSit, and EcWSit, respectively, 

in 2020 and 2030, denoted as t = 1 and t = 2, respectively. These four decision variables are limited by 

Chemical Oxygen Demand (COD), water resources and happiness index constraints. Equation (17) is 

a fractional programming model which reflects the maximization of system efficiency. Equation (12) 

is the numerator of Equation (17), which represents the maximization of the system’s economic 

benefits. Equation (16) is the denominator of Equation (17) that represents the minimum water supply 

of the system. The SLFP model can be written as follows. 

Objective function: 

1max f A B C= − −  (12) 

( )
2 8

1 1

it it it it it it

t i

A InV InWS AgV AgWS EcV EcWS
= =

=  +  +   (13) 

( )
2 8

1 1

t t t it it t t t it it

t i

B DSOC DSTR DSD WSP DoWS IWOC IWTR IWD InV InWS
= =

=     +      (14) 

2 8

1 1

t t it it t t it it

t

t i t t it it

OCDCOD DoCOD WSP DoWS OCICOD InCOD InV InWS
C RSTCOD

OCACOD AgCOD AgV AgWS= =

   +    + 
=  

   
   (15) 

( )
2 8

2

1 1

min it it it it

t i

f DoWS InWS AgWS EcWS
= =

= + + +  (16) 

1

2

max
max

min

f
F

f
=

 
(17) 

This model is subject to the following constraints: 

Chemical Oxygen Demand (COD) constraints: 

COD is the most used pollution index commonly. COD can reflect the degree of pollution in 

water. The greater the chemical oxygen demand, the more serious the pollution of organics in water. 

If COD is used as a constraint, the SLFP model can provide optimal water resource planning under 

the water quality standards. 

8

1

(1 ) (

)

t it it t it it t

i

it it t t

RSTCOD WSP DoWS DoCOD InV InWS InCOD

AgV AgWS AgCOD EcCOD

=

−   +   +

  

  
(18) 

Water resource constraints: 

R0i is the connection point of RSM and LFP, and is obtained by RSM. It is also a constraint in the 

LFP model. 

0

1
it it it it i

t

DoWS InWS AgWS EcWS R
WUR

+ + +    (19) 
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min

min
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it it

it it

it it

it it

DoWS DoWS

InWS InWS

AgWS AgWS

EcWS EcWS








 

 (20) 

Happiness index constraints: 

According to the outline of the thirteenth Five-Year plan of national economic and social 

development in Heilongjiang Province, primary and tertiary industries have developed rapidly, and 
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the structure of the secondary industry has undergone various changes. The proportions of the three 

industrial sectors changed from 12.6:48.4:39 at the end of the 11th Five-Year to 17.5:31.8:50.7, and the 

ratio of industrial value added to agricultural value added dropped from 3.84 to 1.82. Observed and 

calculated ratio changes of the industrial value added and agricultural value added were obtained 

for the recent five-year plans. It is predicted that this ratio will fluctuate from 1.735 to 1.817 in 2020 

and will fluctuate from 1.654 to 1.735 in 2030. The happiness index was established according to 

Engel’s Coefficient, the structural adjustment and future requirements for national happiness 

promotion. By calculating the ratio of per capita food consumption to total per capita consumption 

in the recent ten years, this ratio will fluctuate between 0.207 and 0.234 in 2020 and fluctuate between 

0.186 and 0.207 in 2030. Therefore, the following restrictions are proposed to adjust the proportion of 

water allocation in different water demand sectors. 

When t = 1: 

0.207 0.234it it

it

AgV AgWS

CCE


   (21) 

When t = 2: 

1.654 1.735it it

it it

InV InWS

AgV AgWS


 


 (22) 

0.186 0.207it it

it

AgV AgWS

CCE


   (23) 

A represents the value of total water output, yuan. A is made up of industry, agriculture and 

ecology added value, because domestic water does not produce added value. B represents the sewage 

treatment costs in sewage treatment plants, yuan. The equation assumes that agricultural wastewater 

treats only COD, and ecological water does not produce waste water. Therefore, B is made up of 

domestic and industrial sewage treatment costs. C represents the COD treatment costs, yuan. C is 

made up of domestic, industrial and agricultural COD treatment costs. The objective function 

represents the best ratio of economic benefit and water resource allocation. The above symbols are 

defined in Table 2. 

Table 2. Model parameter. 

Parameter Description Units 

DoWSit the water supply for domestic use in area i and period t m3 

InWSit the water supply for industry in area i and period t m3 

AgWSit the water supply for agriculture in area i and period t m3 

EcWSit the water supply for the environment and wetlands in area i and period t m3 

InVit the industrial value added per unit of water supply in area i and period t yuan/m3 

AgVit 
the agricultural value added per unit of water supply in area i and 

period t 
yuan/m3 

EcVit 
the environmental and wetland value added per unit of water supply in 

area i and period t 
yuan/m3 

WSPit 
the number of people supported per unit of water supply in area i and 

period t 
p/m3 

CCEit the per capita consumption expenditure in area i and period t yuan/p 

DSOCt 
the operating costs of sewage treatment plants per unit of domestic 

sewage in period t, t1 requires 0.53 yuan/m3, and t2 requires 0.50 yuan/m3 
yuan/m3 

IWOCt 

the operating costs of sewage treatment plants per unit of industrial 

wastewater in period t, t1 requires 3.18 yuan/m3, and t2 requires 3.06 

yuan/m3 

yuan/m3 
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DSTRt 
the rate of domestic sewage treatment in period t, t1 requires 0.9018, and 

t2 requires 0.9547 
- 

IWTRt 
the rate of industrial wastewater treatment in period t, t1 requires 0.9532, 

and t2 requires 0.9918 
- 

DSDt the per capita domestic sewage discharge in period t m3/p 

IWDt the industrial wastewater discharge per unit GDP in period t m3/yuan 

DoCODt the COD discharge of domestic pollution sources per capita in period t m3/p 

InCODt 
the COD discharge of industrial pollution sources per unit GDP in 

period t 
m3/yuan 

AgCODt 
the COD discharge of agricultural pollution sources per unit GDP in 

period t 
m3/yuan 

RSTCODt 
the rate of COD disposal in sewage treatment plants in period t, t1 

requires 0.9245, and t2 requires 0.9538 
- 

OCDCODt 
the operating costs of sewage treatment plants per unit of COD 

discharge from domestic pollution sources in period t 
yuan/p 

OCICODt 
the operating costs of sewage treatment plants per unit of COD 

discharge from industrial pollution sources in period t 
yuan/m3 

OCACODt 
the operating costs of sewage treatment plants per unit of COD 

discharge from agricultural pollution sources in period t 
yuan/m3 

EcCODt 
the environmental capacity of CODs in a certain environmental scope in 

period t 
m3 

R0i the runoff simulated by RSM in area i m3 

WURt 
the utilization ratio of surface water resources in period t, t1 requires 0.5, 

and t2 requires 0.85 
- 

MinDoWSit the minimum water supply for domestic use in area i and period t m3 

MinInWSit the minimum water supply for industry in area i and period t m3 

MinAgWSit the minimum water supply for agriculture in area i and period t m3 

MinEcWSit 
the minimum water supply for the environment and wetlands in area i 

and period t 
m3 

Note: p refers to population. 

3. Results and Analysis 

3.1. Mann-Kendall Trend Test of Temperature, Precipitation and Runoff 

The temperature in the study area increased from 1961 to 2015 based on the trend test results 

(Figure 3). The moving average curve of five years clearly showed the trend of temperature, 

precipitation and runoff. Specifically, the Mann-Kendall test showed that the statistic positive 

sequence curve (UF) and statistic inverse sequence curve (UB) of each region intersected in the 1990s, 

indicating that the temperature trend changed in the 1990s at a confidence level of 0.05, and the UF 

curve exceeded the critical value in 2005; therefore, the temperature in the study area exhibited a 

significant upward trend. Figure 3 shows the precipitation trends in the five regions from 1961 to 

2015. Although there were relatively consistent fluctuations in overall change, there was no 

significant change in regularity. As shown in Figure 3, runoff in the five regions of the study area 

exhibited an increasing-decreasing-increasing-decreasing trend from 1961 to 2015. Additionally, the 

UF and UB curves of runoff in each region intersected in the 1990s, indicating that the runoff trend 

changes in the 1990s at a confidence level of 0.05. This result suggests that the decrease in runoff and 

increase in air temperature were not only related but also synchronous. 
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Figure 3. Variations and Manner-Kendall-Sneyers trend test of temperature, precipitation and runoff 

in the main stream of the Songhua River. 

3.2. Runoff Simulation and Scenario Analysis 

The accuracy scenario simulation was extremely important. The variation trend analysis of 

temperature and precipitation in the main stream basin of Songhua River during the past 1961–2015 

years was combined with the scientific basis for future climate change and put forward in the IPCC 

reports to reasonably plan for the range of the future temperature and precipitation in the research 

area. 

According to Equation (1), the calibration period of the model extended from 1961 to 2010, and 

the validation period of the model was from 2010 to 2015. Based on the daily precipitation, 

temperature and flow data, the model parameters were established in the curve fitting toolbox 
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(cftool) of MATLAB (Matlabsoftware v. 2010b, MathWorks, Natick, Massachusetts, MA, USA). The 

RSMs of the flood season in the Songhua River basin are shown in Table 3. The coefficient of 

determination expressed as R2 showed that the simulation results of each region were satisfactory. 

Table 3. Runoff simulation model in different regions during the flood season. 

Region Runoff Simulation Model R2 

Xiadaiiji R0 = 686.7811P0.8988ET−0.9083 R2 = 0.8512 

Harbin R0 = 871.9465P0.9138ET−0.9225 R2 = 0.8162 

Tonghe R0 = 1674.5940P0.8880ET−0.9911 R2 = 0.8572 

Yilan R0 = 1619.9227P0.9272ET−0.9862 R2 = 0.8647 

Jiamusi R0 = 2105.5688P0.8966ET−0.9588 R2 = 0.8110 

Observed and simulated runoffs in the calibration and validation periods are shown in Figure 

4. The REs of Xiadaiji, Harbin, Tonghe, Yilan and Jiamusi between the measured runoff and the 

simulated runoff in the calibration period were 1.15–34.07%, 1.05–36.71%, 0.69–22.4%, 1.33–35.89%, 

and 0.45–22.08%, respectively, and those in the validation period were 4.77–26.34%, 4.07–32.45%, 

3.75–20.70%, 2.05–11.30%, and 3.50–19.31%, respectively. The CCs of Xiadaiji, Harbin, Tonghe, Yilan 

and Jiamusi between measured runoff and simulated runoff in the calibration period were 0.874, 

0.927, 0.849, 0.862, and 0.810, respectively, and those during the validation period were 0.891, 0.869, 

0.725, 0.803, and 0.687, respectively. The RE and CC results suggest that the fitting effects of the runoff 

simulation models in the five regions were satisfactory, and the RSM can accurately predict runoff in 

different scenarios. 

 

 

Figure 4. Observed and simulated runoff in the calibration and validation periods. 
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(b) Observed and simulated runoff in the validation period
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Assuming that the changes in temperature and precipitation were independent of other climatic 

factors, various temperature and precipitation scenarios were established for the study area using the 

random scenarios method [39]. Scenario analysis was adopted in this paper to comprehensively 

determine the annual trends in temperature and precipitation based on IPCC reports and the analysis 

of Figure 3. The temperature range was set to −0.5–2 °C, and the range of precipitation varied from 

−35–30% of the average precipitation from 1961–2015. First, the change in PET in the study area was 

calculated for the temperature change scenarios. Then, the RSM was used to analyse the rate of runoff 

change in the future scenarios. Twenty-five scenarios, denoted as S1, S2, S3,…, S25, were analysed 

(Table 4). 

Table 4. The rate of runoff change during the flood season in the study area under future scenarios. 

T 

P 
T − 0.5 °C T T + 1°C T + 1.5 °C T + 2 °C 

P × (1 − 35%) −30.20 −31.59 −34.26 −35.53 −36.76 

P × (1 − 15%) −11.01 −12.79 −16.19 −17.81 −19.38 

P 3.09 1.03 −2.90 −4.78 −6.60 

P × (1 + 10%) 12.39 10.14 5.85 3.80 1.81 

P × (1 + 30%) 30.74 28.12 23.13 20.75 18.44 

Note: T refers to temperature; P refers to precipitation. 

As shown in Table 4, as the temperature in the Songhua River basin increased, the runoff 

estimated by the RSM decreased, and the runoff increased with a decreasing temperature. As 

precipitation in the Songhua River basin increased, the runoff predicted by the RSM increased, and 

the runoff decreased with a decreasing precipitation. Two extremes can be observed in Table 4. First, 

when the temperature increased by 2 °C and the precipitation decreased by 35%, the simulated runoff 

decreased by 36.76% compared to the average annual runoff. Second, when the temperature 

decreased by 0.5 °C and the precipitation increased by 30%, the simulated runoff increased by 30.74% 

compared to the average annual runoff. These two scenarios reflected extreme drought and extreme 

flooding, respectively. Additionally, when the temperature and precipitation remain unchanged, the 

runoff simulated by RSM differs from the measured runoff by 1.03%. This finding further verified 

the fitting effects of the models, which can be used to optimally allocate water resources. 

3.3. Model Parameter Calibration 

In this paper, the SLFP model is used to maximize improved the proportion of production based 

on the available water resources inputs. The main stream of the Songhua River is divided into eight 

subregions according to their associated administrative regions, thus, i = 8 in the model. The water 

allocation regions were Qianguo, Fuyu, Zhaoyuan, Zhaodong, Harbin (urban area including 

Shuangcheng, Hulan, Acheng, Bin, Bayan, Mulan, Tonghe, Fangzheng, and Yilan), Jiamusi (urban 

area including Tangyuan, Huachuan, Fujin, and Tongjiang), Luobei, and Suibin. Sequentially the 

subregions were numbered: P1, P2, …, P8. 

Table 5 shows the added value per unit of water resources and the number of people supplied 

in different sectors during the two planning periods. To facilitate the calculations, the production 

value was introduced into the paper. We defined the production value as the value produced in 

different industries using water. Table 6 shows the other parameters used in the model. 
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Table 5. The added value of the industrial, agricultural, and environmental sectors per unit of water 

resources produced relative to the water supply to the population. 

Regions 
InV (yuan/m3) AgV (yuan/m3) EcV (yuan/m3) WSP (p/m3) 

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 

P1 107.970 157.245 15.428 19.117 20.929 22.832 0.254 0.215 

P2 102.474 149.241 25.596 31.653 20.929 22.832 0.244 0.213 

P3 93.826 136.646 20.935 25.637 20.929 22.832 0.267 0.217 

P4 121.369 176.759 24.266 29.667 110.803 120.876 0.306 0.221 

P5 128.286 186.832 7.400 9.082 110.803 120.876 0.291 0.219 

P6 115.826 168.687 3.408 4.197 62.788 68.496 0.285 0.219 

P7 99.470 144.866 5.443 6.712 62.788 68.496 0.232 0.211 

P8 94.274 137.298 4.898 6.031 0 0 0.326 0.223 

Table 6. Other input parameters. 

Target 

years  

DSD 

(m3/p) 

IWD 

(m3/yuan) 

DoCOD 

(m3/p) 

InCOD 

(m3/yuan) 

AgCOD 

(m3/yuan) 

OCDCOD 

(yuan) 

OCICOD 

(yuan) 

OCACOD 

(yuan) 

EcCOD 

(m3) 

t = 1 28.083 0.0007 0.0198 6.7 × 10−7 0.000012 422 1330 126 18,560 

t = 2 30.197 0.00054 0.0189 5.9 × 10−7 0.000009 409 1289 122 14,848 

3.4. Water Resource Optimization 

Figure 5 showed the results of the SLFP model. Six typical water allocation schemes are 

established in each region, and the allocation of water resources varied in each scenario. By assessing 

the allocation of water resources, the values of water resources and water inputs, as well as the 

associated trends, can be determined. 

A reasonable water allocation scheme can improve economic and social development, as well as 

improve people’s material and cultural life. Figure 5 shows the water allocation in different periods 

in each region based on 25 scenarios. Comparing the water allocation of domestic water in different 

target years, it is found that the trend of water allocation varies in different regions. Due to the large 

population density and population growth trend, the water allocation in 2030 is higher than 2020, 

and the water allocation increased by 0.05%, 0.44%, 1.01% and 0.20% in Qianguo, Zhaodong, Harbin 

and Jiamusi, respectively. Because of the sparse population density, the population has a negative 

growth trend, the water allocation in 2030 is less than the water allocation in 2020, and the water 

allocation is reduced by 0.22%, 0.14%, 0.72% and 0.69% in Fuyu, Zhaoyuan, Luobei and Suibin, 

respectively. The industrial sector, as a water user with the largest actual economic benefit per cubic 

meter of water, is proportional to the economic and environmental pollution, so the constraint 

conditions are introduced to restrict the water allocation in the industrial sector to ensure the fairness 

of the other three water use sectors. The industrial water allocation in 2030 was significantly lower 

than that in 2020, Qianguo, Fuyu, Zhaoyuan, Zhaodong, Harbin, Jiamusi, Luobei, and Suibin 

decreased by 2.06%, 3.45%, 3.26%, 3.52%, 2.49%, 1.03%, 3.06% and 2.77% respectively. This is also 

closely related to the improvement of industrial production water-saving technology and the 

adjustment of industrial structure. As the largest user of water in four water demand sectors, the 

water demand of agriculture accounts for the largest proportion of the total water supply. The 

proportion of agricultural water supply varies in different regions due to planting area, planting 

species and wetland holdings. The agricultural water supply accounts for 70.92%, 63.27%, 54.79%, 

76.21%, 77.22%, 77.68%, 74.76% and 96.59% of the total water supply in Qianguo, Fuyu, Zhaoyuan, 

Zhaodong, Harbin, Jiamusi, Luobei, and Suibin, respectively. The environmental water allocation in 

2030 was projected to be higher than that in 2020 in different regions. The growth rate of 

environmental water allocation is 1.29%, 0.22%, 0.12%, 0.19%, 0.45%, 0.64% and 3.74% in Qianguo, 

Fuyu, Zhaoyuan, Zhaodong, Harbin, Jiamusi, Luobei, and Suibin, respectively. Additionally, the 

population’s awareness of environmental protection is expected to gradually increase; therefore, 

providing adequate water for environmental uses is important. 
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Figure 5. Water allocation in different regions of the study area. Note: Dom. refers to domestic water 

allocation amount; Ind. refers to industrial water allocation amount; Eco. refers to environmental 

water allocation amount; Agr. refers to agricultural water allocation amount. 

Table 7 compared the coefficients of variation for each region and in different periods for 

different water demand sectors with the 25 scenarios. Notably, in 2020, the water allocation in 

different sectors was affected by different scenarios, and the fluctuation in 2030 was smaller. In 2020, 

the domestic water allocation in Luobei was most affected by these different scenarios, while Harbin 

was the least affected by the different scenarios. The coefficient of variation of the industrial water 
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allocation was largest in Suibin and smallest in Harbin. The coefficient of variation of the 

environmental water allocation was largest in Zhaodong. Because of the large amount of agricultural 

water, the difference in agricultural water allocation in different situations is not obvious, which leads 

to the smaller T, but it can still be seen that the change in water allocation in different scenarios in 

2020 is more obvious than that in 2030. 

Table 7. The coefficient of variation for water allocation under different scenarios. 

Regions 

Domestic Water 

Sector 

Industrial Water 

Sector 

Environmental 

Water Sector 

Agricultural Water 

Sector 

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 

P1 7.24% 0.48% 2.23% 0.05% 0.01% 0 0.14% 0.03% 

P2 7.35% 0.14% 2.69% 0.05% 4.62% 0 0.12% 0.06% 

P3 10.12% 0.25% 4.39% 0.10% 0.01% 0 0.10% 0.03% 

P4 6.38% 0.18% 1.51% 0.03% 8.37% 0.09% 0.21% 0.05% 

P5 1.13% 0.06% 0.33% 0.01% 3.24% 0.04% 0.05% 0.03% 

P6 4.16% 0.07% 2.55% 0.06% 0.19% 0.01% 0.09% 0.01% 

P7 28.79% 1.93% 16.27% 0.43% 0.94% 0.02% 0.11% 0.02% 

P8 21.41% 0.82% 20.83% 2.81% - - 0.12% 0.03% 

When the objective function is only considered Equation (12), in which only the largest economic 

benefit is taken into account. The results show that the water allocation for industrial is higher, the 

water allocation for agricultural is low, the water allocation for ecological changes little, and the water 

allocation for domestic is basically the same. When the objective function is only considered Equation 

(16), in which only the minimum water supply target is considered, The results show that water 

allocation only satisfies the minimum water requirement of each section. When these two target 

functions were taken into consideration at the same time, the results of water allocation tend to be 

the result of the target with the minimum water supply. However, consider with Equation (12) 

limited, it is different from the water allocation results that only consider Equation (16). Because this 

paper uses fractional linear programming to indirectly represent multiple targets, the two targets are 

integrated into one model, instead of using traditional weights or only goal programming. In addition 

to the indirect reflection of two objectives, the model is more important to reflect the efficiency of the 

system. Because of the shortage of water resources, the decision-makers pay more attention to the 

efficiency of the allocation, while the fractional linear programming reflects the allocation efficiency 

index in the form of objective function in the optimization model primarily, so as to efficiently allocate 

the water resources in the study area. 

Figure 6 shows the added value and model efficiency under different scenarios. Notably, the 

higher the runoff, the larger the added value and model efficiency. For example, the added value was 

498.09 billion and the model efficiency was 0.365 for S21, which is associated with the largest amount 

of runoff. The model efficiency of different scenarios reflected the relationships between system 

benefits and runoff. The system efficiency will increase as runoff increases. Specifically, the higher 

the amount of runoff, the larger the potential system benefits and economic results. Thus, larger 

system benefits were produced by relatively large water resources investments, but overly large 

water supplies can cause natural disasters, such as floods. Moreover, the lower the amount of runoff, 

the smaller the system benefits, but too little water can also cause natural disasters, such as droughts. 

As shown in Figures 6, S5 and S21 represented extreme droughts and extreme floods, respectively. 

The air temperature was increased by 2 °C, and the precipitation was 65% of the annual average 

precipitation, and the simulated runoff was 63.24% of the annual average runoff in S5. The most 

needed water sectors should be supplied. At this time, the water conservancy project plays a major 

role, and we can obtain water from the reservoir and the water diversion project so that society can 

function normally. The air temperature was decreased by 0.5 °C, and the precipitation was 130% of 

the annual average precipitation, and the simulated runoff was 130.74% of the annual average runoff 

in S21. In order not to cause a large area of flood disaster, in addition to provide normal life and the 
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necessary water requirements, the remaining water can also be stored in the reservoir or discharged 

into the sea through the water diversion project. Thus, it is important to undertake water conservancy 

projects. 

 

Figure 6. Added value and model efficiency under different scenarios. 

In this paper, we used two types of software to calculate the constructed model: one is Lingo 

and the other is Excel programming solution. The Lingo model use dual theory, which transforms 

the fractional programming model into a conventional linear programming model, and Excel uses 

generalized reduced gradient (GRG) algorithms. Compared with the results of two software 

solutions, the allocation results are different from the numerical value, but there is not much 

difference. It is proved that the two types of software are applicable to the solution of the model. 

The real-world case study showed that the SLFP model, which considers the changes of 

temperature and precipitation, is an effective tool for optimally allocating water resources under 

different water inflow conditions. Generally, compared with other optimization methods, the SLFP 

model has the following advantages. (i) The SLFP model considers issues such as climate change in 

a traditional model of optimal water resource allocation to improve the temporal applicability and 

practicality of the method. Moreover, the model coordinates the relationship between the maximum 

economic benefits, minimum water supply and maximum water resource efficiency to provide a 

reference for water resource allocation under different water conditions; (ii) The SLFP model is 

particularly sensitive to water supply, water requirement, and water allocation constraints. In the 

modelling process, constraints are carefully established according to COD, water supply, structural 

adjustments and future national happiness requirements. These constraints can improve the 

industrial structure. The real-world case study yielded a series of optimal Pareto solutions, and these 

solutions indicated that all the constraint conditions contributed to the final optimization results; (iii) 

The SLFP model can provide sufficient analysis of the interrelationships among system efficiency, 

the investment in water resources and economic benefits. The best effect of the model was observed 

after long-term use. Therefore, the SLFP method can be applied to other resources, such as reservoir 

operation management, sustainable waste management, etc. 
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4. Conclusions 

In this study, runoff in the study area was simulated and forecasted considering the future 

variations of annual precipitation and temperature according to IPCC reports and Figure 3, based on 

which, a SLFP model for water resources optimal allocation was developed by incorporating the RSM 

model and LFP model. Through solving the SLFP model, various optimal allocation schemes of water 

resources in different periods and different scenarios were obtained. The main conclusions can be 

drawn: 

(a) Based on the Mann-Kendall test of hydro-meteorological data from 1961 to 2015 for the Songhua 

River basin, the average temperature increased by 0.0278 °C per year, and precipitation 

presented large fluctuations, while the overall trends of runoff changed slightly. Based on the 

IPCC reports, 25 scenarios were established considering the variations in temperature and 

precipitation. The rate of simulated runoff change was 0.0103 with the temperature and 

precipitation unchanged. The reliability of the RSM was verified by RE and CC. The R2 values of 

the RSM models were all above 0.81, indicating that the RSM model can provide reliable 

forecasting and thus can be used as an input of water resource planning. 

(b) The water allocation schemes were affected by different scenarios, and the range of water 

allocation considerably varied among different regions and sectors in 2020. However, the water 

allocation was gradually optimized using the SLFP model, and the range of water allocation in 

different regions and sectors generally decreased in 2030 compared to that in 2020. According to 

the analysis of the results of water allocation, the economic benefits have been obtained in target 

years. In this paper, the environmental oxygen demand (EcCOD) and the happy life index were 

integrated into the SLFP model to improve its practicability. Analysis results of the water 

resource allocation schemes under the two extreme scenarios indicate that the water resource 

allocation in the main stream basin of the Songhua River needs water conservancy projects. 

Using the SLFP model, managers can easily and optimally allocate water resources under 

different water inflow conditions. 
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