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Abstract: The potential influence of natural variations in a climate system on global warming
can change the hydrological cycle and threaten current strategies of water management.
A simulation-based linear fractional programming (SLFP) model, which integrates a runoff simulation
model (RSM) into a linear fractional programming (LFP) framework, is developed for optimal water
resource planning. The SLFP model has multiple objectives such as benefit maximization and water
supply minimization, balancing water conflicts among various water demand sectors, and addressing
complexities of water resource allocation system. Lingo and Excel programming solutions were used
to solve the model. Water resources in the main stream basin of the Songhua River are allocated
for 4 water demand sectors in 8 regions during two planning periods under different scenarios.
Results show that the increase or decrease of water supply to the domestic sector is related to
the change in population density at different regions in different target years. In 2030, the water
allocation in the industrial sector decreased by 1.03–3.52% compared with that in 2020, while the
water allocation in the environmental sector increased by 0.12–1.29%. Agricultural water supply
accounts for 54.79–77.68% of total water supply in different regions. These changes in water resource
allocation for various sectors were affected by different scenarios in 2020; however, water resource
allocation for each sector was relatively stable under different scenarios in 2030. These results suggest
that the developed SLFP model can help to improve the adjustment of water use structure and water
utilization efficiency.

Keywords: water resources optimal allocation; linear fractional simulation programming; scenario
analysis; climate change

1. Introduction

Most surface water resources are stored in channels and basins, and these waters have long
regeneration cycles and are heterogeneously distributed. The impact of global warming on future
water resources cannot be neglected in the process of developing and utilizing these resources [1].
Specifically, researchers and managers have to determine how to allocate limited water resources to
different areas or water departments to achieve the optimal balance between social, economic and
ecological benefits. Thus, optimizing water resource allocation is an important task [2–4].
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With the development of economy and society, the development and utilization of water resources
has gradually shifted from a single goal to a comprehensive utilization. Under such circumstances,
the single objective programming method that focuses on economic benefit only is no longer applicable.
Optimal water resource allocation involves many aspects such as the social economy, ecological
environment, etc. In order to improve the efficiency of water resource allocation and avoid the
contradiction of water resource utilization between different water demand sectors, it is necessary
to adopt multi-objective programming to planning water resources. Multi-objective programming
considers two or more targets and makes alternatives for conflicting finite (infinite) schemes
simultaneously. Many experts and scholars have adopted multi-objective programming methods to
solve the problem of optimal water resource allocation [5–9]. As an effective method for handling
multi-objective problems, linear fractional programming (LFP), which can also affect system efficiency
quantificationally, has been used recently in water resource allocation. For example, Zhang et al. [10]
developed a model that can be derived from integrating generalized fuzzy credibility-constrained
programming (GFCCP) into a linear fractional programming (LFP) optimization framework to
optimize water resources. Mani et al. [11] formulated a conjunctive-use model for the management
of groundwater and surface water via mixed integer linear fractional programming. Ren et al. [12]
combined an LFP model and a chance constrained programming (CCP) model to determine whether
the water resource carrying capacity of Jinchang City could meet the requirements of economic
development. However, the LFP, which falls within the capability of linear fractional programming in
a multi-objective framework, and the runoff simulation model (RSM) have been applied to optimal
water allocation in limited cases.

Water resource planning is important to provide a reference for water resource management
in the future. Water resource planning is strongly affected by runoff. Therefore, runoff forecasting
is necessary when planning water resources. Runoff forecasting is constrained by climate change.
The Intergovernmental Panel on Climate Change (IPCC) is the international body for assessing the
science related to climate change. Since its inception in 1988, the IPCC has completed five assessment
reports [13–15]. These reports have provided the main scientific basis for the international community
to understand and investigate climate change. Many global scholars have used different climate models
in the Coupled Model Intercomparison Project Phase 5 (CMIP5) to simulate and evaluate the future
climate in various regions of the world [16–19]. There is a strong consensus regarding the changes
in climate caused by increased concentrations of anthropogenic greenhouse gas emissions, and the
subsequent effects of climate change on runoff are inevitable [20]. Precipitation and temperature are the
main elements that influence climate change and runoff variation. The vertical and lateral redistribution
of water in the subsurface is influenced by annual and interannual variations in precipitation,
and the calculation of potential evaporation (PET) directly reflects the effect of temperature on
runoff [21]. Recently, numerous studies on runoff forecasting considering climate change have been
conducted [22–25]. Unfortunately, information on how the changes in precipitation and temperature
affect runoff forecasting and thus affect water allocation efficiency considering the economic benefit
maximization and water supply minimization simultaneously is limited.

Therefore, the aim of this study is the development of a simulation-based linear fractional
programming model for adaptable water allocation planning. The SLFP model developed in this
paper combines the runoff simulation model (RSM) and LFP model to provide a reasonable scheme for
the optimal allocation of water resources in the future. The objective of the SLFP model is to allocate
available water resources to different water sectors in various regions to improve the utilization
efficiency of water resources and provide evidence for water resource planning under climate change.
The developed model is then applied in a real-world case study in the main stream basin of the Songhua
River, Northeast China. The optimal allocation of water resources is estimated in different periods
based on various temperature and precipitation scenarios, which can be used for providing information
on the balance among different departments, allocation strategies, and agriculture sustainability.
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2. Data and Methodology

2.1. Study Area and Data

The Songhua River basin is located in Northeast China. The Songhua River is one of the seven
major rivers in China and the largest tributary of the Heilongjiang River. The river spans Inner
Mongolia, Jilin and Heilongjiang Provinces. The study area includes the main stream of the Songhua
River basin, which begins in Zhaoyuan County. Zhaoyuan County is the intersection of the Nenjiang
River, Songhua River and second Songhua River. The main channel ends in Tongjiang City at the
intersection of the Songhua River and Heilongjiang River (Figure 1). The Songhua River basin
has a temperate monsoon climate and four distinct seasons. In the flood season (June-September),
the precipitation is 397.5 mm, which is 60–80% of the annual precipitation, the mean air temperature
is 19.4 ◦C, and the mean runoff is 29.19 billion m3 in the study area. Average daily precipitation,
air temperature and flow data during the flood season from 1961 to 2010 are available for the study area:
average daily precipitation and air temperature data were collected from 5 meteorological stations from
1961–2015 from the China Meteorological Data Service Center (http://data.cma.cn/). Additionally,
average daily solar radiation data were derived from the National Earth System Science Data Sharing
Infrastructure, National Science & Technology Infrastructure of China (http://www.geodata.cn).
The corresponding data are shown in Table 1.
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Table 1. The average air temperature, precipitation and solar radiation during the flood season at five
meteorological stations in the study area from 1961–2015.

Station Code Latitude Longitude Temperature
(◦C)

Precipitation
(mm)

Solar Radiation
(MJ m−2 day−1)

Xiadaiji 54063 44◦58′ 126◦00′ 20.40 387.24 217.27
Harbin 50953 45◦45′ 126◦26′ 19.94 419.84 205.37
Tonghe 50963 45◦58′ 128◦44′ 18.80 397.52 207.92
Yilan 50877 46◦18′ 129◦35′ 18.97 401.37 197.22

Jaimusi 50873 46◦49′ 130◦17′ 19.18 381.59 197.16

2.2. Methodology

2.2.1. Runoff Simulation Model

In order to better plan the water resources of the basin, runoff simulation is critical. In terms of
this study, runoff has a direct relationship with precipitation and PET. This paper uses the relationship
between runoff, precipitation and PET proposed by Liu [26], and it can be expressed as follows [27]:

R0 = kPαPETβ (1)

where R0 is the simulated runoff, 108 m3; P is the precipitation, mm; PET is the potential
evapotranspiration, mm.

Precipitation

The average daily precipitation data in the flood season were collected from 5 meteorological
stations from 1961–2015 from the National Meteorological Science Data Sharing Infrastructure
(http://data.cma.cn/). By adding daily precipitation in the flood season, the precipitation in flood
season for the 5 meteorological stations is obtained.

Potential Evaporation (PET)

Many computational methods of calculating PET are applicable, corresponding to different
conditions [28–32]. According to the geographical characteristics of the study area and the selection
of model parameters, the Makkink method is used to calculate the PET in this paper because it can
estimate evapotranspiration in humid grassland areas. Makkink [28] proposed the Makkink formula
in Holland, and it is a revised version of the [33] formula. The Makkink formula can be expressed
as follows:

PET = 0.61
∆

∆ + γ

RS
λ
− 0.12 (2)

where PET is the potential evapotranspiration, mm day−1; RS is the solar radiation, MJ m−2 day−1;
∆ is the slope of the saturation vapour pressure curve, kPa ◦C−1; γ is the psychrometric constant;
and λ is the latent heat of vaporization.

The slope of the saturation vapour pressure curve can be calculated using the following
equation [34]:

∆ =
4098× eo

(T + 237.3)2 (3)

eo = exp
[

16.78× T − 116.9
T + 237.3

]
(4)

where eo is the saturation vapour pressure on a given day, kPa, and T is the mean daily air temperature, ◦C.

http://data.cma.cn/
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The psychrometric constant can be determined as follows:

γ =
cp × Ps

0.622× λ
(5)

where cp is the specific heat of moist air at a constant pressure, 1.013 × 10−3 MJ kg−1 ◦C−1, and Ps is
the atmospheric pressure, kPa.

The latent heat of vaporization can be determined from the following expression.

λ = 2.501− 2.361× 10−3 × T (6)

Finally, atmospheric pressure can be expressed as follows:

Ps = 101.3− 0.01152 · EL + 0.544× 10−6 × EL (7)

where EL is the elevation, m.
This paper employs empirical relationships taken from Neitsch [34], applicable in the region

under study. The calculated slope of the saturation vapour pressure curve and other parameters are
consistent with the results of such studies in the same area [35,36] and show that Equations (3)–(7)
are reasonable.

Model Evaluation

The reliability of the model is evaluated based on the relative error (RE) and the correlation
coefficient (CC). The RE reflects the credibility of the RSM, and the CC reflects the overall efficiency of
the RSM:

REi =
|Ri − Gi|

Gi
× 100% (8)

CC =
∑ n

i=1
(
Gi − G

)(
Ri − R

)√
∑ n

i=1

(
Gi − G

)2
√

∑ n
i=1

(
Ri − R

)2
(9)

where Gi is the measured value of the flood season runoff, G is the mean measured value of the flood
season runoff; Ri is the simulated value of the flood season runoff, and R is the mean simulated value of
the flood season runoff. The range of CC is 0–1, and the larger the CC, the better the model simulation
capability and higher the efficiency, n is the total years, i represents the year.

2.2.2. Linear Fractional Programming

Linear-fractional programming (LFP) is a generalization of linear programming (LP). LFP represents
optimization problems using linear equations and linear inequalities and has a richer set of objective
functions. LFP can effectively reflect the efficiency of a system. Therefore, this method has certain
advantages in optimizing water resources [37]. The common LFP model (denoted as primal programming,
or PP) [38] can be expressed as follows:

max f (x) = cx+α
dx+β

Ax ≤ b
x ≥ 0

(10)

where A is an m by n matrix; x and b are column vectors with n and m components, respectively; c and
d are row vectors with n components; α and β are constants; and dx + β > 0.
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A PP can be solved using dual theory, and the dual model is expressed as follows (denoted as
dual programming, or DP). 

min g(y, z) = z
ATy + dTz ≥ cT

−bTy + βz = α

y ≥ 0

(11)

Equation (10) is a linear model, and its optimal solution is (ŷ, ẑ), which can be easily obtained
by introducing the relaxation column vector, v̂ . In this case, v̂ = aT ŷ + dT ẑ− cT , and v̂ ≥ 0. If x̂ is
the optimal solution of Equation (10) and û is a relaxation column vector, then ax̂ + û = b and û ≥ 0.
According to the relaxation theorem, if x̂jv̂j = 0 and ŷjûj = 0, Equations (10) and (11) have the same
optimal solution. Therefore, the LFP model can be solved with the above transformation.

2.2.3. Simulation-Based Linear Fractional Programming for Adaptable Water Allocation Planning

According to the conditions in the study area, The RSM is incorporated into the LFP model to
form an optimal allocation model of water resources considering runoff variations, in which the runoff
that is simulated by the RSM can be used as a constraint in the LFP model. The SLFP model considers
changes in temperature and precipitation to effectively simulate real-world scenarios. The framework
of the developed SLFP model is depicted in Figure 2.
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Figure 2. Decision procedure of the developed framework for water resource planning. Figure 2. Decision procedure of the developed framework for water resource planning.

The SLFP model aims to allocate limited water resources to different water demand sectors including
the agricultural water sector, industrial water sector, domestic water sector and environmental water
sector, which are denoted as AgWSit, InWSit, DoWSit, and EcWSit, respectively, in 2020 and 2030,
denoted as t = 1 and t = 2, respectively. These four decision variables are limited by Chemical Oxygen
Demand (COD), water resources and happiness index constraints. Equation (17) is a fractional
programming model which reflects the maximization of system efficiency. Equation (12) is the
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numerator of Equation (17), which represents the maximization of the system’s economic benefits.
Equation (16) is the denominator of Equation (17) that represents the minimum water supply of the
system. The SLFP model can be written as follows.

Objective function:
max f1 = A− B− C (12)

A =
2

∑
t=1

8

∑
i=1

(InVit × InWSit + AgVit × AgWSit + EcVit × EcWSit) (13)

B =
2

∑
t=1

8

∑
i=1

(DSOCt × DSTRt × DSDt ×WSPit × DoWSit + IWOCt × IWTRt × IWDt × InVit × InWSit) (14)

C =
2

∑
t=1

RSTCODt

8

∑
i=1

 OCDCODt × DoCODt ×WSPit × DoWSit + OCICODt × InCODt × InVit × InWSit+

OCACODt × AgCODt × AgVit × AgWSit

 (15)

min f2 =
2

∑
t=1

8

∑
i=1

(DoWSit + InWSit + AgWSit + EcWSit) (16)

max F =
max f1

min f2
(17)

This model is subject to the following constraints:
Chemical Oxygen Demand (COD) constraints:
COD is the most used pollution index commonly. COD can reflect the degree of pollution in water.

The greater the chemical oxygen demand, the more serious the pollution of organics in water. If COD
is used as a constraint, the SLFP model can provide optimal water resource planning under the water
quality standards.

(1− RSTCODt)
8
∑

i=1
(WSPit × DoWSit × DoCODt + InVit × InWSit × InCODt+

AgVit × AgWSit × AgCODt) ≤ EcCODt

(18)

Water resource constraints:
R0i is the connection point of RSM and LFP, and is obtained by RSM. It is also a constraint in the

LFP model.
DoWSit + InWSit + AgWSit + EcWSit ≤ R0i ×

1
WURt

(19)
min DoWSit ≤ DoWSit
min InWSit ≤ InWSit
min AgWSit ≤ AgWSit
min EcWSit ≤ EcWSit

(20)

Happiness index constraints:
According to the outline of the thirteenth Five-Year plan of national economic and social

development in Heilongjiang Province, primary and tertiary industries have developed rapidly,
and the structure of the secondary industry has undergone various changes. The proportions of the
three industrial sectors changed from 12.6:48.4:39 at the end of the 11th Five-Year to 17.5:31.8:50.7,
and the ratio of industrial value added to agricultural value added dropped from 3.84 to 1.82. Observed
and calculated ratio changes of the industrial value added and agricultural value added were obtained
for the recent five-year plans. It is predicted that this ratio will fluctuate from 1.735 to 1.817 in 2020 and
will fluctuate from 1.654 to 1.735 in 2030. The happiness index was established according to Engel’s
Coefficient, the structural adjustment and future requirements for national happiness promotion.
By calculating the ratio of per capita food consumption to total per capita consumption in the recent
ten years, this ratio will fluctuate between 0.207 and 0.234 in 2020 and fluctuate between 0.186 and
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0.207 in 2030. Therefore, the following restrictions are proposed to adjust the proportion of water
allocation in different water demand sectors.

When t = 1:
0.207 ≤ AgVit × AgWSit

CCEit
≤ 0.234 (21)

When t = 2:
1.654 ≤ InVit × InWSit

AgVit × AgWSit
≤ 1.735 (22)

0.186 ≤ AgVit × AgWSit
CCEit

≤ 0.207 (23)

A represents the value of total water output, yuan. A is made up of industry, agriculture and
ecology added value, because domestic water does not produce added value. B represents the sewage
treatment costs in sewage treatment plants, yuan. The equation assumes that agricultural wastewater
treats only COD, and ecological water does not produce waste water. Therefore, B is made up of
domestic and industrial sewage treatment costs. C represents the COD treatment costs, yuan. C is made
up of domestic, industrial and agricultural COD treatment costs. The objective function represents the
best ratio of economic benefit and water resource allocation. The above symbols are defined in Table 2.

Table 2. Model parameter.

Parameter Description Units

DoWSit the water supply for domestic use in area i and period t m3

InWSit the water supply for industry in area i and period t m3

AgWSit the water supply for agriculture in area i and period t m3

EcWSit the water supply for the environment and wetlands in area i and period t m3

InVit the industrial value added per unit of water supply in area i and period t yuan/m3

AgVit the agricultural value added per unit of water supply in area i and period t yuan/m3

EcVit
the environmental and wetland value added per unit of water supply in area i
and period t yuan/m3

WSPit the number of people supported per unit of water supply in area i and period t p/m3

CCEit the per capita consumption expenditure in area i and period t yuan/p

DSOCt
the operating costs of sewage treatment plants per unit of domestic sewage in
period t, t1 requires 0.53 yuan/m3, and t2 requires 0.50 yuan/m3 yuan/m3

IWOCt
the operating costs of sewage treatment plants per unit of industrial wastewater
in period t, t1 requires 3.18 yuan/m3, and t2 requires 3.06 yuan/m3 yuan/m3

DSTRt
the rate of domestic sewage treatment in period t, t1 requires 0.9018, and t2
requires 0.9547 -

IWTRt
the rate of industrial wastewater treatment in period t, t1 requires 0.9532, and t2
requires 0.9918 -

DSDt the per capita domestic sewage discharge in period t m3/p

IWDt the industrial wastewater discharge per unit GDP in period t m3/yuan

DoCODt the COD discharge of domestic pollution sources per capita in period t m3/p

InCODt the COD discharge of industrial pollution sources per unit GDP in period t m3/yuan

AgCODt the COD discharge of agricultural pollution sources per unit GDP in period t m3/yuan

RSTCODt
the rate of COD disposal in sewage treatment plants in period t, t1 requires
0.9245, and t2 requires 0.9538 -

OCDCODt
the operating costs of sewage treatment plants per unit of COD discharge from
domestic pollution sources in period t yuan/p

OCICODt
the operating costs of sewage treatment plants per unit of COD discharge from
industrial pollution sources in period t yuan/m3
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Table 2. Cont.

Parameter Description Units

OCACODt
the operating costs of sewage treatment plants per unit of COD discharge from
agricultural pollution sources in period t yuan/m3

EcCODt the environmental capacity of CODs in a certain environmental scope in period t m3

R0i the runoff simulated by RSM in area i m3

WURt
the utilization ratio of surface water resources in period t, t1 requires 0.5, and t2
requires 0.85 -

MinDoWSit the minimum water supply for domestic use in area i and period t m3

MinInWSit the minimum water supply for industry in area i and period t m3

MinAgWSit the minimum water supply for agriculture in area i and period t m3

MinEcWSit
the minimum water supply for the environment and wetlands in area i and
period t m3

Note: p refers to population.

3. Results and Analysis

3.1. Mann-Kendall Trend Test of Temperature, Precipitation and Runoff

The temperature in the study area increased from 1961 to 2015 based on the trend test results
(Figure 3). The moving average curve of five years clearly showed the trend of temperature,
precipitation and runoff. Specifically, the Mann-Kendall test showed that the statistic positive
sequence curve (UF) and statistic inverse sequence curve (UB) of each region intersected in the
1990s, indicating that the temperature trend changed in the 1990s at a confidence level of 0.05, and the
UF curve exceeded the critical value in 2005; therefore, the temperature in the study area exhibited
a significant upward trend. Figure 3 shows the precipitation trends in the five regions from 1961 to
2015. Although there were relatively consistent fluctuations in overall change, there was no significant
change in regularity. As shown in Figure 3, runoff in the five regions of the study area exhibited an
increasing-decreasing-increasing-decreasing trend from 1961 to 2015. Additionally, the UF and UB
curves of runoff in each region intersected in the 1990s, indicating that the runoff trend changes in the
1990s at a confidence level of 0.05. This result suggests that the decrease in runoff and increase in air
temperature were not only related but also synchronous.

3.2. Runoff Simulation and Scenario Analysis

The accuracy scenario simulation was extremely important. The variation trend analysis of
temperature and precipitation in the main stream basin of Songhua River during the past 1961–2015
years was combined with the scientific basis for future climate change and put forward in the IPCC
reports to reasonably plan for the range of the future temperature and precipitation in the research area.

According to Equation (1), the calibration period of the model extended from 1961 to 2010, and the
validation period of the model was from 2010 to 2015. Based on the daily precipitation, temperature
and flow data, the model parameters were established in the curve fitting toolbox (cftool) of MATLAB
(Matlabsoftware v. 2010b, MathWorks, Natick, Massachusetts, MA, USA). The RSMs of the flood
season in the Songhua River basin are shown in Table 3. The coefficient of determination expressed as
R2 showed that the simulation results of each region were satisfactory.

Observed and simulated runoffs in the calibration and validation periods are shown in Figure 4.
The REs of Xiadaiji, Harbin, Tonghe, Yilan and Jiamusi between the measured runoff and the
simulated runoff in the calibration period were 1.15–34.07%, 1.05–36.71%, 0.69–22.4%, 1.33–35.89%,
and 0.45–22.08%, respectively, and those in the validation period were 4.77–26.34%, 4.07–32.45%,
3.75–20.70%, 2.05–11.30%, and 3.50–19.31%, respectively. The CCs of Xiadaiji, Harbin, Tonghe, Yilan
and Jiamusi between measured runoff and simulated runoff in the calibration period were 0.874, 0.927,
0.849, 0.862, and 0.810, respectively, and those during the validation period were 0.891, 0.869, 0.725,
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0.803, and 0.687, respectively. The RE and CC results suggest that the fitting effects of the runoff
simulation models in the five regions were satisfactory, and the RSM can accurately predict runoff in
different scenarios.Water 2018, 10, x FOR PEER REVIEW  10 of 19 
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Table 3. Runoff simulation model in different regions during the flood season.

Region Runoff Simulation Model R2

Xiadaiiji R0 = 686.7811P0.8988ET−0.9083 R2 = 0.8512
Harbin R0 = 871.9465P0.9138ET−0.9225 R2 = 0.8162
Tonghe R0 = 1674.5940P0.8880ET−0.9911 R2 = 0.8572
Yilan R0 = 1619.9227P0.9272ET−0.9862 R2 = 0.8647

Jiamusi R0 = 2105.5688P0.8966ET−0.9588 R2 = 0.8110

Water 2018, 10, x FOR PEER REVIEW  11 of 19 

 

(cftool) of MATLAB (Matlabsoftware v. 2010b, MathWorks, Natick, Massachusetts, MA, USA). The 

RSMs of the flood season in the Songhua River basin are shown in Table 3. The coefficient of 

determination expressed as R2 showed that the simulation results of each region were satisfactory. 

Table 3. Runoff simulation model in different regions during the flood season. 

Region Runoff Simulation Model R2 

Xiadaiiji R0 = 686.7811P0.8988ET−0.9083 R2 = 0.8512 

Harbin R0 = 871.9465P0.9138ET−0.9225 R2 = 0.8162 

Tonghe R0 = 1674.5940P0.8880ET−0.9911 R2 = 0.8572 

Yilan R0 = 1619.9227P0.9272ET−0.9862 R2 = 0.8647 

Jiamusi R0 = 2105.5688P0.8966ET−0.9588 R2 = 0.8110 

Observed and simulated runoffs in the calibration and validation periods are shown in Figure 

4. The REs of Xiadaiji, Harbin, Tonghe, Yilan and Jiamusi between the measured runoff and the 

simulated runoff in the calibration period were 1.15–34.07%, 1.05–36.71%, 0.69–22.4%, 1.33–35.89%, 

and 0.45–22.08%, respectively, and those in the validation period were 4.77–26.34%, 4.07–32.45%, 

3.75–20.70%, 2.05–11.30%, and 3.50–19.31%, respectively. The CCs of Xiadaiji, Harbin, Tonghe, Yilan 

and Jiamusi between measured runoff and simulated runoff in the calibration period were 0.874, 

0.927, 0.849, 0.862, and 0.810, respectively, and those during the validation period were 0.891, 0.869, 

0.725, 0.803, and 0.687, respectively. The RE and CC results suggest that the fitting effects of the runoff 

simulation models in the five regions were satisfactory, and the RSM can accurately predict runoff in 

different scenarios. 

 

 

Figure 4. Observed and simulated runoff in the calibration and validation periods. 

0

50

100

150

200

250

300

350

400

Xaidaiji Harbin Tonghe Yilan Jiamusi

Observed
Simulated

R
u
n
o
ff

/×
1
0

8
 m

3

(a) Observed and simulated runoff in the calibration period

0

50

100

150

200

250

300

350

400

450

Xaidaiji Harbin Tonghe Yilan Jiamusi

Observed

Simulated

R
u
n
o
ff

/×
1
0

8
 m

3

(b) Observed and simulated runoff in the validation period

Figure 4. Observed and simulated runoff in the calibration and validation periods.

Assuming that the changes in temperature and precipitation were independent of other climatic
factors, various temperature and precipitation scenarios were established for the study area using
the random scenarios method [39]. Scenario analysis was adopted in this paper to comprehensively
determine the annual trends in temperature and precipitation based on IPCC reports and the analysis
of Figure 3. The temperature range was set to −0.5–2 ◦C, and the range of precipitation varied from
−35–30% of the average precipitation from 1961–2015. First, the change in PET in the study area was
calculated for the temperature change scenarios. Then, the RSM was used to analyse the rate of runoff
change in the future scenarios. Twenty-five scenarios, denoted as S1, S2, S3, . . . , S25, were analysed
(Table 4).

As shown in Table 4, as the temperature in the Songhua River basin increased, the runoff estimated
by the RSM decreased, and the runoff increased with a decreasing temperature. As precipitation in the
Songhua River basin increased, the runoff predicted by the RSM increased, and the runoff decreased
with a decreasing precipitation. Two extremes can be observed in Table 4. First, when the temperature
increased by 2 ◦C and the precipitation decreased by 35%, the simulated runoff decreased by 36.76%
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compared to the average annual runoff. Second, when the temperature decreased by 0.5 ◦C and the
precipitation increased by 30%, the simulated runoff increased by 30.74% compared to the average
annual runoff. These two scenarios reflected extreme drought and extreme flooding, respectively.
Additionally, when the temperature and precipitation remain unchanged, the runoff simulated by
RSM differs from the measured runoff by 1.03%. This finding further verified the fitting effects of the
models, which can be used to optimally allocate water resources.

Table 4. The rate of runoff change during the flood season in the study area under future scenarios.

P
T

T − 0.5 ◦C T T + 1 ◦C T + 1.5 ◦C T + 2 ◦C

P × (1 − 35%) −30.20 −31.59 −34.26 −35.53 −36.76
P × (1 − 15%) −11.01 −12.79 −16.19 −17.81 −19.38

P 3.09 1.03 −2.90 −4.78 −6.60
P × (1 + 10%) 12.39 10.14 5.85 3.80 1.81
P × (1 + 30%) 30.74 28.12 23.13 20.75 18.44

Note: T refers to temperature; P refers to precipitation.

3.3. Model Parameter Calibration

In this paper, the SLFP model is used to maximize improved the proportion of production
based on the available water resources inputs. The main stream of the Songhua River is divided
into eight subregions according to their associated administrative regions, thus, i = 8 in the model.
The water allocation regions were Qianguo, Fuyu, Zhaoyuan, Zhaodong, Harbin (urban area including
Shuangcheng, Hulan, Acheng, Bin, Bayan, Mulan, Tonghe, Fangzheng, and Yilan), Jiamusi (urban
area including Tangyuan, Huachuan, Fujin, and Tongjiang), Luobei, and Suibin. Sequentially the
subregions were numbered: P1, P2, . . . , P8.

Table 5 shows the added value per unit of water resources and the number of people supplied in
different sectors during the two planning periods. To facilitate the calculations, the production value
was introduced into the paper. We defined the production value as the value produced in different
industries using water. Table 6 shows the other parameters used in the model.

Table 5. The added value of the industrial, agricultural, and environmental sectors per unit of water
resources produced relative to the water supply to the population.

Regions
InV (yuan/m3) AgV (yuan/m3) EcV (yuan/m3) WSP (p/m3)

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

P1 107.970 157.245 15.428 19.117 20.929 22.832 0.254 0.215
P2 102.474 149.241 25.596 31.653 20.929 22.832 0.244 0.213
P3 93.826 136.646 20.935 25.637 20.929 22.832 0.267 0.217
P4 121.369 176.759 24.266 29.667 110.803 120.876 0.306 0.221
P5 128.286 186.832 7.400 9.082 110.803 120.876 0.291 0.219
P6 115.826 168.687 3.408 4.197 62.788 68.496 0.285 0.219
P7 99.470 144.866 5.443 6.712 62.788 68.496 0.232 0.211
P8 94.274 137.298 4.898 6.031 0 0 0.326 0.223

Table 6. Other input parameters.

Target
years

DSD
(m3/p)

IWD
(m3/yuan)

DoCOD
(m3/p)

InCOD
(m3/yuan)

AgCOD
(m3/yuan)

OCDCOD
(yuan)

OCICOD
(yuan)

OCACOD
(yuan)

EcCOD
(m3)

t = 1 28.083 0.0007 0.0198 6.7 × 10−7 0.000012 422 1330 126 18,560
t = 2 30.197 0.00054 0.0189 5.9 × 10−7 0.000009 409 1289 122 14,848

3.4. Water Resource Optimization

Figure 5 showed the results of the SLFP model. Six typical water allocation schemes are established
in each region, and the allocation of water resources varied in each scenario. By assessing the allocation
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of water resources, the values of water resources and water inputs, as well as the associated trends,
can be determined.

A reasonable water allocation scheme can improve economic and social development, as well
as improve people’s material and cultural life. Figure 5 shows the water allocation in different
periods in each region based on 25 scenarios. Comparing the water allocation of domestic water
in different target years, it is found that the trend of water allocation varies in different regions.
Due to the large population density and population growth trend, the water allocation in 2030 is
higher than 2020, and the water allocation increased by 0.05%, 0.44%, 1.01% and 0.20% in Qianguo,
Zhaodong, Harbin and Jiamusi, respectively. Because of the sparse population density, the population
has a negative growth trend, the water allocation in 2030 is less than the water allocation in 2020,
and the water allocation is reduced by 0.22%, 0.14%, 0.72% and 0.69% in Fuyu, Zhaoyuan, Luobei and
Suibin, respectively. The industrial sector, as a water user with the largest actual economic benefit per
cubic meter of water, is proportional to the economic and environmental pollution, so the constraint
conditions are introduced to restrict the water allocation in the industrial sector to ensure the fairness
of the other three water use sectors. The industrial water allocation in 2030 was significantly lower than
that in 2020, Qianguo, Fuyu, Zhaoyuan, Zhaodong, Harbin, Jiamusi, Luobei, and Suibin decreased
by 2.06%, 3.45%, 3.26%, 3.52%, 2.49%, 1.03%, 3.06% and 2.77% respectively. This is also closely
related to the improvement of industrial production water-saving technology and the adjustment of
industrial structure. As the largest user of water in four water demand sectors, the water demand of
agriculture accounts for the largest proportion of the total water supply. The proportion of agricultural
water supply varies in different regions due to planting area, planting species and wetland holdings.
The agricultural water supply accounts for 70.92%, 63.27%, 54.79%, 76.21%, 77.22%, 77.68%, 74.76%
and 96.59% of the total water supply in Qianguo, Fuyu, Zhaoyuan, Zhaodong, Harbin, Jiamusi,
Luobei, and Suibin, respectively. The environmental water allocation in 2030 was projected to be
higher than that in 2020 in different regions. The growth rate of environmental water allocation is
1.29%, 0.22%, 0.12%, 0.19%, 0.45%, 0.64% and 3.74% in Qianguo, Fuyu, Zhaoyuan, Zhaodong, Harbin,
Jiamusi, Luobei, and Suibin, respectively. Additionally, the population’s awareness of environmental
protection is expected to gradually increase; therefore, providing adequate water for environmental
uses is important.

Table 7 compared the coefficients of variation for each region and in different periods for different
water demand sectors with the 25 scenarios. Notably, in 2020, the water allocation in different sectors
was affected by different scenarios, and the fluctuation in 2030 was smaller. In 2020, the domestic water
allocation in Luobei was most affected by these different scenarios, while Harbin was the least affected
by the different scenarios. The coefficient of variation of the industrial water allocation was largest in
Suibin and smallest in Harbin. The coefficient of variation of the environmental water allocation was
largest in Zhaodong. Because of the large amount of agricultural water, the difference in agricultural
water allocation in different situations is not obvious, which leads to the smaller T, but it can still be
seen that the change in water allocation in different scenarios in 2020 is more obvious than that in 2030.

When the objective function is only considered Equation (12), in which only the largest economic
benefit is taken into account. The results show that the water allocation for industrial is higher,
the water allocation for agricultural is low, the water allocation for ecological changes little, and the
water allocation for domestic is basically the same. When the objective function is only considered
Equation (16), in which only the minimum water supply target is considered, The results show that
water allocation only satisfies the minimum water requirement of each section. When these two target
functions were taken into consideration at the same time, the results of water allocation tend to be the
result of the target with the minimum water supply. However, consider with Equation (12) limited, it is
different from the water allocation results that only consider Equation (16). Because this paper uses
fractional linear programming to indirectly represent multiple targets, the two targets are integrated
into one model, instead of using traditional weights or only goal programming. In addition to the
indirect reflection of two objectives, the model is more important to reflect the efficiency of the system.
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Because of the shortage of water resources, the decision-makers pay more attention to the efficiency of
the allocation, while the fractional linear programming reflects the allocation efficiency index in the
form of objective function in the optimization model primarily, so as to efficiently allocate the water
resources in the study area.Water 2018, 10, x FOR PEER REVIEW  14 of 19 
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Table 7. The coefficient of variation for water allocation under different scenarios.

Regions
Domestic Water

Sector
Industrial Water

Sector
Environmental

Water Sector
Agricultural Water

Sector

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

P1 7.24% 0.48% 2.23% 0.05% 0.01% 0 0.14% 0.03%
P2 7.35% 0.14% 2.69% 0.05% 4.62% 0 0.12% 0.06%
P3 10.12% 0.25% 4.39% 0.10% 0.01% 0 0.10% 0.03%
P4 6.38% 0.18% 1.51% 0.03% 8.37% 0.09% 0.21% 0.05%
P5 1.13% 0.06% 0.33% 0.01% 3.24% 0.04% 0.05% 0.03%
P6 4.16% 0.07% 2.55% 0.06% 0.19% 0.01% 0.09% 0.01%
P7 28.79% 1.93% 16.27% 0.43% 0.94% 0.02% 0.11% 0.02%
P8 21.41% 0.82% 20.83% 2.81% - - 0.12% 0.03%

Figure 6 shows the added value and model efficiency under different scenarios. Notably, the higher
the runoff, the larger the added value and model efficiency. For example, the added value was
498.09 billion and the model efficiency was 0.365 for S21, which is associated with the largest amount of
runoff. The model efficiency of different scenarios reflected the relationships between system benefits
and runoff. The system efficiency will increase as runoff increases. Specifically, the higher the amount
of runoff, the larger the potential system benefits and economic results. Thus, larger system benefits
were produced by relatively large water resources investments, but overly large water supplies can
cause natural disasters, such as floods. Moreover, the lower the amount of runoff, the smaller the
system benefits, but too little water can also cause natural disasters, such as droughts. As shown in
Figure 6, S5 and S21 represented extreme droughts and extreme floods, respectively. The air temperature
was increased by 2 ◦C, and the precipitation was 65% of the annual average precipitation, and the
simulated runoff was 63.24% of the annual average runoff in S5. The most needed water sectors
should be supplied. At this time, the water conservancy project plays a major role, and we can
obtain water from the reservoir and the water diversion project so that society can function normally.
The air temperature was decreased by 0.5 ◦C, and the precipitation was 130% of the annual average
precipitation, and the simulated runoff was 130.74% of the annual average runoff in S21. In order
not to cause a large area of flood disaster, in addition to provide normal life and the necessary water
requirements, the remaining water can also be stored in the reservoir or discharged into the sea through
the water diversion project. Thus, it is important to undertake water conservancy projects.
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In this paper, we used two types of software to calculate the constructed model: one is Lingo
and the other is Excel programming solution. The Lingo model use dual theory, which transforms
the fractional programming model into a conventional linear programming model, and Excel uses
generalized reduced gradient (GRG) algorithms. Compared with the results of two software solutions,
the allocation results are different from the numerical value, but there is not much difference. It is
proved that the two types of software are applicable to the solution of the model.

The real-world case study showed that the SLFP model, which considers the changes of
temperature and precipitation, is an effective tool for optimally allocating water resources under
different water inflow conditions. Generally, compared with other optimization methods, the SLFP
model has the following advantages. (i) The SLFP model considers issues such as climate change
in a traditional model of optimal water resource allocation to improve the temporal applicability
and practicality of the method. Moreover, the model coordinates the relationship between the
maximum economic benefits, minimum water supply and maximum water resource efficiency to
provide a reference for water resource allocation under different water conditions; (ii) The SLFP model
is particularly sensitive to water supply, water requirement, and water allocation constraints. In the
modelling process, constraints are carefully established according to COD, water supply, structural
adjustments and future national happiness requirements. These constraints can improve the industrial
structure. The real-world case study yielded a series of optimal Pareto solutions, and these solutions
indicated that all the constraint conditions contributed to the final optimization results; (iii) The SLFP
model can provide sufficient analysis of the interrelationships among system efficiency, the investment
in water resources and economic benefits. The best effect of the model was observed after long-term
use. Therefore, the SLFP method can be applied to other resources, such as reservoir operation
management, sustainable waste management, etc.

4. Conclusions

In this study, runoff in the study area was simulated and forecasted considering the future
variations of annual precipitation and temperature according to IPCC reports and Figure 3, based
on which, a SLFP model for water resources optimal allocation was developed by incorporating the
RSM model and LFP model. Through solving the SLFP model, various optimal allocation schemes of
water resources in different periods and different scenarios were obtained. The main conclusions can
be drawn:

(a) Based on the Mann-Kendall test of hydro-meteorological data from 1961 to 2015 for the Songhua
River basin, the average temperature increased by 0.0278 ◦C per year, and precipitation presented
large fluctuations, while the overall trends of runoff changed slightly. Based on the IPCC reports,
25 scenarios were established considering the variations in temperature and precipitation. The rate of
simulated runoff change was 0.0103 with the temperature and precipitation unchanged.
The reliability of the RSM was verified by RE and CC. The R2 values of the RSM models were all
above 0.81, indicating that the RSM model can provide reliable forecasting and thus can be used
as an input of water resource planning.

(b) The water allocation schemes were affected by different scenarios, and the range of water
allocation considerably varied among different regions and sectors in 2020. However, the water
allocation was gradually optimized using the SLFP model, and the range of water allocation in
different regions and sectors generally decreased in 2030 compared to that in 2020. According to
the analysis of the results of water allocation, the economic benefits have been obtained in target
years. In this paper, the environmental oxygen demand (EcCOD) and the happy life index were
integrated into the SLFP model to improve its practicability. Analysis results of the water resource
allocation schemes under the two extreme scenarios indicate that the water resource allocation
in the main stream basin of the Songhua River needs water conservancy projects. Using the
SLFP model, managers can easily and optimally allocate water resources under different water
inflow conditions.
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