Supplementary Materials - Equations

Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and ratio of the root mean square error to the standard deviation of measured data (RSR)

$$
\begin{align*}
& N S E=1-\left[\frac{\sum_{i=1}^{n}\left(Y_{i}^{\text {obs }}-Y_{i}^{\text {sim }}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}^{\text {obs }}-Y^{\text {mean }}\right)^{2}}\right] \tag{S1}\\
& P B I A S=\left[\frac{\sum_{i=1}^{n}\left(Y_{i}^{\text {obs }}-Y_{i}^{\text {sim }}\right) \times 100}{\sum_{i=1}^{n}\left(Y_{i}^{\text {obs }}\right)}\right] \tag{S2}\\
& R S R=\frac{R M S E}{S T D_{o b s}}=\frac{\sqrt{\sum_{i=1}^{n}\left(Y_{i}^{\text {obs }}-Y_{i}^{\text {sim }}\right)^{2}}}{\sqrt{\sum_{i=1}^{n}\left(Y_{i}^{\text {obs }}-Y^{\text {mean }}\right)^{2}}} \tag{S3}
\end{align*}
$$

where $Y_{i}^{\text {obs }}$ is the i th observation for the constituent being evaluated (spatially-averaged monthly mean temperature and precipitation from weather stations), $Y_{i}^{s i m}$ is the i th simulated value for the constituent being evaluated (NLDAS), $Y^{\text {mean }}$ is the mean of the observed data for the constituent being evaluated, and n is the total number of observations, $R M S E$ is the root mean square error, and $S T D_{\text {obs }}$ is the standard deviation of the observation.

Man-Kendall, Seasonal Man-Kendall, Sen's Slope, and Pettitt's test

For annual data, we performed standard Mann-Kendall test using following equations:

$$
\begin{equation*}
\alpha^{2}=\left\{n(n-1)(2 n+5)-\sum_{j=1}^{p} t_{j}\left(t_{j}-1\right)\left(2 t_{j}+5\right)\right\} / 18 \tag{S4}
\end{equation*}
$$

with

$$
\operatorname{sgn}(x)=\left\{\begin{array}{cll}
1 & \text { if } & x>0 \tag{S5}\\
0 & \text { if } & x=0 \\
-1 & \text { if } & x<0
\end{array}\right.
$$

The mean of S is $E[S]=0$ and the variance α^{2} is

$$
\begin{equation*}
D=\left[\frac{1}{2} n(n-1)-\frac{1}{2} \sum_{j=1}^{p} t_{j}\left(t_{j}-1\right)\right]^{1 / 2}\left[\frac{1}{2} n(n-1)\right]^{1 / 2} \tag{S6}
\end{equation*}
$$

where p is the number of the tied groups in the data set and t_{j} is the number of data points in the jth tied group. The statistic S is closely related to Kendall's τ as given by:

$$
\begin{equation*}
\tau=\frac{S}{D} \tag{S7}
\end{equation*}
$$

where

$$
\begin{equation*}
D=\left[\frac{1}{2} n(n-1)-\frac{1}{2} \sum_{j=1}^{p} t_{j}\left(t_{j}-1\right)\right]^{1 / 2}\left[\frac{1}{2} n(n-1)\right]^{1 / 2} \tag{S8}
\end{equation*}
$$

We calculated Sen's Slope (Sen, 1968) for linear rate of change and the corresponding intercept as this method is robust to outliers using the following equations:

$$
\begin{equation*}
d_{k}=\frac{X_{j}-X_{i}}{j-i} \tag{S9}
\end{equation*}
$$

for $(1 \leq i \leq j \leq n)$, where d is the slope, X denotes the variable, n is the number of data, and i, j are indices. Sen's slope was then calculated as the median from all slopes: $\mathrm{b}=$ Median d_{k}. The intercepts are computed for each time step t as given by

$$
\begin{equation*}
\alpha_{t}=X_{t}-b^{*} t \tag{S10}
\end{equation*}
$$

We also performed Pettitt's test (Pettitt, 1979) to detect potential change-point and catch the nonlinear trend in a time series using the following equations:

$$
\begin{equation*}
K_{t}=\max \left|U_{t, T}\right| \tag{S11}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{t, T}=\sum_{i=1}^{t} \sum_{j=t+1}^{T} \operatorname{sgn}\left(x_{i}-X_{j}\right) \tag{S1}
\end{equation*}
$$

The change-point of the series is located at K_{T}, provided that the statistics is significant. The significance probability of K_{T} is approximated for $p \leq 0.05$ with

$$
\begin{equation*}
p \cong 2 \exp \left(\frac{-6 K_{T}^{2}}{T^{3}+T^{2}}\right) \tag{S13}
\end{equation*}
$$

As the climate and hydrological variables of the three basins in general exhibited a similar trend over the period of 1985-2014, we also grouped them together and preformed trend and change-point analysis on a regional scale.

For monthly data, we performed seasonal Mann-Kendall test (Hipel and McLeod 2005; Libiseller and Grimvall, 2002) to minimize data seasonality. The Mann-Kendall statistic for the g th season is calculated as:

$$
\begin{equation*}
S_{g}=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{sgn}\left(X_{j g}-X_{i g}\right), g=1,2, \ldots, m \tag{S14}
\end{equation*}
$$

The seasonal Mann-Kendall statistics, \hat{S}, for the entire series is calculated according to

$$
\begin{equation*}
\hat{S}=\sum_{g=1}^{m} S_{g} \tag{S15}
\end{equation*}
$$

Continuous wavelet transform (CWT) and wavelet coherence analysis (TWC)

The approach used in wavelet power spectra computation is the Morlet wavelet as following:

$$
\begin{equation*}
\psi_{o}(\eta)=\pi^{-\frac{1}{4}} e^{i \omega_{o} \eta} e^{-\frac{\eta^{2}}{2}} \tag{S16}
\end{equation*}
$$

where $\psi_{o}(\eta)$ is the wavelet function, η is a dimensionless time parameter, i is the imaginary unit, and ω_{o} is dimensionless angular frequency, which provides a balance between time and frequency localization. For a time series X_{n} for each scale s at all n of series length N, the wavelet function is represented as:

$$
\begin{equation*}
W_{n}(s)=\frac{1}{N} \sum_{n^{\prime}=0}^{N-1} x_{n^{\prime}} \psi^{*}\left[\frac{\left(\eta^{\prime}-\eta\right) \Delta t}{s}\right] \tag{S17}
\end{equation*}
$$

where $W_{n}(s)$ is the wavelet transform coefficient, ψ is the normalized wavelet, $\left(^{*}\right)$ is the complex conjugate, s is the wavelet scale, n is the localized time index, and n^{\prime} is the translated time index of the time ordinate x.

For wavelet coherence, the computation is analogous to the correlation coefficient between two series X and Y with wavelet transforms $W_{n}^{X}(s)$ and $W_{n}^{Y}(s)$ is defined as:

$$
\begin{equation*}
R_{n}^{2}(s)=\frac{\left|S\left(s^{-1} W_{n}^{X Y}(s)\right)\right|^{2}}{S\left(s^{-1}\left|W_{n}^{X}(s)\right|^{2}\right) \times S\left(s^{-1}\left|W_{n}^{Y}(s)\right|^{2}\right)} \tag{S18}
\end{equation*}
$$

where S is a smoothing operator both in the scale axis and time domain.

$$
\begin{equation*}
S(W)=S_{\text {scale }}\left(S_{\text {time }}\left(W_{n}(s)\right)\right) \tag{S19}
\end{equation*}
$$

where $S_{\text {time }}$ smooths along the time axis and $S_{\text {scale }}$ along the scale axis.

